
TinyOS Programming

Philip Levis

October 27, 2006

2

This text is copyright c� Philip Levis, 2006. All rights reserved. You may distribute and reproduce it

freely for non-commercial purposes as long as you do not modify it in any way.

Revision 1.3 (Oct 27 2006)

Contents

1 Preface 13

2 Programming Hints, Condensed 15

3 Linking and Namespaces 17

3.1 C . 17

3.2 C++ . 20

3.3 Java . 22

3.4 Components and Interfaces . 22

3.5 Why? . 24

4 Interfaces and Modules 27

4.1 Split Phase . 27

4.2 Interfaces with Arguments . 29

4.3 Module Implementation . 30

4.4 Tasks . 33

4.5 Concurrency . 38

4.6 Allocation . 45

5 Configurations and Wiring 53

5.0.1 The as keyword and other namespace tricks . 60

5.1 Pass Through Wiring . 63

5.1.1 Multiple Wirings, Fan-in, and Fan-out . 63

5.2 Combine Functions . 66

3

4 CONTENTS

6 Parameterized Wiring 69

6.1 Defaults . 75

6.2 unique() and uniqueCount() . 77

7 Generic Components 81

7.1 Generic Modules . 83

7.2 HilTimerMilliC: An Example Use of Generic Components 84

7.3 Generic Configurations . 87

7.4 Examples . 89

7.4.1 TimerMilliC . 89

7.4.2 AMSenderC . 91

7.4.3 CC2420SpiC . 95

7.4.4 BlockStorageC . 100

7.5 Configurations, revisited . 103

8 Design Patterns 105

8.1 Behavioural: Dispatcher . 106

8.2 Structural: Service Instance . 110

8.3 Namespace: Keysets . 114

8.4 Namespace: Keymap . 117

8.5 Structural: Placeholder . 120

8.6 Structural: Facade . 124

8.7 Behavioural: Decorator . 128

8.8 Behavioural: Adapter . 131

9 Advanced Topics 135

9.1 Attributes . 135

9.2 Platform Independent Types . 137

Code Examples

3.1 The POSIX read(2) function . 17

3.2 Calling read(2) . 18

3.3 Reading a byte with read(2) . 18

3.4 Naming scopes in C . 18

3.5 C++ namespaces . 20

3.6 The namespace of a C++ class . 20

3.7 Private fields in C++ . 21

3.8 Instantiating a Piece object in C++ . 21

3.9 A C++ Piece factory . 21

3.10 Function binding in Java . 22

3.11 SmoothingFilterC, a simple nesC module . 23

3.12 The StdControl interface . 23

3.13 Interfaces in component signatures . 24

4.1 The split–phase Send interface . 28

4.2 The Read interface . 29

4.3 Using the Read interface in MagnetometerC . 29

4.4 The Timer interface and its typing . 29

4.5 Using the Timer interface . 30

4.6 Providing the Timer interface . 30

4.7 Providing a Timer with microsecond precision . 30

4.8 PeriodicReaderC signature . 30

4.9 Complete PeriodicReaderC component . 31

4.10 PeriodicSenseAndSendC component . 31

4.11 A troublesome implementation of a magnetometer sensor 33

5

6 CODE EXAMPLES

4.12 Signal handler that can lead to an infinite loop . 34

4.13 Declaring a task . 34

4.14 Posting a task . 34

4.15 An improved implementation of PeriodicReaderC . 35

4.16 One–to–one binding of a split–phase call . 37

4.17 Many–to–one binding of a split–phase call . 37

4.18 The Send interface . 38

4.19 The Leds interface . 38

4.20 Toggling a state variable . 39

4.21 A call sequence that could corrupt a variable . 39

4.22 State transition that is not async–safe . 40

4.23 Incrementing with an atomic section . 41

4.24 Incrementing with two independent atomic sections . 41

4.25 Atomically turning off the SPI bus . 42

4.26 State transition that requires a large atomic section . 42

4.27 A fast and atomic state transition . 43

4.28 An unnecessary conditional . 43

4.29 The first step of starting the CC2420 radio . 44

4.30 The handler that the first step of starting the CC2420 is complete 44

4.31 The handler that the second step of starting the CC2420 is complete 44

4.32 Handler that the third step of starting the CC2420 radio is complete 44

4.33 State transition so components can send and receive packets 45

4.34 An alternative state transition implementation . 45

4.35 Signature of BitVectorC . 46

4.36 The BitVector interface . 46

4.37 Representing an ADT though an interface in TinyOS 1.x 47

4.39 The Receive interface . 48

4.40 The simplest receive handler . 48

4.41 A broken receive handler that doesn’t respect buffer swapping 49

4.42 Wasting memory by defining a constant as an integer . 50

4.43 Defining a constant as an enum . 50

4.44 An example enum . 51

CODE EXAMPLES 7

4.45 Allocating a state variable . 51

5.1 The LedsC configuration . 54

5.2 Wiring directionality . 54

5.3 The signature of the BlinkC module . 54

5.4 The signature of the LedsC configuration . 55

5.5 The BlinkAppC configuration that wires BlinkC to LedsC 55

5.6 The ActiveMessageC Configuration . 56

5.7 The RandomC configuration . 57

5.8 RandomC’s wiring of Init for auto–initialization and re–initialization 57

5.9 The RandomC signature . 59

5.10 The RandomMlcgC signature . 59

5.11 A truncated ActiveMessageC configuration . 60

5.12 Using StdControl . 60

5.13 The implicit as keyword in uses and provides . 60

5.14 Using the as keyword with components . 61

5.15 CC2420ReceiveC’s use of the as keyword . 61

5.16 Autoinitializing RandomMlcgC . 61

5.17 Expanding implicit interface wiring . 61

5.18 Enabling re–initialization of RandomMlcgC . 61

5.19 An illegal wiring . 62

5.20 Using the as keyword to distinguish interface instances . 62

5.21 Using a pass–through wiring to rename an abstraction . 63

5.22 Fan–out on CC2420TransmitC’s Init . 63

5.23 Fan–in on StdControl . 64

5.24 Fan–out and fan–in on SplitControl . 64

5.25 Why the metaphor of “wires” is only a metaphor . 65

