PCF8584
I²C-bus controller

Product specification
Supersedes data of 1997 Mar 19
File under Integrated Circuits, IC12
CONTENTS

1 FEATURES
2 GENERAL DESCRIPTION
3 ORDERING INFORMATION
4 BLOCK DIAGRAM
5 PINNING
6 FUNCTIONAL DESCRIPTION
 6.1 General
 6.2 Interface Mode Control (IMC)
 6.3 Set-up registers S0’, S2 and S3
 6.4 Own address register S0’
 6.5 Clock register S2
 6.6 Interrupt vector S3
 6.7 Data shift register/read buffer S0
 6.8 Control/status register S1
 6.8.1 Register S1 control section
 6.8.1.1 PIN (Pending Interrupt Not)
 6.8.1.2 ESO (Enable Serial Output)
 6.8.1.3 ES1 and ES2
 6.8.1.4 ENI
 6.8.1.5 STA and STO
 6.8.1.6 ACK
 6.8.2 Register S1 status section
 6.8.2.1 PIN bit
 6.8.2.2 STS
 6.8.2.3 BER
 6.8.2.4 LRB/AD0
 6.8.2.5 AAS
 6.8.2.6 LAB
 6.8.2.7 BB
 6.9 Multi-master operation
 6.10 Reset
 6.11 Comparison to the MAB8400 I²C-bus interface
 6.11.1 Deleted functions
 6.11.2 added functions
 6.12 Special function modes
 6.12.1 Strobe
 6.12.2 Long-distance mode
 6.12.3 Monitor mode

7 SOFTWARE FLOWCHART EXAMPLES
 7.1 Initialization
 7.2 Implementation
8 I²C-BUS TIMING DIAGRAMS
9 LIMITING VALUES
10 HANDLING
11 DC CHARACTERISTICS
12 I²C-BUS TIMING SPECIFICATIONS
13 PARALLEL INTERFACE TIMING
14 APPLICATION INFORMATION
 14.1 Application Notes
15 PACKAGE OUTLINES
16 SOLDERING
 16.1 Introduction
 16.2 DIP
 16.2.1 Soldering by dipping or by wave
 16.2.2 Repairing soldered joints
 16.3 SO
 16.3.1 Reflow soldering
 16.3.2 Wave soldering
 16.3.3 Repairing soldered joints
17 DEFINITIONS
18 LIFE SUPPORT APPLICATIONS
19 PURCHASE OF PHILIPS I²C COMPONENTS
1 FEATURES
- Parallel-bus to I²C-bus protocol converter and interface
- Compatible with most parallel-bus microcontrollers/microprocessors including 8049, 8051, 6800, 68000 and Z80
- Both master and slave functions
- Automatic detection and adaption to bus interface type
- Programmable interrupt vector
- Multi-master capability
- I²C-bus monitor mode
- Long-distance mode (4-wire)
- Operating supply voltage 4.5 to 5.5 V
- Operating temperature range: −40 to +85 °C.

2 GENERAL DESCRIPTION
The PCF8584 is an integrated circuit designed in CMOS technology which serves as an interface between most standard parallel-bus microcontrollers/microprocessors and the serial I²C-bus. The PCF8584 provides both master and slave functions.

Communication with the I²C-bus is carried out on a byte-wise basis using interrupt or polled handshake. It controls all the I²C-bus specific sequences, protocol, arbitration and timing. The PCF8584 allows parallel-bus systems to communicate bidirectionally with the I²C-bus.

3 ORDERING INFORMATION

<table>
<thead>
<tr>
<th>TYPE NUMBER</th>
<th>NAME</th>
<th>PACKAGE</th>
<th>DESCRIPTION</th>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCF8584P</td>
<td>DIP20</td>
<td>plastic dual in-line package; 20 leads (300 mil)</td>
<td>SOT146-1</td>
<td></td>
</tr>
<tr>
<td>PCF8584T</td>
<td>SO20</td>
<td>plastic small outline package; 20 leads; body width 7.5 mm</td>
<td>SOT163-1</td>
<td></td>
</tr>
</tbody>
</table>
4 BLOCK DIAGRAM

Fig. 1 Block diagram.

(1) X = don’t care.
(2) Pin mnemonics between parenthesis indicate the 68000 mode pin designations.
(3) These pin mnemonics represent the long-distance mode pin designations.
Pinning

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PIN</th>
<th>I/O</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>1</td>
<td>I</td>
<td>clock input from microcontroller clock generator (internal pull-up)</td>
</tr>
<tr>
<td>SDA or SDA OUT</td>
<td>2</td>
<td>I/O</td>
<td>I²C-bus serial data input/output (open-drain). Serial data output in long-distance mode.</td>
</tr>
<tr>
<td>SCL or SCL IN</td>
<td>3</td>
<td>I/O</td>
<td>I²C-serial clock input/output (open-drain). Serial clock input in long-distance mode.</td>
</tr>
<tr>
<td>IACK or SDA IN</td>
<td>4</td>
<td>I</td>
<td>Interrupt acknowledge input (internal pull-up); when this signal is asserted the interrupt vector in register S3 will be available at the bus Port if the ENI flag is set. Serial data input in long-distance mode.</td>
</tr>
<tr>
<td>INT or SCL OUT</td>
<td>5</td>
<td>O</td>
<td>Interrupt output (open-drain); this signal is enabled by the ENI flag in register S1. It is asserted when the PIN flag is reset. (PIN is reset after 1 byte is transmitted or received over the I²C-bus). Serial clock output in long-distance mode.</td>
</tr>
<tr>
<td>A0</td>
<td>6</td>
<td>I</td>
<td>Register select input (internal pull-up); this input selects between the control/status register and the other registers. Logic 1 selects register S1, logic 0 selects one of the other registers depending on bits loaded in ESO, ES1 and ES2 of register S1.</td>
</tr>
<tr>
<td>DB0</td>
<td>7</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 0</td>
</tr>
<tr>
<td>DB1</td>
<td>8</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 1</td>
</tr>
<tr>
<td>DB2</td>
<td>9</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 2</td>
</tr>
<tr>
<td>VSS</td>
<td>10</td>
<td>–</td>
<td>ground</td>
</tr>
<tr>
<td>DB3</td>
<td>11</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 3</td>
</tr>
<tr>
<td>DB4</td>
<td>12</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 4</td>
</tr>
<tr>
<td>DB5</td>
<td>13</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 5</td>
</tr>
<tr>
<td>DB6</td>
<td>14</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 6</td>
</tr>
<tr>
<td>DB7</td>
<td>15</td>
<td>I/O</td>
<td>bidirectional 8-bit bus Port 7</td>
</tr>
<tr>
<td>RD (DTACK)</td>
<td>16</td>
<td>I/(O)</td>
<td>RD is the read control input for MAB8049, MAB8051 or Z80-types. DTACK is the data transfer control output for 68000-types (open-drain).</td>
</tr>
<tr>
<td>CS</td>
<td>17</td>
<td>I</td>
<td>chip select input (internal pull-up)</td>
</tr>
<tr>
<td>WR (R/W)</td>
<td>18</td>
<td>I</td>
<td>WR is the write control input for MAB8048, MAB8051, or Z80-types (internal pull-up). R/W control input for 68000-types.</td>
</tr>
<tr>
<td>RESET/STROBE</td>
<td>19</td>
<td>I/O</td>
<td>Reset input (open-drain); this input forces the I²C-bus controller into a predefined state; all flags are reset, except PIN, which is set. Also functions as strobe output.</td>
</tr>
<tr>
<td>VDD</td>
<td>20</td>
<td>–</td>
<td>supply voltage</td>
</tr>
</tbody>
</table>
6 FUNCTIONAL DESCRIPTION

