Interaction Protocols for Electronic Institutions in B2B inter-organizational business

Pedro Brandão Neto
FEUP / PRODEI 2009-2010
Methodologies for Scientific Research
Outline

- Introduction
- FIPA-Contract-Net
- Implemented Electronic Platform
- Scenario
- Conclusion
Introduction

- Information Technology and Communication

- Electronic commerce
 - business-to-consumer (B2C)
 - business-to-business (B2B)

- New era of the digital economy
Introduction

- **Electronic Institutions**
 - to support interaction between representative artificial agents of business activity participants (enterprises) as a coordination framework, making the business agreement establishment more efficient

- **Multi-Agent System (MAS)**
 - Interaction infrastructure

- **The FIPA-Contract-Net protocol**
The FIPA-Contract-Net specification.

The Initiator

The Participants

Deadline for proposals

The Initiator

The Participants
Implemented Electronic Platform

- A Multi-Agent system as Electronic Platform.
 - FIPA specification protocols.
 - JADE (Java Agent Development Framework).

- It has Buyer and Supplier agents

- Infrastructure of participant agent’s communication
 - Behaviours
 - JADE
 - ContractNetInitiator
 - ContractNetResponder
Implemented Electronic Platform

- The participant agents in JADE were divided into categories:
 - the Initiator
 - the Participants

- Three protocols were defined, which are:
 - open protocol,
 - proposal protocol and
 - closing protocol.
Implemented Electronic Platform

- The two developed main agents are: Supplier and Buyer.
- The Buyer agent:
 - Subscribes in a Virtual Marketplace;
 - Finds the Supplier agents that met themselves in the Virtual Marketplace, only those that able to satisfy your needs.
 - Requests proposals from all Supplier agents;
 - Analises the received proposals from Supplier agents;
 - Chooses the best proposal;
 - And, to send a message toward supplier agent that offered the best proposal;
Implemented Electronic Platform

The Supplier agent:

- Subscribes itself in a Virtual Marketplace;
- Registers your services in the yellow pages;
- Has a data structure to ensures your product catalogue;
- Waits by proposal requisition from Buyer agents;
- Formulates proposals for a Buyer agent;
- Announces and to officialize the Buyer agent, in toward to accept the conditions and compromises itself to realize the agreement;
Implemented Electronic Platform

Table 1 below shows the Buyer and Supplier agent’s behaviors associated with yours respective tasks.

Table 1. Behaviours list associated to the Buyer and Supplier agents

<table>
<thead>
<tr>
<th>Agents</th>
<th>Behaviors</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buyer</td>
<td>WakeBehaviour</td>
<td>Start up the agent execution and, also, it queries DF (Directory Facilitador) agent.</td>
</tr>
<tr>
<td></td>
<td>OneShotBehaviour</td>
<td>Send a message toward Supplier agents.</td>
</tr>
<tr>
<td></td>
<td>Generic Behaviour</td>
<td>Stay waiting by responses of Supplier agents.</td>
</tr>
<tr>
<td></td>
<td>Generic Behaviour</td>
<td>Determine the winner, the agent that offers the best proposal.</td>
</tr>
<tr>
<td>Supplier</td>
<td>OneShotBehaviour</td>
<td>Start up the agent execution and register itself in the yellow pages services (the DF agent).</td>
</tr>
<tr>
<td></td>
<td>CyclicBehaviour</td>
<td>Analise the CFP (Call For Proposals) from Buyer agent.</td>
</tr>
<tr>
<td></td>
<td>CyclicBehaviour</td>
<td>Verify himself whether won the dispute and compromises itself with agreement.</td>
</tr>
</tbody>
</table>
Scenario

Supplier Agent

- A Virtual Marketplace starts with clusters of the Supplier Agents.

- Each Supplier agent in the beginning performs his OneShotBehaviour behavior.
 - Creates two objects: Fabric and Catalog.

- The next behavior to be performed is the CyclicBehaviour.
 - It to elaborate a proposal.

- The last behavior is the CyclicBehaviour.
 - The Supplier agents wins the dispute.
Scenario

Buyer Agent

- Starts the negotiation using OneShotBehaviour;
 - DF (Directory Facilitator)
- The other behavior to be executed is a generic behavior

- By last, the Buyer agent performs other generic behavior that fulfills two tasks.
 - To determine the best proposal received from the Buyer agents
 - To send a message to winning agent with the accept-proposal performative, the other agents receive refuse-proposal.
Scenario

- The Supplier agents
 - s1, s2 and s3

- Buyer agents
 - b1, b2, b3 and b4
 - Target good: cotton, chiffon, voile and nylon respectively.
Scenario

Ocurrers following steps:

- The agents s1, s2 and s3 meet themselves to constitute the Virtual Marketplace;
- Each agent offers its products with the respective available quantity, that was randomly attributed;
- The agents keep updated the product’s quantities;

- The Buyer agents make a CFP for Supplier agents through the open protocol aiming to receive proposals;

- The Supplier agents elaborate proposals through the proposal protocol and send them to the Buyer agent;

- The Buyer agent selects the best proposal received taking into account several situations, not only the best price using the proposal protocol;

- Following the Supplier agent, the contracted, firms an agreement with the Buyer through the closing protocol;
Scenario

- The Figure 2 below shows the exchanges of messages between the supplier agents and buyer agents in the negotiation.

Fig. 2. Exchange of messages between the Supplier and Buyer agents in the negotiation.
Conclusion

- The interaction protocols between the participating agents in the inter-organizational B2B negotiation process we defined a SMA to ensure an Electronic Platform.

- We developed an Electronin Platform, the textile industry, for the negotiation between the participating agents.

- A detailed overview of operation of how the agents perform their tasks was described.

- The purpose of this paper resulted in the following contributions: 1) the three protocols of negotiation for B2B transactions, which was based specification from the FIPA-Contract-Net.

- This study is the basis for the implementation of a trading algorithm more powerful, the trading algorithm-Q (Rocha, 2001).
Thank You!

Questions?