5.26 How nesC handles multiple wirings . 65

5.27 MainC . 66

5.28 Calling SoftwareInit.init() . 66

5.29 The combine function for error t . 67

5.30 Associating a combine function with a type . 67

5.31 Fan–out on SoftwareInit . 67

8 CODE EXAMPLES

5.32 Resulting code from fan–out on SoftwareInit . 67

6.1 Timers without parameterized interfaces . 69

6.2 Timers with a single interface . 69

6.3 Starting a timer with a run–time parameter . 70

6.4 Wiring to AM type 15 by name . 70

6.5 Calling AM type 15 with a compile–time parameter . 70

6.7 ActiveMessageC signature . 71

6.8 Signature of TestAMC . 72

6.9 Wiring TestAMC to ActiveMessageC . 72

6.10 Wiring to a single interface versus an instance of a parameterized interface 72

6.11 A possible module underneath ActiveMessageC . 73

6.12 Parameterized interface syntax . 73

6.13 Dispatching on a parameterized interface . 73

6.14 How active message implementations decide on whether to signal to Receive or Snoop . . . 74

6.15 Defining a parameter . 74

6.16 Wiring full parameterized interface sets . 74

6.17 Signaling Receive.receive . 75

6.18 Default events in an active message implementation . 76

6.19 Single–wiring a Send . 77

6.20 Wiring to a parameterized Send . 77

6.21 Partial HilTimerMilliC signature . 77

6.22 Wiring to Send instance 210 . 78

6.23 Wiring to Send instance 211 . 78

6.24 Generating a unique parameter for the HilTimerMilliC’s Timer interface 78

6.25 The Resource Interface . 79

6.26 The First–Come–First–Served arbiter . 79

6.27 Wiring to HilTimerMilliC with unique parameters . 80

6.28 Counting how many clients have wired to HilTimerMilliC 80

7.1 The BitVectorC generic module . 81

7.2 Instantiating a BitVectorC . 82

7.3 Generic Component Syntax . 82

7.4 The VirtualizeTimerC generic module . 83

CODE EXAMPLES 9

7.5 Instantiating two VirtualizeTimerC components . 84

7.6 The full code of HilTimerMilliC . 84

7.7 Turning an Alarm into a Timer . 86

7.8 Virtualizing a Timer . 86

7.9 Exporting the virtualized Timer interface . 86

7.10 Wiring to a counter for a time base . 86

7.11 Exporting the LocalTime interface . 86

7.12 The fictional component SystemServiceVectorC . 87

7.13 Wiring directly to HilTimerMilliC . 88

7.14 Wiring directly to HilTimerMilliC three times . 88

7.15 A buggy wiring to HilTimerMilliC . 88

7.16 The wiring pattern to HilTimerMilliC . 89

7.17 The TimerMilliC generic configuration . 89

7.18 TimerMilliP auto–wires HilTimerMilliC to Main.SoftwareInit 89

7.19 Instantiating a TimerMilliC . 90

7.20 Expanding a TimerMilliC Instantiation . 90

7.21 The Blink application . 90

7.22 The full module–to–module wiring chain in Blink (BlinkC to VirtualizeTimerC) 91

7.23 The AMSenderC generic configuration . 93

7.24 AMSendQueueEntryP . 94

7.25 AMQueueP . 95

7.26 AMSendQueueImplP pseudocode . 95

7.27 CC2420SpiC . 96

7.28 CC2420SpiP . 97

7.29 CC2420SpiC mappings to CC2420SpiP . 98

7.30 Strobing a register with a runtime parameter . 98

7.31 Strobing a register through wiring . 98

7.32 HplCC2420SpiC . 99

7.33 The implementation of CC2420SpiC . 99

7.34 Wiring a strobe register . 99

7.35 The strobe implementation . 100

7.36 Strobing the SNOP register . 100

10 CODE EXAMPLES

7.37 The resulting C code of strobing the SNOP register . 100

7.38 BlockStorageC . 102

7.39 Wiring BlockWrite and BlockRead as a unique client . 102

7.40 Wiring a BlockStorage client to its volume . 102

7.41 Wiring a BlockStorage client as a client of the flash Resource 103

8.1 AMStandard . 107

8.2 Wiring to AMStandard . 108

8.3 AMReceiverC . 108

8.4 TimerM builds on top of ClockC . 111

8.5 TimerM uses uniqueCount to count the timers . 112

8.6 Wiring a timer with unique . 112

8.7 VirtualizeTimerC . 112

8.8 Mate VM bytecodes . 115

8.9 Mate VM execution loop . 115

8.10 Mate lock subsystem . 115

8.11 Mate lock allocation . 116

8.12 Using uniqueCount to count the Mate locks . 116

8.13 A Drip global ID . 119

8.14 A Drip local ID . 119

8.15 BlockStorageC uses the Service Instance Pattern . 119

8.16 Allocating a block storage instance . 120

8.17 CollectionRouter . 122

8.18 Wiring to CollectionRouter . 122

8.19 Wiring CollectionRouter to an implementation . 123

8.20 Telos ActiveMessageC . 123

8.21 The Matchbox facade . 126

8.22 The CC2420CsmaC uses a Facade . 127

8.23 The BufferedLog decorator . 130

8.24 The SendQueue decorator . 130

8.25 Adapting the ADC interface to AttrRegister . 133

9.1 A gcc attribute . 135

9.2 The dreaded “packed” attribute in the 1.x MintRoute library 135

CODE EXAMPLES 11

9.3 nesC attributes . 136

9.4 CC2420 packet header . 137

9.5 Examples of external simple types . 138

9.6 The CC2420 header . 138

9.7 Translating between local and platform independent types 139

12 CODE EXAMPLES

Chapter 1

Preface

This book provides a brief introduction to TinyOS programming for TinyOS 2.0 (T2). While it goes into

greater depth than the tutorials, there are several topics that are outside its scope, such as the structure

and implementation of radio stacks or existing TinyOS libraries. It focuses on how to write nesC code,

and explains the concepts and reasons behind many of the nesC and TinyOS design decisions. If you are

interested in a brief introduction to TinyOS programming, then you should probably start with the tutorials.