6.1 General

The PCF8584 acts as an interface device between standard high-speed parallel buses and the serial I²C-bus. On the I²C-bus, it can act either as master or slave. Bidirectional data transfer between the I²C-bus and the parallel-bus microcontroller is carried out on a byte-wise basis, using either an interrupt or polled handshake. Interface to either 80XX-type (e.g. 8048, 8051, Z80) or 68000-type buses is possible. Selection of bus type is automatically performed (see Section 6.2).

Table 1 Control signals utilized by the PCF8584 for microcontroller/microprocessor interfacing

<table>
<thead>
<tr>
<th>TYPE</th>
<th>R/W</th>
<th>WR</th>
<th>R</th>
<th>DTACK</th>
<th>IACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048/8051</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>68000</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Z80</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

The structure of the PCF8584 is similar to that of the I²C-bus interface section of the Philips’ MABXXXX/PCF84(C)XX-series of microcontrollers, but with a modified control structure. The PCF8584 has five internal register locations. Three of these (own address register S0’, clock register S2 and interrupt vector S3) are used for initialization of the PCF8584. Normally they are only written once after resetting of the PCF8584. The remaining two registers function as double registers (data buffer/shift register S0, and control/status register S1) which are used during actual data transmission/reception. By using these double registers, which are separately write and read accessible, overhead for register access is reduced. Register S0 is a combination of a shift register and data buffer. Register S0 performs all serial-to-parallel interfacing with the I²C-bus. Register S1 contains I²C-bus status information required for bus access and/or monitoring.

6.2 Interface Mode Control (IMC)

Selection of either an 80XX mode or 68000 mode interface is achieved by detection of the first WR-CS signal sequence. The concept takes advantage of the fact that the write control input is common for both types of interfaces. An 80XX-type interface is default. If a HIGH-to-LOW transition of WR(R/W) is detected while CS is HIGH, the 68000-type interface mode is selected and the DTACK output is enabled. Care must be taken that WR and CS are stable after reset.
Fig. 3 68000/80XX timing sequence utilized by the Interface Mode Control (IMC).

(1) Bus timing; 68000 mode write cycle.
(2) Bus timing; 80XX mode.
6.3 Set-up registers S0’, S2 and S3

Registers S0’, S2 and S3 are used for initialization of the PCF8584 (see Fig.5 ‘Initialization sequence’ flowchart).

6.4 Own address register S0’

When the PCF8584 is addressed as slave, this register must be loaded with the 7-bit I²C-bus address to which the PCF8584 is to respond. During initialization, the own address register S0’ must be written to, regardless whether it is later used. The Addressed As Slave (AAS) bit in status register S1 is set when this address is received (the value in S0 is compared with the value in S0’). Note that the S0 and S0’ registers are offset by one bit; hence, programming the own address register S0’ with a value of 55H will result in the value AAH being recognized as the PCF8584’s slave address (see Fig.1).

Programming of S0’ is accomplished via the parallel-bus when A0 is LOW, with the appropriate bit combinations set in control status register S1 (S1 is written when pin A0 = HIGH). Bit combinations for accessing all registers are given in Table 5. After reset, S0’ has default address 00H (PCF8584 is thus initially in monitor mode, see Section 6.12.3).

6.5 Clock register S2

Register S2 provides control over chip clock frequency and SCL clock frequency. S20 and S21 provide a selection of 4 different I²C-bus SCL frequencies which are shown in Table 2. Note that these SCL frequencies are only obtained when bits S24, S23 and S22 are programmed to the correct input clock frequency (f_{clk}).

Programming of S2 is accomplished via the parallel-bus when A0 = LOW, with the appropriate bit combinations set in control status register S1 (S1 is written when A0 = HIGH). Bit combinations for accessing all registers are given in Table 5.

Table 3 Register S2 selection of clock frequency

<table>
<thead>
<tr>
<th>BIT</th>
<th>APPROXIMATE SCL FREQUENCY f_{SCL} (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>90</td>
</tr>
<tr>
<td>0 1</td>
<td>45</td>
</tr>
<tr>
<td>1 0</td>
<td>11</td>
</tr>
<tr>
<td>1 1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note

1. X = don’t care.

6.6 Interrupt vector S3

The interrupt vector register provides an 8-bit user-programmable vector for vectored-interrupt microcontrollers. The vector is sent to the bus port (DB7 to DB0) when an interrupt acknowledge signal is asserted and the ENI (enable interrupt) flag is set. Default vector values are:

- Vector is ‘00H’ in 80XX mode
- Vector is ‘0FH’ in 68000 mode.

On reset the PCF8584 is in the 80XX mode, thus the default interrupt vector is ‘00H’.

6.7 Data shift register/read buffer S0

Register S0 acts as serial shift register and read buffer interfacing to the I²C-bus. All read and write operations to/from the I²C-bus are done via this register. S0 is a combination of a shift register and a data buffer; parallel data is always written to the shift register, and read from the data buffer. I²C-bus data is always shifted in or out of shift register S0.