If you’re interested in details on particular TinyOS subsystems you should probably consult TEPs (TinyOS

Enhancement Proposals), which detail the corresponding design considerations, interfaces, and components.

Both of these can be found in the doc/html directory of a TinyOS distribution.

While some of the contents of this book are useful for 1.x versions of TinyOS, they do have several

differences from T2 which can lead to different programming practices. If in doubt, referring to the TEP on

the subject is probably the best bet, as TEPs often discuss in detail the differences between 1.x and 2.0.

For someone who has experience with C or C++, writing simple nesC programs is fairly simple: all

you need to do is implement one or two modules and wire them together. The difficulty (and intellectual

challenge) comes when building larger applications. TinyOS modules are fairly analogous to C coding, but

configurations – which stitch together components – are not.

This book is a first attempt to explain how nesC relates to and differs from other C dialects, stepping

through how the differences lead to very different coding styles and approaches. As a starting point, this

book assumes that

1. you know C, C++, or Java reasonably well, understand pointers and that

2. you have taken an undergraduate level operating systems class (or equivalent) and know about con-

currency, interrupts and preemption.

13

14 CHAPTER 1. PREFACE

Of course, this book is as much a description of nesC as it is an argument for a particular way of using

the language to achieve software engineering goals. In this respect, it is the product of thousands of hours

of work by many people, as they learned and explored the use of the language. In particular, David Gay and

Cory Sharp have always pushed the boundaries of nesC programming in order to better understand which

practices lead to the simplest, most efficient, and robust code. In particular, Chapter 8 is an edited version

of a paper David Gay and I wrote together, while using structs as a compile-time checking mechanism in

interfaces (as Timer does) is an approach that invented by Cory.

Chapter 2

Programming Hints, Condensed

Throughout the text, there are a number of programming hints that touch on ways to avoid common issues

that arise in nesC programs. They are collected here for easy reference.

Programming Hint 1: It’s dangerous to signal events from commands, as you might cause a very long call

loop, corrupt memory and crash your program.

Programming Hint 2: Keep tasks short.

Programming Hint 3: Keep code synchronous when you can. Code should be async only if its timing is

very important or if it might be used by something whose timing is important.

Programming Hint 4: Keep atomic sections short, and have as few of them as possible. Be careful about

calling out to other components from within an atomic section.

Programming Hint 5: Only one component should be able to modify a pointer’s data at any time. In the

best case, only one component should be storing the pointer at any time.

Programming Hint 6: Allocate all state in components. If your application requirements necessitate a

dynamic memory pool, encapsulate it in a component and try to limit the set of users.

Programming Hint 7: Conserve memory by using enums rather than const variables for integer constants,

and don’t declare variables with an enum type.

Programming Hint 8: In the top-level configuration of a software abstraction, auto-wire Init to MainC.

This removes the burden of wiring Init from the programmer, which removes unnecessary work from the

boot sequence and removes the possibility of bugs from forgetting to wire.

Programming Hint 9: If a component is a usable abstraction by itself, its name should end with C. If it is

15

16 CHAPTER 2. PROGRAMMING HINTS, CONDENSED

intended to be an internal and private part of a larger abstraction, its name should end with P. Never wire to

P components from outside your package (directory).

Programming Hint 10: Use the as keyword liberally.

Programming Hint 11: Never ignore combine warnings.

Programming Hint 12: If a function has an argument which is one of a small number of constants, consider

defining it as a few separate functions to prevent bugs. If the functions of an interface all have an argument

that’s almost always a constant within a large range, consider using a parameterized interface to save code

space. If the functions of an interface all have an argument that’s a constant within a large range but only

certain valid values, implement it as a parameterized interface but expose it as individual interfaces, to both

minimize code size and prevent bugs.

Programming Hint 13: If a component depends on unique, then #define a string to use in a header file, to

prevent bugs from string typos.

Programming Hint 14: Never, ever use the “packed” attribute.

Programming Hint 15: Always use platform independent types when defining message formats.

Programming Hint 16: If you have to perform significant computation on a platform independent type or

access it many (hundreds or more) times, then temporarily copying it to a native type can be a good idea.

Chapter 3

Linking and Namespaces

Programming TinyOS can be challenging because it requires using a new language, nesC. On one hand,

nesC appears to be very similar to C. Implementing a new system or protocol doesn’t involve climbing a

steep learning curve. Instead, the difficulties begin when trying to incorporate new codes with existing ones.

The place where nesC differs greatly from C is in its linking model. The challenge and complexity isn’t in

writing software components, but rather in combining a set of components into a working application. In

order to understand why this is often difficult, it’s useful for us revisit how linking works in C, C++, and

Java and how this affects the structure of well-written code in those languages. Then, when we examine

how linking works in nesC, the differences will be apparent. The purpose here isn’t to go into the details of

symbol tables and virtual functions – linking from a systems standpoint – rather to talk about linking from

a programmer standpoint.

3.1 C

C programs have a single global namespace for functions and variables (we’ll just call both of them variables

for simplicity). A source file can name a variable in one of three ways: declaration, definition, or a reference.

A declaration states that a variable exists and gives, among other things, information about its type. A

variable can declared multiple times as long as the declarations agree: For example, this is a declaration of

a basic POSIX system call:

int read(int fd, void* buf, size_t count);

Listing 3.1: The POSIX read(2) function

17

18 CHAPTER 3. LINKING AND NAMESPACES

A declaration is not an implementation: it merely states that a variable exists somewhere, and so other

code can reference it. Calling a function, assignment, taking an address, or loading are all references. This

code, for example, references the variables result, read, and val:

result = read(fd, &val, 1);

Listing 3.2: Calling read(2)

A C compiler generally expects variables to be declared before being referenced. There are some excep-

tions (some compilers only issue a warning if you reference an undeclared function and hope they’ll come

across the declaration later), but referenced undeclared variables is usually just bad C programming.

Definition is the final kind of naming. A declaration claims that a variable exists, a reference uses the

variable, and a definition actually creates it. A function definition is its implementation, while a variable

definition is its allocation. A variable can be declared many times and referenced many times, but defined

only once. For example, this code declares the read function, defines the readByte and myFd variables, and

references many more:

int read(int fd, void* buf, size_t count);

int myFd; // initialized elsewhere

char readByte() {

char val = 0;

read(myFd, &val, 1);

return val;

}

Listing 3.3: Reading a byte with read(2)

Defining a variable introduces a name into the program’s namespace. A C program namespace has

many scopes. At the top level, visible to all, is the global scope: any code can reference a variable in global

scope. Global variables and non-static functions are in global scope. A program has a tree of naming scopes,

whose root is the global scope. Curly braces — { and } — define child scopes, and code in a scope can only

reference variables named in scopes above it in the tree. For example, here’s a snippet of C and a figure

showing its scope tree:

// Scope A

int var;

void foo() { // Scope B

int test = 0;

if (var) { // Scope C

int randVal = rand();

test = randVal;

3.1. C 19

var = randVal;

}

}

int bar() { // Scope D

int test;

return 4;

}

int snark() { // Scope E

int var;

return 5;

}

Listing 3.4: Naming scopes in C

In this example, the code in scope C can reference randVal, test, and var, while the code in scope B can

only reference test and var. While both scope B and scope D introduce the same name, test, they do not

conflict. Scope E, however, introduces a variable with the name var, which conflicts with the var in global

scope. This is commonly called shadowing and while legal, usually causes a compiler to issue a warning.

There is one additional level of scope, provided by the static keyword: file scope. A variable with the

static keyword can be referenced by code in the same file, but does not enter the global scope.

Header files are not a special C construct: they are just a kind of C source file whose use has evolved

from programming practice. Specifically, C header files generally contain only variable declarations. These

declarations match the definitions of the corresponding implementation file or object file.

When a C program is broken up into many files, those files can only reference each other through dec-

larations introduced into global scope. If an object file references but does not define a variable (a symbol),

then in the linking stage it has to be linked with another object file that defines it. This can be a library or

a standard object file. Because a declaration can only have one definition, this means that when code ref-

erences a function, for example, it references an implementation. Two source files that reference the same

function name reference the same function, introducing an unforeseen dependency between the two codes,

because if you want to change the implementation that one uses, you have to change the implementation the

other uses as well.

Function pointers are the common approach to avoid this undesirable binding. Rather than reference a

specific function, a code can reference a variable that stores a pointer to any function. This allows the code

to resolve the binding at runtime, by choosing what pointer to store in that variable. Using function pointers

allows C software to call new extensions that it could not name when it was compiled, which is critical for

any system with callbacks.

For example, C GUI toolkits need to be able to call functions in response to user events. The function

with the behavior is part of the application code, but the pre-compiled GUI toolkit needs to be able to call

20 CHAPTER 3. LINKING AND NAMESPACES

it. So when the application creates a button, for example, it gives the button a function pointer for it to call

when clicked. The button structure stores this pointer in RAM. There is no other way to do this effectively

in C: because the toolkit cannot name the function it must call, a function pointer must be used, and this

pointer must be assigned at runtime.

Another example of this is the virtual file system that UNIX/Linux kernels use. The OS might need to

access any number of file systems, and statically compiling all of them into the core kernel is problematic

(imagine having to recompile Windows just because USB storage devices become popular). So what the

OS does is interact with file systems through a VFS — virtual file system — interface. This is a set of basic

operations, such as read() and write(), which are stored in a structure. Every file system implementation

populates the structure with its own functions, then passes the structure to the core kernel. When a user

program tries to read from a CD, for example, the OS gets the VFS structure associated with a CD file and

calls the read() function pointer, allowing the core kernel to remain independent of specific file systems. The

basic approach is the same as GUI toolkits. Because of C’s naming approach, the OS has to use run-time

allocation and function pointers in order to enable flexible composition and extension.

3.2 C++

C++ is similar to C, except that it richer namespaces and inheritance. In C++ the :: (double colon) generally

refers to a namespace hierarchy. For example, you can define a namespace, or a hierarchy of namespaces:

namespace test;

namespace test::more;

Listing 3.5: C++ namespaces

A class also defines a namespace:

void MyClass::doSomething() {}

Listing 3.6: The namespace of a C++ class

While classes can use a variety of access modifiers on their fields and methods, these do not operate at

the namespace level. In this way they are different than the static keyword in C. In C, static means that the

variable or function does not exist in the global scope, and so cannot be named: other files that try to do

so will get a “no such variable exists” error. In contrast, specifying a variable to be private in a C++ class

means that other codes can reference it, but doing so generates a compile error. For example:

3.2. C++ 21

decl.c:

static int x;

use.c:

x = 5; // compile error: no such variable!

NewClass.C:

class NewClass {

private int x;

}

OtherClass.C:

NewClass* nc = new NewClass();

nc->x = 4; // compile error: access violation

Listing 3.7: Private fields in C++

Inheritance provides a way to extend functionality more easily than is possible than in C. Rather than

using a structure of function pointers, a program can use a class to represent an extensible abstraction. In

practice, each object has a pointer to a function table of its functions, but this table can be in read-only

memory and the programmer does not have to maintain it. Rather than use function pointers, a C++ system

can use objects to extend functionality. As with C, however, the association occurs at runtime.