S22, S23 and S24 are used for control of the internal clock prescaler. Due to the possibility of varying microcontroller clock signals, the prescaler can be programmed to adapt to 5 different clock rates, thus providing a constant internal clock. This is required to provide a stable time base for the SCL generator and the digital filters associated with the I²C-bus signals SCL and SDA. Selection for adaption to external clock rates is shown in Table 3.
In receiver mode the data from the shift register is copied to the read buffer during the acknowledge phase. Further reception of data is inhibited (SCL held LOW) until the S0 read buffer is read (see Section 6.8.1.1).

In the transmitter mode data is transmitted to the I²C-bus as soon as it is written to the S0 shift register if the serial I/O is enabled (ESO = 1).

Remarks:
1. A minimum of 6 clock cycles must elapse between consecutive parallel-bus accesses to the PCF8584 when the I²C-bus controller operates at 8 or 12 MHz. This may be reduced to 3 clock cycles for lower operating frequencies.
2. To start a read operation immediately after a write, it is necessary to read the S0 read buffer in order to invoke reception of the first byte (‘dummy read’ of the address). Immediately after the acknowledgement, this first byte will be transferred from the shift register to the read buffer. The next read will then transfer the correct value of the first byte to the microcontroller bus (see Fig.7).

6.8 Control/status register S1

Register S1 controls I²C-bus operation and provides I²C-bus status information. Register S1 is accessed by a HIGH signal on register select input A0. For more efficient communication between microcontroller/processor and the I²C-bus, register S1 has separate read and write functions for all bit positions (see Fig.3). The write-only section provides register access control and control over I²C-bus signals, while the read-only section provides I²C-bus status information.

Table 4 Control/status register S1

<table>
<thead>
<tr>
<th>CONTROL/STATUS</th>
<th>BITS</th>
<th>MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control(1)</td>
<td>PIN</td>
<td>EN, ES</td>
</tr>
<tr>
<td>Status(2)</td>
<td>PIN</td>
<td>STS</td>
</tr>
</tbody>
</table>

Notes
1. For further information see Section 6.8.1.
2. For further information see Section 6.8.2.
3. Logic 1 if not-initialized.
6.8.1 REGISTER S1 CONTROL SECTION

The write-only section of S1 enables access to registers S0, S0’, S1, S2 and S3, and controls I²C-bus operation; see Table 4.

6.8.1.1 PIN (Pending Interrupt Not)

When the PIN bit is written with a logic 1, all status bits are reset to logic 0. This may serve as a software reset function (see Figs 5 to 9). PIN is the only bit in S1 which may be both read and written to. PIN is mostly used as a status bit for synchronizing serial communication, see Section 6.8.2.

6.8.1.2 ESO (Enable Serial Output)

ESO enables or disables the serial I²C-bus I/O. When ESO is LOW, register access for initialization is possible. When ESO is HIGH, I²C-bus communication is enabled; communication with serial shift register S0 is enabled and the S1 bus status bits are made available for reading.

| Table 5 | Register access control; ESO = 0 (serial interface off) and ESO = 1 (serial interface on) |

<table>
<thead>
<tr>
<th>A0</th>
<th>ES1</th>
<th>ES2</th>
<th>IACK</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESO = 0; serial interface off (see note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>R/W S1: control</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W S0’: (own address)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R/W S3: (interrupt vector)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>R/W S2: (clock register)</td>
</tr>
<tr>
<td>ESO = 1; serial interface on</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>W S1: control</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>1</td>
<td>R S1: status</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>R/W S0: (data)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>R/W S3: (interrupt vector)</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>R S3: (interrupt vector ACK cycle)</td>
</tr>
</tbody>
</table>

Notes
1. With ESO = 0, bits ENI, STA, STO and ACK of S1 can be read for test purposes.
2. ‘X’ if ENI = 0.

6.8.1.3 ES1 and ES2

ES1 and ES2 control selection of other registers for initialization and control of normal operation. After these bits are programmed for access to the desired register (shown in Table 5), the register is selected by a logic LOW level on register select pin A0.

6.8.1.4 ENI

This bit enables the external interrupt output INT, which is generated when the PIN bit is active (logic 0).

This bit must be set to logic 0 before entering the long-distance mode, and remain at logic 0 during operation in long-distance mode.
6.8.1.5 STA and STO

These bits control the generation of the I²C-bus START condition and transmission of slave address and R/W bit, generation of repeated START condition, and generation of the STOP condition (see Table 7).

Table 6 Register access control; ESO = 1 (serial interface on) and ES1 = 1; long-distance (4-wire) mode; note 1

<table>
<thead>
<tr>
<th>A0</th>
<th>ES1</th>
<th>ES2</th>
<th>IACK</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>1</td>
<td>W S1: control</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>R S1; status</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>X</td>
<td>X</td>
<td>R/W S0; (data)</td>
</tr>
</tbody>
</table>

Note
1. Trying to read from or write to registers other than S0 and S1 (setting ESO = 0) brings the PCF8584 out of the long-distance mode.

Table 7 Instruction table for serial bus control

<table>
<thead>
<tr>
<th>STA</th>
<th>STO</th>
<th>PRESENT MODE</th>
<th>FUNCTION</th>
<th>OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>SLV/REC</td>
<td>START</td>
<td>transmit START + address, remain MST/TRM if R/W = 0; go to MST/REC if R/W = 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>MST/TRM</td>
<td>REPEAT START</td>
<td>same as for SLV/REC</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>MST/REC; MST/TRM</td>
<td>STOP READ; STOP WRITE</td>
<td>transmit STOP go to SLV/REC mode; note 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>MST</td>
<td>DATA CHAINING</td>
<td>send STOP, START and address after last master frame without STOP sent; note 2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>ANY</td>
<td>NOP</td>
<td>no operation; note 3</td>
</tr>
</tbody>
</table>

Notes
1. In master receiver mode, the last byte must be terminated with ACK bit HIGH (‘negative acknowledge’).
2. If both STA and STO are set HIGH simultaneously in master mode, a STOP condition followed by a START condition + address will be generated. This allows ‘chaining’ of transmissions without relinquishing bus control.
3. All other STA and STO mode combinations not mentioned in Table 7 are NOPs.