C’s name binding leads to design patterns such as the factory being common object oriented software

engineering practice. A factory decouples an object from its instantiation. For example, a Tetris game might

need to create game pieces. A simple way to do this would be to have the game engine allocate the pieces

directly:

Piece* piece = new JPiece();

Listing 3.8: Instantiating a Piece object in C++

But this binds the game engine to a specific class, JPiece, as well as the parameter list of JPiece’s

constructor. This binding is unnecessary and can be problematic when, for example, it turns out that the

desired class name changes to JTetrisPiece. Rather than binding itself to a specific set of piece classes, the

game engine can define an abstract class Piece and just ask a factory to create the pieces for it:

class PieceFactory {

public:

Piece* createIPiece();

Piece* createJPiece();

Piece* createBlockPiece();

Piece* createSPiece();

Piece* createZPiece();

Piece* createTPiece();

22 CHAPTER 3. LINKING AND NAMESPACES

}

Listing 3.9: A C++ Piece factory

Now the game engine is independent of the piece implementations and their names: changing the set of

pieces used only requires changing the factory, and as there is a single allocation point any changes to the

constructors can be localized to the factory class. Design patterns such as the factory introduce a level of

naming indirection that breaks undesirable coupling between specific classes.

3.3 Java

With regards to naming and name binding, Java has many similarities to C and C++. Because instantiation

points name a specific class, it’s common to use design patterns such as the factory in order to decou-

ple classes. Similarly, even more so than C++, many classes take objects as parameters. For example,

java.io.BufferedInputStream takes a java.io.InputStream as a parameter in its constructor. This allows a

program to associate a BufferedInputStream with any sort of input stream.

As with C and C++, this association occurs at runtime. Consider, for example, this very common piece

of Java code for very simple GUIs:

JButton b = new JButton("Quit");

b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}

}

Listing 3.10: Function binding in Java

On one hand, your class always instantiates a JButton, and always makes its action to call System.exit():

this logic and composition is static. However, Java naming in the C and C++ tradition, requires this associa-

tion to be dynamic: the only good way to add functionality is through dynamically adding an action listener

(there’s no “clicked” method that you can overload).

3.4 Components and Interfaces

nesC (network embedded system C) is a component-based C dialect. In some ways, nesC components are

similar to objects. For example, they encapsulate state and couple state with functionality. The principal

distinction lies in their naming scope. Unlike C++ and Java objects, which refer to functions and variables

3.4. COMPONENTS AND INTERFACES 23

in a global namespace, nesC components use a purely local namespace. This means that in addition to

declaring the functions that it implements, a component must also declare the functions that it calls. The

names that a component uses to call these functions is completely local: the name it references does not

have to be the same that implements the function. When a component A declares that it calls a function B,

it is essentially introducing the name A.B into a global namespace. A different component, C, that calls a

function B introduces C.B into the global namespace. Even though both A and C refer to the function B,

they might be referring to completely different implementations.

Every component has a specification, a code block that declares the functions it provides (implements)

and the functions that it uses (calls). For example, this is the specification for a fictional component Smooth-

ingFilterC, which smoothes raw data:

module SmoothingFilterC {

provides command uint8_t topRead(uint8_t* array, uint8_t len);

uses command uint8_t bottomRead(uint8_t* array, uint8_t len);

}

Listing 3.11: SmoothingFilterC, a simple nesC module

Because SmoothingFilterC provides the function topRead, it must define it and other components can

call it. Conversely, because SmoothingFilterC uses bottomRead, it can reference the function and so de-

pends on some other component to define it. Components can always reference functions that they define:

SmoothingFilterC can call topRead on itself.

In practice, components very rarely declare individual functions in their specification. Instead, nesC has

interfaces, which are collections of related functions. Component specifications are almost always in terms

of interfaces. For example, power management and configuration issues mean that applications often need

to be able to start and stop system abstractions and services, such as turning on a sensor to take a reading

or turning on the radio stack to hear packets. The StdControl interface is a common way to express this

functionality:

interface StdControl {

command error_t start();

command error_t stop();

}

Listing 3.12: The StdControl interface

A component representing an abstraction or service that can be turned on or off provides StdControl,

while a component that needs to turn others on and off uses StdControl. This is often a hierarchical rela-

24 CHAPTER 3. LINKING AND NAMESPACES

tionship. For example, a routing layer needs to start a data link packet layer, which in turn needs to start and

stop idle channel detection:

module RoutingLayerC {

provides interface StdControl;

uses interface StdControl as SubControl;

}

module PacketLayerC {

provides interface StdControl;

}

Listing 3.13: Interfaces in component signatures

Connecting providers and users together is called wiring. For example, RoutingLayerC’s code has func-

tion calls to SubControl.start() and SubControl.stop(). Unless SubControl is wired to a provider, these

functions are undefined symbols: they are not bound to any actual code. However, if SubControl is wired

to PacketLayerC’s StdControl, then when RoutingLayerC calls SubControl.start(), it will invoke Packet-

LayerC’s StdControl.start(). This means that the reference RoutingLayerC.SubControl.start points to the

definition PacketLayerC.StdControl.start. The two components RoutingLayerC and PacketLayerC are com-

pletely decoupled, and are only bound together when wired.

3.5 Why?

Having a global namespace requires C, C++, and Java to reply on dynamic composition. Referencing a

function requires referencing a unique name in the global namespace, so code uses a level of indirection —

function pointers or factories — in order to decouple one implementation from another.

nesC takes a different approach. First, code is broken up into components, discrete units of functionality.

A component can only reference variables from its own, local namespace. A component can’t name a

variable in another component. However, a component can declare that it uses a function defined by another

component. It can also declare that it provides a function that another component can call. Building a nesC

program involves writing components and wiring users to providers. Because this connection occurs at

compile-time, it doesn’t require runtime allocation or storing function pointers in RAM. Additionally, since

a program does not have these levels of indirection, the nesC compiler knows the complete call graph. Before

wiring, a component could be calling any other component, and so is completely decoupled from whom it

calls. However, in an application, the call is wired to a specific endpoint, and so the nesC compiler can

optimize across the call boundary. In practice, nesC often inlines a call that crosses five or six components

3.5. WHY? 25

into a flat instruction stream with no function calls.

TinyOS and nesC can take this approach because, unlike end-user computers, which need to be able

to dynamically load new programs in response to user input, sensor networks are composed of embedded

computers, which have well-defined and tightly specified uses. While these might evolve over time, this

evolution is very slow in comparison to how often a PC loads new programs. There’s an additional side to

embedment which motivates using static, rather than dynamic approaches. Because traditional computers

usually have some sort of user interaction, faults are more easily detected. If the server is acting funny,

you notice, and reboot it. If your word processor is slow, you close it and reopen it. The same is not

true for embedded systems, which operate, for the most part, unattended. For example, consider traditional

computers that have roles resembling embedded systems, such as a dedicated mail server. If a logging failure

causes the mail server to start losing some mail messages, it might — and often does — go unnoticed for a

long time.

At the level of programming actual behavior or algorithms, nesC is usually quite accessible if you know

one of the above languages. It is, after all, a C dialect. A component can only reference functions in its

specification and only reference variables declared within it, but this usually isn’t too hard to get a handle

on. Understandably, the part that most people new to the language find most challenging is wiring, as

there’s no clear analogue in other system languages. Composing nesC components into working, flexible,

and reusable systems requires learning a new language. While the language itself is very simple (it only

has two operators, = and ->), the considerations are foreign to most programmers who are used to global

namespaces. Therefore, while this book does go over implementations, it is mostly dedicated to wiring and

composition, as these are what most nesC programmers find challenging.

26 CHAPTER 3. LINKING AND NAMESPACES

Chapter 4

Interfaces and Modules

nesC has two kinds of components: configurations and modules. Configurations, discussed in Chapter 5,

are how components are wired together. Modules, in contrast, are implementations. Configurations connect

the declarations of different components, while modules define functions and allocate state.

4.1 Split Phase

Because sensor nodes have a broad range of hardware capabilities, one of the goals of TinyOS is to have a

flexible hardware/software boundary. An application that encrypts packets should be able to interchangeably

use hardware or software implementations. Hardware, however, is almost always split-phase rather than

blocking. It is split-phase in that completion of a request is a callback. For example, to acquire a sensor

reading with an analog-to-digital converter (ADC), software writes to a few configuration registers to start

a sample. When the ADC sample completes, the hardware issues an interrupt, and the software reads the

value out of a data register.

Now, let’s say that rather than directly sampling, the sensor implementation actually samples periodically

and when queried gives a cached value. This may be necessary if the sensor needs to continually calibrate

itself. Magnetometer drivers sometimes do this due to the effect of the Earth’s magnetic field, as two

sensors oriented differently might have very different magnetometer floors. Drivers estimate the floor and

essentially return a measure of recent change, rather than an absolute value. From a querying standpoint,

the implementation of the sensor is entirely in software. This fact should not be apparent to the caller. For

ease of composition, sampling a self-calibrating magnetometer should be the same as a simple photoresistor.

But the magnetometer is a synchronous operation (it can return the result immediately) while the ADC is

split-phase.

27

28 CHAPTER 4. INTERFACES AND MODULES

The basic solution to this problem is to make one of the two look like the other: either give the mag-

netometer a split-phase interface, or make the ADC synchronous by blocking. If the ADC interrupt is very

fast, the ADC driver might be able to get away with a simple spin loop to wait until it fires. If the interrupt

is slow, then this wastes a lot of CPU cycles and energy. The traditional solution for this latter case (e.g.,

in traditional OSes) is to use multiple threads. When the code requests an ADC sample, the OS sets up the

request, puts the calling thread on a wait queue, starts the operation, and then schedules another thread to

run. When the interrupt comes in, the driver resumes the waiting thread and puts it on the OS ready queue.

The problem with threads in embedded systems is that they require a good deal of RAM. Each thread

has its own private stack which has to be stored when a thread is waiting or idle. E.g., when a thread samples

a blocking ADC and is put on the wait queue, the memory of its entire call stack has to remain untouched

so that when it resumes it can continue execution. RAM is a very tight resource on current sensor node

platforms. Early versions of TinyOS ran in 512 bytes of RAM. When a thread is idle, its stack is wasted

storage, and allocating the right sized stack for all of the threads in the system can be a tricky business.

Additionally, while it is easy to layer threads on top of a split-phase interface, it is very difficult to do

the opposite. Because it’s a one-way street, while increasing amounts of RAM might allow threads at an

application level, the bottom levels of TinyOS — the core operating system — can’t require them, as they

preclude chips with leaner RAM resources than high-end microcontrollers.

TinyOS therefore takes the opposite approach. Rather than make everything synchronous through

threads, operations that are split-phase in hardware are split-phase in software as well. This means that

many common operations, such as sampling sensors and sending packets, are split-phase. An important

characteristic of split-phase interfaces is that they are bidirectional: there is a downcall to start the opera-

tion, and an upcall that signifies the operation is complete. In nesC, downcalls are generally commands,

while upcalls are events. An interface specifies both sides of this relationship. For example, this is the basic

TinyOS packet send interface, Send:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 4.1: The split–phase Send interface

Whether a component provides or uses the Send interface defines which side of the split-phase operation

4.2. INTERFACES WITH ARGUMENTS 29

it represents. A provider of Send defines the send and cancel functions and can signal the sendDone event.

Conversely, a user of Send needs to define the sendDone event and can call the send and cancel commands.

When a call to send returns SUCCESS, the msg parameter has been passed to the provider, which will try to

send the packet. When the send completes, the provider signals sendDone, passing the pointer back to the

user.