6.8.1.6 ACK

This bit must be set normally to a logic 1. This causes the I²C-bus controller to send an acknowledge automatically after each byte (this occurs during the 9th clock pulse). The bit must be reset (to logic 0) when the I²C-bus controller is operating in master/receiver mode and requires no further data to be sent from the slave transmitter. This causes a negative acknowledge on the I²C-bus, which halts further transmission from the slave device.

6.8.2 REGISTER S1 STATUS SECTION

The read-only section of S1 enables access to I²C-bus status information; see Table 4.
6.8.2.1 PIN bit

‘Pending Interrupt Not’ (MSB of register S1) is a status flag which is used to synchronize serial communication and is set to logic 0 whenever the PCF8584 requires servicing. The PIN bit is normally read in polled applications to determine when an \(^2\)C-bus byte transmission/reception is completed. The PIN bit may also be written, see Section 6.8.1.

Each time a serial data transmission is initiated (by setting the STA bit in the same register), the PIN bit will be set to logic 1 automatically (inactive). When acting as transmitter, PIN is also set to logic 1 (inactive) each time S0 is written. In receiver mode, the PIN bit is automatically set to logic 1 (inactive) each time the data register S0 is read.

After transmission or reception of one byte on the \(^2\)C-bus (9 clock pulses, including acknowledge), the PIN bit will be automatically reset to logic 0 (active) indicating a complete byte transmission/reception. When the PIN bit is subsequently set to logic 1 (inactive), all status bits will be reset to logic 0. PIN is also set to zero on a BER (bus error) condition.

In polled applications, the PIN bit is tested to determine when a serial transmission/reception has been completed. When the ENI bit (bit 4 of write-only section of register S1) is also set to logic 1 the hardware interrupt is enabled. In this case, the PIN flag also triggers an external interrupt (active LOW) via the \(\text{INT}\) output each time PIN is reset to logic 0 (active).

When acting as slave transmitter or slave receiver, while PIN = 0, the PCF8584 will suspend \(^2\)C-bus transmission by holding the SCL line LOW until the PIN bit is set to logic 1 (inactive). This prevents further data from being transmitted or received until the current data byte in S0 has been read (when acting as slave receiver) or the next data byte is written to S0 (when acting as slave transmitter).

PIN bit summary:

- The PIN bit can be used in polled applications to test when a serial transmission has been completed. When the ENI bit is also set, the PIN flag sets the external interrupt via the \(\text{INT}\) output.
- Setting the STA bit (start bit) will set PIN = 1 (inactive).
- In transmitter mode, after successful transmission of one byte on the \(^2\)C-bus the PIN bit will be automatically reset to logic 0 (active) indicating a complete byte transmission.
- In transmitter mode, PIN is set to logic 1 (inactive) each time register S0 is written.
- In receiver mode, PIN is set to logic 0 (active) on completion of each received byte. Subsequently, the SCL line will be held LOW until PIN is set to logic 1.
- In receiver mode, when register S0 is read, PIN is set to logic 1 (inactive).
- In slave receiver mode, an \(^2\)C-bus STOP condition will set PIN = 0 (active).
- PIN = 0 if a bus error (BER) occurs.

6.8.2.2 STS

When in slave receiver mode, this flag is asserted when an externally generated STOP condition is detected (used only in slave receiver mode).

6.8.2.3 BER

Bus error; a misplaced START or STOP condition has been detected. Resets BB (to logic 1; inactive), sets PIN = 0 (active).

6.8.2.4 LRB/AD0

‘Last Received Bit’ or ‘Address 0 (General Call) bit’. This status bit serves a dual function, and is valid only while PIN = 0:

1. LRB holds the value of the last received bit over the \(^2\)C-bus while AAS = 0 (not addressed as slave). Normally this will be the value of the slave acknowledgement; thus checking for slave acknowledgement is done via testing of the LRB.
2. AD0; when AAS = 1 (‘Addressed As Slave’ condition), the \(^2\)C-bus controller has been addressed as a slave. Under this condition, this bit becomes the ‘AD0’ bit and will be set to logic 1 if the slave address received was the ‘general call’ (00H) address, or logic 0 if it was the \(^2\)C-bus controller’s own slave address.

6.8.2.5 AAS

‘Addressed As Slave’ bit. Valid only when PIN = 0. When acting as slave receiver, this flag is set when an incoming address over the \(^2\)C-bus matches the value in own address register S0’ (shifted by one bit, see Section 6.4), or if the \(^2\)C-bus ‘General Call’ address (00H) has been received (‘General Call’ is indicated when AD0 status bit is also set to logic 1, see Section 6.8.2.4).

6.8.2.6 LAB

‘Lost Arbitration’ Bit. This bit is set when, in multi-master operation, arbitration is lost to another master on the \(^2\)C-bus.
6.8.2.7 \textit{BB}

‘Bus Busy’ bit. This is a read-only flag indicating when the \textit{i^2C}-bus is in use. A zero indicates that the bus is busy, and access is not possible. This bit is set/reset (logic 1/logic 0) by STOP/START conditions.

6.9 Multi-master operation

To avoid conflict between data and repeated START and STOP operations, multi-master systems have some limitations:

- When powering up multiple PCF8584s in multi-master systems, the possibility exists that one node may power up slightly after another node has already begun an \textit{i^2C}-bus transmission; the Bus Busy condition will thus not have been detected. To avoid this condition, a delay should be introduced in the initialization sequence of each PCF8584 equal to the longest \textit{i^2C}-bus transmission, see flowchart ‘PCF8584 initialization’ (Fig.5).

6.10 Reset

A LOW level pulse on the \texttt{RESET} (CLK must run) input forces the \textit{i^2C}-bus controller into a well-defined state. All flags in S1 are reset to logic 0, except the PIN flag and the \textit{BB} flag, which are set to logic 1. \texttt{S0'} and \texttt{S3} are set to 00H.

The \texttt{RESET} pin is also used for the \texttt{STROBE} output signal. Both functions are separated on-chip by a digital filter. The reset input signal has to be sufficiently long (minimum 30 clock cycles) to pass through the filter. The \texttt{STROBE} output signal is sufficiently short (8 clock cycles) to be blocked by the filter. For more detailed information on the strobe function see Section 6.12.

6.11 Comparison to the MAB8400 \textit{i^2C}-bus interface

The structure of the PCF8584 is similar to that of the MAB8400 series of microcontrollers, but with a modified control structure. Access to all \textit{i^2C}-bus control and status registers is done via the parallel-bus port in conjunction with register select input A0, and control bits \texttt{ES0}, \texttt{ES1} and \texttt{ES2}.