4.2 Interfaces with Arguments

Interfaces can take types as arguments. For example, Read is a simple interface for acquiring sensor read-

ings:

interface Read<val_t> {

command error_t read();

event void readDone(error_t err, val_t t);

}

Listing 4.2: The Read interface

Type arguments to interfaces are in angle brackets. The Read interface has a single argument, which

defines the type of the data value that it produces. For example, a magnetometer component that produces a

16-bit reading might look like this:

module MagnetometerC {

provides interface StdControl;

provides interface Read<uint16_t>;

}

Listing 4.3: Using the Read interface in MagnetometerC

When wiring providers and users of interfaces that have type arguments, they types must match. For

example, you cannot wire a Read<uint8 t> to a Read<uint16 t>. Sometimes, arguments are used to

enforce type checking that does not actually pertain to the arguments in commands or events. For example,

the Timer interface takes a single parameter that is not in any of its functions:

interface Timer<precision_tag> {

command void startPeriodic(uint32_t dt);

command void startOneShot(uint32_t dt);

command void stop();

event void fired();

command bool isRunning();

command bool isOneShot();

30 CHAPTER 4. INTERFACES AND MODULES

command void startPeriodicAt(uint32_t t0, uint32_t dt);

command void startOneShotAt(uint32_t t0, uint32_t dt);

command uint32_t getNow();

command uint32_t gett0();

command uint32_t getdt();

}

Listing 4.4: The Timer interface and its typing

The precision tag argument is not used anywhere in the interface. Instead, it is used as a type check

when wiring: the argument specifies the time units. Three standard types are TMilli, T32khz, and TMicro,

for millisecond, 32khz, and microsecond timers. These types are each defined as C structs. This argument

provides type checking because a component specification that includes

uses interface Timer<TMilli>;

Listing 4.5: Using the Timer interface

must be wired to a component that

provides interface<TMilli>;

Listing 4.6: Providing the Timer interface

Wiring to this would be a compile-time error:

provides interface<TMicro>;

Listing 4.7: Providing a Timer with microsecond precision

4.3 Module Implementation

Tying this all together, consider a fictional component PeriodicReaderC, which samples a 16-bit sensor value

every few seconds. It provides one interface, StdControl, and uses two, Timer and Read:

module PeriodicReaderC {

provides interface StdControl;

uses interface Timer<TMilli>;

uses interface Read<uint16_t>;

}

Listing 4.8: PeriodicReaderC signature

4.3. MODULE IMPLEMENTATION 31

Every component has an implementation block after its signature. For modules, this implementation is

similar to an object: it has variables and functions. A module must implement every command of interfaces

it provides and every event of interfaces it uses. For example, this is a simple possible implementation of

PeriodicReaderC:

module PeriodicReaderC {

provides interface StdControl;

uses interface Timer<TMilli>;

uses interface Read<uint16_t>;

}

implementation {

uint16_t lastVal = 0;

command error_t StdControl.start() {

return call Timer.startPeriodic(1024);

}

command error_t StdControl.stop() {

return call Timer.stop();

}

event void Timer.fired() {

call Read.read();

}

event void Read.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {

lastVal = val;

}

}

}

Listing 4.9: Complete PeriodicReaderC component

This component periodically samples a sensor and stores the last valid reading in a local variable. Note

how it achieves this with split-phase interfaces. The call to StdControl.start will start the timer. One second

later, Timer.fired is signaled, the component calls Read.read and returns. At some point later, depending on

the latency of the read operation, the data source signals Read.readDone, passing the reading as an argument.

As written, this component doesn’t do anything with the reading besides store it. You could imagine,

however, using an interface like Send in order to put a reading into a packet and send it:

module PeriodicSenseAndSendC {

provides interface StdControl;

uses {

interface Timer<TMilli>;

interface Read<uint16_t>;

interface Send;

interface Packet;

}

}

32 CHAPTER 4. INTERFACES AND MODULES

implementation {

message_t packet;

bool busy = FALSE;

command error_t StdControl.start() {

return call Timer.startPeriodic(1024);

}

command error_t StdControl.stop() {

return call Timer.stop();

}

event void Timer.fired() {

call RawRead.read();

}

event void RawRead.readDone(error_t err, uint16_t val) {

if (err != SUCCESS || busy) {

return;

}

else {

uint8_t payloadLen;

uint16_t* payload = (uint16_t*)call Packet.getPayload(\&packet, \&payloadLen);

if (payloadLen >= sizeof(uint16_t)) {

*payload = val;

if (call Send.send(\&packet, sizeof(uint16_t)) {

busy = TRUE;

}

}

}

}

event void Send.sendDone(message_t* msg, error_t error) {

busy = FALSE;

}

}

Listing 4.10: PeriodicSenseAndSendC component

The Packet interface is an interface that lets a component get a pointer to where its payload region is

within the packet. This allows a component to use underlying packet layers without having to know the

size of their headers. Note the use of the busy flag: this is used to protect the message buffer from race

conditions. For example, a very long sending delay might cause Timer.fired to be signaled again before

Send.sendDone is signaled. In this case, if the busy flag were not used, then the payload of the packet might

be modified (in Read.readDone) while in the midst of being sent, possibly corrupting the packet.

While modules have some similarities to objects, they also have significant differences. First and fore-

most, modules are, by default, singletons: you can’t instantiate them. For example, there is only one Pe-

riodicSenseAndSendC. This ties back to the goal of hiding whether a component is hardware or software.

Hardware resources are singletons: you can’t instantiate control registers or output pins. Therefore, software

4.4. TASKS 33

generally is as well. There are such things as generic modules, which can be instantiated: they are presented

and discussed in Chapter 7.

4.4 Tasks

Returning to the magnetometer/ADC example, depending on split-phase operations means that the mag-

netometer driver has to issue a callback. On one hand, it could just signal the event from within the call.