6.11.1 DELETED FUNCTIONS

The following functions are not available in the PCF8584:

- Always selected (ALS flag)
- Access to the bit counter (BC0 to BC2)
- Full SCL frequency selection (2 bits instead of 5 bits)
- The non-acknowledge mode (ACK flag)
- Asymmetrical clock (ACK flag).

6.11.2 ADDED FUNCTIONS

The following functions either replace the deleted functions or are completely new:

- Chip clock prescaler
- Assert acknowledge bit (ACK flag)
- Register selection bits (ES1 and ES2 flags)
- Additional status flags (BER, ‘bus error’)
- Automatic interface control between 80XX and 68000-type microcontrollers
- Programmable interrupt vector
- Strobe generator
- Bus monitor function
- Long-distance mode [non-\textit{i^2C}-bus mode (4-wire); only for communication between parallel-bus processors using the PCF8584 at each interface point].

6.12 Special function modes

6.12.1 STROBE

When the \textit{i^2C}-bus controller receives its own address (or the ‘00H’ general call address) followed immediately by a STOP condition (i.e. no further data transmitted after the address), a strobe output signal is generated at the \texttt{RESET/STROBE} pin (pin 19). The \texttt{STROBE} signal consists of a monostable output pulse (active LOW), 8 clock cycles long (see Fig.9). It is generated after the STOP condition is received, preceded by the correct slave address. This output can be used as a bus access controller for multi-master parallel-bus systems.
6.12.2 LONG-DISTANCE MODE

The long-distance mode provides the possibility of longer-distance serial communication between parallel processors via two I²C-bus controllers. This mode is selected by setting ES1 to logic 1 while the serial interface is enabled (ES0 = 1).

In this mode the I²C-bus protocol is transmitted over 4 unidirectional lines, SDA OUT, SCL IN, SDA IN and SCL IN (pins 2, 3, 4 and 5). These communication lines should be connected to line drivers/receivers (example: RS422) for long-distance applications. Hardware characteristics for long-distance transmission are then given by the chosen standard. Control of data transmission is the same as in normal I²C-bus mode. After reading or writing data to shift register S0, long-distance mode must be initialized by setting ESO and ES1 to logic 1. Because the interrupt output INT is not available in this operating mode, synchronization of data transmission/reception must be polled via the PIN bit.

Remarks:

Before entering the long-distance mode, ENI must be set to logic 0.

When powering up an PCF8584-node in long-distance mode, the PCF8584 must be isolated from the 4-wire bus via 3-state line drivers/receivers until the PCF8584 is properly initialized for long-distance mode. Failure to implement this precaution will result in system malfunction.

6.12.3 MONITOR MODE

When the 7-bit own address register S0' is loaded with all zeros, the I²C-bus controller acts as a passive I²C monitor. The main features of the monitor mode are:

- The controller is always selected.
- The controller is always in the slave receiver mode.
- The controller never generates an acknowledge.
- The controller never generates an interrupt request.
- A pending interrupt condition does not force SCL LOW.
- BB is set to logic 0 after detection of a START condition, and reset to logic 1 after a STOP condition.
- Received data is automatically transferred to the read buffer.
- Bus traffic is monitored by the PIN bit, which is reset to logic 0 after the acknowledge bit of an incoming byte has been received, and is set to logic 1 as soon as the first bit of the next incoming byte is detected. Reading the data buffer S0 sets the PIN bit to logic 1. Data in the read buffer is valid from PIN = 0 and during the next 8 clock pulses (until next acknowledge).
- AAS is set to logic 1 at every START condition, and reset at every 9th clock pulse.

7 SOFTWARE FLOWCHART EXAMPLES

7.1 Initialization

The flowchart of Fig.5 gives an example of a proper initialization sequence of the PCF8584.

7.2 Implementation

The flowcharts (Figs 6 to 9) illustrate proper programming sequences for implementing master transmitter, master receive, and master transmitter, repeated start and master receiver modes in polled applications.
Fig. 5 PCF8584 initialization sequence.

A0 = HIGH enables data transfer to/from register S1
A0 = LOW Access to all other registers defined by the bit pattern in register S1

Parallel bus interface determined by PCF8584 (80XX/68XXX)

- **PCF8584 resets to slave receiver mode**
- **Power-on** address line A0
 - A0 = HIGH enables data transfer to/from register S1
 - A0 = LOW Access to all other registers defined by the bit pattern in register S1

Initialization of PCF8584 completed

- **START**
 - Reset minimum 30 clock cycles
 - Send byte 80H
 - Send byte 55H
 - Send byte A0H
 - Send byte 1CH
 - Send byte C1H
 - Delay: wait a time equal to the longest I2C message to synchronize BB-bit. (multimaster systems only)

** Initialization sequence**

1. **A0 = HIGH**
 - Send byte 80H into register S1’ i.e. next byte will be loaded into register S0’ (own address register); serial interface off.
 - Send byte 55H into register S0’; effective own address becomes AAH.
 - Send byte A0H into register S1, i.e. next byte will be loaded into the clock control register S2.
 - Send byte 1CH into register S2; system clock is 12 MHz; SCL = 90 kHz.
 - Send byte C1H into register S1; register enable serial interface, set I2C-bus into idle mode; SDA and SCL are HIGH. The next write or read operation will be to/from data transfer register S0 if A0 = LOW.

2. **A0 = LOW**
 - On power-on, if an PCF8584 node is powered-up slightly after another node has already begun an I2C-bus transmission, the bus busy condition will not have been detected. Thus, introducing this delay will insure that this condition will not occur.
Fig. 6 PCF8584 master transmitter mode.
The first read of the S0 register is a ‘dummy read’ of the slave address which should be discarded. The first read of the S0 register simultaneously reads the current value of S0 and then transfers the first valid data byte from the I²C-bus to S0.

Fig.7 PCF8584 master receiver mode.
Fig. 8 Master transmitter followed by repeated START and becoming master receiver.

Load 45H into the S1 register; PCF8584 generates the repeated 'START condition' only. The current contents of register S0 is NOT clocked out onto the I2C-bus. The next byte sent to register S0 should be the 'slave address' + read bit.

PCF8584 configured as master transmitter
- Load 45H into the S1 register; PCF8584 generates the repeated 'START condition' only. The current contents of register S0 is NOT clocked out onto the I2C-bus. The next byte sent to register S0 should be the 'slave address' + read bit.
- Send byte 45H
- Send byte 'slave address'

PCF8584 configured as master receiver
- Send byte 'slave address'
- Load 'slave address' into the S0 register. Once loaded, it is automatically clocked out over the I2C-bus. 'Slave address' = slave address (7 bits) + R/W bit set '1'.

I2C-bus write routine (master transmitter mode excluding final STOP)

I2C-bus read routine (master receiver mode)
Fig. 9 Slave receiver/slave transmitter modes.
8 \textbf{\textit{I}^{2}\text{C}-BUS TIMING DIAGRAMS}

The diagrams (Figs 10 to 13) illustrate typical timing diagrams for the PCF8584 in master/slave functions. For detailed description of the I2C-bus protocol, please refer to "The I2C-bus and how to use it"; Philips document ordering number 9398 393 40011.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig10.png}
\caption{Bus timing diagram; master transmitter mode.}
\end{figure}

Master PCF8584 writes data to slave transmitter.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig11.png}
\caption{Bus timing diagram; master receiver mode.}
\end{figure}

Master PCF8584 reads data from slave transmitter.
External master receiver reads data from PCF8584.

Fig.12 Bus timing diagram; slave transmitter mode.

Slave PCF8584 is written to by external master transmitter.

Fig.13 Bus timing diagram; slave receiver mode.
9 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>MIN.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>supply voltage</td>
<td>−0.3</td>
<td>+7.0</td>
<td>V</td>
</tr>
<tr>
<td>Vᵢ</td>
<td>voltage range (any input)</td>
<td>−0.8</td>
<td>V_DD + 0.5</td>
<td>V</td>
</tr>
<tr>
<td>Iᵢ</td>
<td>DC input current (any input)</td>
<td>−10</td>
<td>+10</td>
<td>mA</td>
</tr>
<tr>
<td>Iₒ</td>
<td>DC output current (any output)</td>
<td>−10</td>
<td>+10</td>
<td>mA</td>
</tr>
<tr>
<td>Pₜₒ</td>
<td>total power dissipation</td>
<td>−</td>
<td>300</td>
<td>mW</td>
</tr>
<tr>
<td>Pₒ</td>
<td>power dissipation per output</td>
<td>−</td>
<td>50</td>
<td>mW</td>
</tr>
<tr>
<td>Tₐmb</td>
<td>operating ambient temperature</td>
<td>−40</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>Tₛₗₒ</td>
<td>storage temperature</td>
<td>−65</td>
<td>+150</td>
<td>°C</td>
</tr>
</tbody>
</table>

10 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is good practice to take normal precautions appropriate to handling MOS devices (see "Handling MOS Devices").
Philips Semiconductors

I²C-bus controller

PCF8584

11 DC CHARACTERISTICS

$V_{DD} = 5\, \text{V} \pm 10\%$; $T_{amb} = -40\, \text{to} \, +85\, \text{°C}$; unless otherwise specified.

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>supply voltage</td>
<td></td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>supply current</td>
<td>standby; note 1</td>
<td>–</td>
<td>–</td>
<td>2.5</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>operating; notes 1 and 2</td>
<td>–</td>
<td>–</td>
<td>1.5</td>
<td>mA</td>
</tr>
</tbody>
</table>

Inputs

CLK, IACK, A0, CS, WR, RD, RESET AND D0 to D7

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>LOW level input voltage</th>
<th>HIGH level input voltage</th>
<th>V_{IL}</th>
<th>V_{IH}</th>
<th>V_{IL}</th>
<th>V_{IH}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>note 3</td>
<td>V_{DD}</td>
<td>0</td>
<td>2.0</td>
<td>0</td>
<td>$0.3V_{DD}$</td>
</tr>
</tbody>
</table>

SDA AND SCL

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>LOW level input voltage</th>
<th>HIGH level input voltage</th>
<th>V_{IL}</th>
<th>V_{IH}</th>
<th>R_i</th>
<th>$T_{amb} = 25, \text{°C}$; note 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>note 4</td>
<td>$0.7V_{DD}$</td>
<td>0</td>
<td>25</td>
<td>100</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

Outputs

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>HIGH level output current</th>
<th>LOW level output current</th>
<th>leakage current</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$V_{OH} = 2.4, \text{V}$; note 6 and 7</td>
<td>$V_{OL} = 0.4, \text{V}$; note 6</td>
<td>note 8</td>
</tr>
<tr>
<td></td>
<td>-2.4</td>
<td>3.0</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>-2.4</td>
<td>-3.0</td>
<td>$+1$</td>
</tr>
</tbody>
</table>

Notes

1. Test conditions: 22 $k\Omega$ pull-up resistors on D0 to D7; 10 $k\Omega$ pull-up resistors on SDA, SCL, RD; RESET connected to V_{SS}; remaining pins open-circuit.
2. CLK waveform of 12 MHz with 50% duty factor.
3. CLK, IACK, A0, CS, WR, RD, RESET and D0 to D7 are TTL level inputs.
4. SDA and SCL are CMOS level inputs.
5. CLK, IACK, A0, CS and WR.
6. D0 to D7.
7. DTACK, STROBE.
8. D0 to D7 3-state, SDA, SCL, INT, RD, RESET.
12 I²C-BUS TIMING SPECIFICATIONS
All the timing limits are valid within the operating supply voltage and ambient temperature range; \(V_{DD} = 5 \text{ V} \pm 10\% \); \(T_{amb} = -40 \text{ to } +85 \text{ °C} \); and refer to \(V_{IL} \) and \(V_{IH} \) with an input voltage of \(V_{SS} \) to \(V_{DD} \).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{SCL})</td>
<td>SCL clock frequency</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>(t_{SW})</td>
<td>tolerable spike width on bus</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{BUF})</td>
<td>bus free time</td>
<td>4.7</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{SU;STA})</td>
<td>START condition set-up time</td>
<td>4.7</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{HD;STA})</td>
<td>START condition hold time</td>
<td>4.0</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{LOW})</td>
<td>SCL LOW time</td>
<td>4.7</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{HIGH})</td>
<td>SCL HIGH time</td>
<td>4.0</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{R})</td>
<td>SCL and SDA rise time</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{L})</td>
<td>SCL and SDA fall time</td>
<td>–</td>
<td>–</td>
<td>0.3</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{SU;DAT})</td>
<td>data set-up time</td>
<td>250</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{HD;DAT})</td>
<td>data hold time</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>(t_{VD;DAT})</td>
<td>SCL LOW to data out valid</td>
<td>–</td>
<td>–</td>
<td>3.4</td>
<td>µs</td>
<td></td>
</tr>
<tr>
<td>(t_{SU;STO})</td>
<td>STOP condition set-up time</td>
<td>4.0</td>
<td>–</td>
<td>–</td>
<td>µs</td>
<td></td>
</tr>
</tbody>
</table>

13 PARALLEL INTERFACE TIMING
All the timing limits are valid within the operating supply voltage and ambient temperature range; \(V_{DD} = 5 \text{ V} \pm 10\% \); \(T_{amb} = -40 \text{ to } +85 \text{ °C} \); and refer to \(V_{IL} \) and \(V_{IH} \) with an input voltage of \(V_{SS} \) to \(V_{DD} \). \(C_L = 100 \text{ pF} \); \(R_L = 1.5 \text{ kΩ} \) (connected to \(V_{DD} \)) for open-drain and high-impedance outputs, where applicable (for measurement purposes only).

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN.</th>
<th>TYP.</th>
<th>MAX.</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{R})</td>
<td>clock rise time</td>
<td>see Fig.14</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{L})</td>
<td>clock fall time</td>
<td>see Fig.14</td>
<td>–</td>
<td>–</td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{CLK})</td>
<td>input clock period ((50% \pm 5% \text{ duty factor}))</td>
<td>see Fig.14</td>
<td>83</td>
<td>–</td>
<td>333</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{CLRL})</td>
<td>CS set-up to RD LOW (\text{(see Fig.16 for measurement purposes only)})</td>
<td>see Fig.16 and note 1</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{CLWL})</td>
<td>CS set-up to WR LOW</td>
<td>see Fig.15 and note 1</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RHCH})</td>
<td>CS hold from RD HIGH</td>
<td>see Fig.16</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WHCH})</td>
<td>CS hold from WR HIGH</td>
<td>see Fig.15</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{AVWL})</td>
<td>A0 set-up to WR LOW</td>
<td>see Fig.15</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{AVRL})</td>
<td>A0 set-up to RD LOW</td>
<td>see Fig.16</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WHAI})</td>
<td>A0 hold from WR HIGH</td>
<td>see Fig.15</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RAHAI})</td>
<td>A0 hold from RD HIGH</td>
<td>see Fig.16</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WLWH})</td>
<td>WR pulse width</td>
<td>see Fig.15</td>
<td>230</td>
<td>–</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RLRH})</td>
<td>RD pulse width</td>
<td>see Fig.16</td>
<td>230</td>
<td>–</td>
<td>1000</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{DVWH})</td>
<td>data set-up before WR HIGH</td>
<td>see Fig.15</td>
<td>150</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RLDV})</td>
<td>data valid after RD LOW</td>
<td>see Fig.16</td>
<td>–</td>
<td>160</td>
<td>180</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{WHDI})</td>
<td>data hold after WR HIGH</td>
<td>see Fig.15</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{RHDF})</td>
<td>data bus floating after RD HIGH</td>
<td>see Fig.16</td>
<td>–</td>
<td>–</td>
<td>150</td>
<td>ns</td>
</tr>
</tbody>
</table>
I²C-bus controller

### SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
\(t_{AVCL} \) | A0 set-up to CS LOW | see Figs 17 and 18 | 10 | – | – | ns
\(t_{WLCL} \) | R/WR set-up to CS LOW | see Fig.17 | 10 | – | – | ns
\(t_{RHCL} \) | R/WR set-up to CS LOW | see Fig.18 | 10 | – | – | ns
\(t_{CLDV} \) | data valid after CS LOW | see Fig.18 and note 2 | – | 160 | 180 | ns
\(t_{CLDL} \) | DTACK LOW after CS LOW | see Figs 17 and 18 | – | 2t\(_{CLK}\) + 75 | 3t\(_{CLK}\) + 150 | ns
\(t_{CHAI} \) | A0 hold from CS HIGH | see Fig.18 | 0 | – | – | ns
\(t_{CHRL} \) | R/WR hold from CS HIGH | see Fig.18 | 0 | – | – | ns
\(t_{CHWH} \) | R/WR hold from CS HIGH | see Fig.17 | 0 | – | – | ns
\(t_{CHDF} \) | data bus float after CS HIGH | see Fig.18 | – | – | 150 | ns
\(t_{CHDE} \) | DTACK HIGH from CS HIGH | see Figs 17 and 18 | – | 100 | 120 | ns
\(t_{CHDI} \) | data hold after CS HIGH | see Fig.17 | 0 | – | – | ns
\(t_{DVCL} \) | data set-up to CS LOW | see Fig.17 | 0 | – | – | ns
\(t_{ALIE} \) | INT HIGH from IACK LOW | see Figs 19 and 20 | – | 130 | 180 | ns
\(t_{ALDV} \) | data valid after IACK LOW | see Figs 19 and 20 | – | 200 | 250 | ns
\(t_{ALAE} \) | IACK pulse width | see Fig.20 | 230 | – | – | ns
\(t_{AHDI} \) | data hold after IACK HIGH | see Fig.20 | – | – | 30 | ns
\(t_{ALDL} \) | DTACK LOW from IACK LOW | see Fig.20 | – | 2t\(_{CLK}\) + 75 | 3t\(_{CLK}\) + 150 | ns
\(t_{AHDE} \) | DTACK HIGH from IACK HIGH | see Fig.20 | – | 120 | 140 | ns
\(t_{W4} \) | RESET pulse width | see Fig.21 | 30t\(_{CLK}\) | – | – | ns
\(t_{WS} \) | STROBE pulse width | see Fig.22 | 8t\(_{CLK}\) | 8t\(_{CLK}\) + 90 | – | ns
\(t_{CLCL} \) | CS LOW | see Figs 17 and 18 | – | \(t_{CLDL} + t_{CHDE} \) | – | ns

Notes

1. A minimum of 6 clock cycles must elapse between consecutive parallel-bus accesses when the I²C-bus controller operates at 8 or 12 MHz. This may be reduced to 3 clock cycles for lower operating frequencies.

2. Not for S1.
Fig. 14 Clock input timing.

Fig. 15 Bus timing (80XX mode); write cycle.
Fig. 16 Bus timing (80XX mode); read cycle.

Fig. 17 Bus timing (68000 mode); write cycle.
Fig. 18 Bus timing (68000 mode); read cycle.

Fig. 19 Interrupt timing (80XX mode).
Fig. 20 Interrupt timing (68000 mode).

Fig. 21 Reset timing.
Fig. 22 Strobe timing.
14 APPLICATION INFORMATION

Fig.23 Application diagram using the 8048/8051.
Fig. 24 Application diagram using the 68000.
Fig. 25 Application diagram using the 8088.
14.1 Application notes

Additional application notes are available from Philips Semiconductors:

1. AN95068: “C Routines for the PCF8584”.
2. AN96040: “Using the PCF8584 with non-specified timings and other frequently asked questions”.
3. AN90001: “Interfacing PCF8584 I2C-bus controller to 80(C)51 family of microcontrollers”.

Maximum forward current: 5 mA; maximum reverse voltage: 5 V.

Fig.26 PCF8584 diode protection.
15 PACKAGE OUTLINES

DIP20: plastic dual in-line package; 20 leads (300 mil)

SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A₁ min.</th>
<th>A₂ max.</th>
<th>b</th>
<th>b₁</th>
<th>c</th>
<th>D (1)</th>
<th>E (1)</th>
<th>e</th>
<th>e₁</th>
<th>L</th>
<th>Me</th>
<th>Mh</th>
<th>w</th>
<th>Z (1) max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>4.2</td>
<td>0.51</td>
<td>3.2</td>
<td>1.73</td>
<td>1.30</td>
<td>0.53</td>
<td>0.36</td>
<td>26.92</td>
<td>6.40</td>
<td>2.54</td>
<td>7.62</td>
<td>3.60</td>
<td>8.25</td>
<td>8.3</td>
<td>0.254</td>
</tr>
<tr>
<td>inches</td>
<td>0.17</td>
<td>0.020</td>
<td>0.13</td>
<td>0.068</td>
<td>0.051</td>
<td>0.021</td>
<td>0.014</td>
<td>1.090</td>
<td>0.25</td>
<td>0.10</td>
<td>0.30</td>
<td>0.14</td>
<td>0.32</td>
<td>0.33</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES	EUROPEAN PROJECTION	ISSUE DATE
SOT146-1 | IEC | JEDEC | SC603 |
 | | | 92-11-17 |
 | | | 95-05-24 |

1997 Oct 21
SO20: plastic small outline package; 20 leads; body width 7.5 mm

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

<table>
<thead>
<tr>
<th>UNIT</th>
<th>A max.</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>b_p</th>
<th>c</th>
<th>D⁽¹⁾</th>
<th>E⁽¹⁾</th>
<th>e</th>
<th>H_E</th>
<th>L</th>
<th>L_p</th>
<th>Q</th>
<th>v</th>
<th>w</th>
<th>y</th>
<th>z⁽¹⁾</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>2.65</td>
<td>0.30</td>
<td>2.45</td>
<td>0.25</td>
<td>0.49</td>
<td>0.36</td>
<td>0.32</td>
<td>0.23</td>
<td>13.0</td>
<td>7.6</td>
<td>1.27</td>
<td>10.65</td>
<td>10.00</td>
<td>1.4</td>
<td>1.1</td>
<td>1.1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>inches</td>
<td>0.10</td>
<td>0.012</td>
<td>0.006</td>
<td>0.004</td>
<td>0.096</td>
<td>0.01</td>
<td>0.019</td>
<td>0.013</td>
<td>0.009</td>
<td>0.49</td>
<td>0.51</td>
<td>0.30</td>
<td>0.050</td>
<td>0.419</td>
<td>0.394</td>
<td>0.055</td>
<td>0.043</td>
<td>0.043</td>
</tr>
</tbody>
</table>

Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION
- SOT163-1

REFERENCES
- IEC 075E04
- JEDEC MS-013AC
- EIAJ

EUROPEAN PROJECTION
- 95-01-24
- 97-05-22
16 SOLDERING

16.1 Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011).

16.2 DIP

16.2.1 SOLDERING BY DIPPING OR BY WAVE

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (T_{stg max}). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

16.2.2 REPAIRING SOLDERED JOINTS

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

16.3 SO

16.3.1 REFLOW SOLDERING

Reflow soldering techniques are suitable for all SO packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.

16.3.2 WAVE SOLDERING

Wave soldering techniques can be used for all SO packages if the following conditions are observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The longitudinal axis of the package footprint must be parallel to the solder flow.
- The package footprint must incorporate solder thieves at the downstream end.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

16.3.3 REPAIRING SOLDERED JOINTS

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
17 DEFINITIONS

Data sheet status

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective specification</td>
<td>This data sheet contains target or goal specifications for product development.</td>
</tr>
<tr>
<td>Preliminary specification</td>
<td>This data sheet contains preliminary data; supplementary data may be published later.</td>
</tr>
<tr>
<td>Product specification</td>
<td>This data sheet contains final product specifications.</td>
</tr>
</tbody>
</table>

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

18 LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

19 PURCHASE OF PHILIPS I²C COMPONENTS

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
Philips Semiconductors – a worldwide company

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220005 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energo-project, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +41 22 709 1415, Fax. +41 22 709 1415
Dominican Republic: see South America
Estonia: see South America
Finland: see South America
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 49 22 87 00, Fax. +33 1 49 22 87 00
Germany: see Austria
Greece: see Austria
Guatemala: see Central America
Haiti: see South America
Honduras: see Central America
Hungary: see Austria
Ireland: see Austria
Israel: see South America
Italy: see South America
Japan: see South America
Kenya: see Africa
Korea: see South America
Malaysia: see South America
Mexico: see South America
Middle East: see South America
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSAW, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usacheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see South America
South Africa: see South America
South America: see South America
Spain: see South America
Sweden: see South America
Switzerland: see South America
Turkey: see South America
Ukraine: see South America
United Kingdom: see South America
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see South America
Yugoslavia: see South America
Printed in The Netherlands 417067/00/04/pp40 Date of release: 1997 Oct 21 Document order number: 9397 750 02932
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.