However, signaling an event from within a command is generally a bad idea, because it can easily cause call

loops. For example, consider this code:

module FilterMagC {

provides interface StdControl;

provides interface Read<uint16_t>;

uses interface Timer<TMilli>;

uses interface Read<uint16_t> as RawRead;

}

implementation {

uint16_t filterVal = 0;

uint16_t lastVal = 0;

command error_t StdControl.start() {

return call Timer.startPeriodic(10);

}

command error_t StdControl.stop() {

return call Timer.stop();

}

event void Timer.fired() {

call RawRead.read();

}

event void RawRead.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {

lastVal = val;

filterVal *= 9;

filterVal /= 10;

filterVal += lastVal / 10;

}

}

command error_t Read.read() {

signal Read.readDone(SUCCESS, filterVal);

}

}

Listing 4.11: A troublesome implementation of a magnetometer sensor

On one hand, this approach is very simple and fast. On the other, it can lead to significant problems with

the stack. Imagine, for example, a component, FastSamplerC, that wants to sample a sensor many times

34 CHAPTER 4. INTERFACES AND MODULES

quickly (acquire a high frequency signal). It does this by calling Read.read in its Read.readDone handler:

event void Read.readDone(error_t err, uint16_t val) {

buffer[index] = val;

index++;

if (index < BUFFER_SIZE) {

call Read.read();

}

}

Listing 4.12: Signal handler that can lead to an infinite loop

This means that there will be a long call loop between read and readDone. If the compiler can’t optimize

the function calls away, this will cause the stack to grow significantly. Given that motes often have limited

RAM and no hardware memory protection, exploding the stack like this can corrupt data memory and cause

the program to crash.

Programming Hint 1: It’s dangerous to signal events from commands, as you might cause a very long call

loop, corrupt memory and crash your program.

Of course, acquiring a high-frequency signal from our example Read implementation is a bit silly. As

the implementation is caching a value, sampling it more than once isn’t very helpful. But this call pattern

— issuing a new request in an event signaling request completion — is a common one.

The problems caused by this signaling raise the question of how PeriodicReaderC is going to signal the

readDone event. It needs a way to schedule a function to be called later (like an interrupt).

The right way to do this is with a task, a deferred procedure call. A module can post a task to the TinyOS

scheduler. At some point later, the scheduler will execute the task. Because the task isn’t called immediately,

there is no return value. Also, because a task executes within the naming scope of a component, it doesn’t

take any parameters: any parameter you want to pass can just be stored in the component. Tasks, like

functions, can be predeclared. This is what a declaration for a task looks like:

task void readDoneTask();

Listing 4.13: Declaring a task

A definition is like the declaration, but also includes a function body. A component posts a task to the

TinyOS scheduler with the post keyword:

post readDoneTask();

4.4. TASKS 35

Listing 4.14: Posting a task

This is how our data filter component might look like implemented with a task:

module FilterMagC {

provides interface StdControl;

provides interface Read<uint16_t>;

uses interface Timer<TMilli>;

uses interface Read<uint16_t> as RawRead;

}

implementation {

uint16_t filterVal = 0;

uint16_t lastVal = 0;

task void readDoneTask();

command error_t StdControl.start() {

return call Timer.startPeriodic(10);

}

command error_t StdControl.stop() {

return call Timer.stop();

}

event void Timer.fired() {

call RawRead.read();

}

event void RawRead.readDone(error_t err, uint16_t val) {

if (err == SUCCESS) {

lastVal = val;

filterVal *= 9;

filterVal /= 10;

filterVal += lastVal / 10;

}

}

command error_t Read.read() {

post readDoneTask();

return SUCCESS;

}

task void readDoneTask() {

signal Read.readDone(SUCCESS, filterVal);

}

}

Listing 4.15: An improved implementation of PeriodicReaderC

When FilterMagC.Read.read is called, FilterMagC posts treadDoneTask and returns immediately. At

some point later, TinyOS runs the task, which signals Read.readDone.

36 CHAPTER 4. INTERFACES AND MODULES

Tasks are non-preemptive. This means that only one task runs at any time, and TinyOS doesn’t interrupt

one task to run another. Once a task starts running, no other task runs until it completes. This means that

tasks run atomically with respect to one another. This has the nice property that you don’t need to worry

about tasks interfering with one another and corrupting each other’s data. However, it also means that tasks

should usually be reasonably short. If a component has a very long computation to do, it should break it

up into multiple tasks. A task can post itself. For example, the basic execution loop of the Mate bytecode

interpreter is a task that executes a few instructions of a thread and reposts itself.

It takes about 80 microcontroller clock cycles to post and execute a task. Generally, keeping task run

times to at most a few milliseconds is a good idea. Because tasks are run to completion, then a long-running

task or large number of not-so-long-running tasks can introduce significant latency (tens of milliseconds)

between a task post and its execution. This usually isn’t a big deal with application-level components. But

there are lower-level components, such as radio stacks, that use tasks. For example, if the packet reception

rate is limited by how quickly the radio can post tasks to signal reception, then a latency of 10ms will limit

the system to 100 packets per second.

Consider these two cases. In both, there are five processing components and a radio stack. The mote

processor runs at 8MHz. Each processing component needs to do a lot of CPU work. In the first case,

the processing components post tasks that run for 5ms and respost themselves to continue the work. In the

second case, the processing components post tasks that run for 500us and repost themselves to continue the

work.

In the first case, the task posting overhead is 0.02%: 80 cycles overhead on 40,000 cycles of execution.

In the second case, the task posting overhead is 0.2%: 80 cycles overhead on 4,000 cycles of execution. So

the time to complete the executions isn’t significantly different. However, consider the task queue latency.

In the first case, when the radio stack posts a task to signal that a packet has been received, it expects to wait

around 25ms (5 processing tasks x 5ms each), limiting the system to 40 packets per second. In the second

case, when the radio stack posts the task, it expects to wait around 2.5ms (5 processing tasks x 500 us each),

limiting the system to 400 packets per second. Because the task posting cost is so low, using lots of short

running tasks improves the responsiveness of the system without introducing significant CPU overhead.

Of course, there’s often a tradeoff between lots of short tasks and the amount of state you have to allocate

in a component. For example, let’s say you want to encrypt a chunk of data. If the encryption operation

takes a while (e.g., 10 milliseconds), then splitting it into multiple task executions would improve the overall

system responsiveness. However, if you execute it in a single task, then you can allocate all of the state and

scratch space you need on the stack. In contrast, splitting it across tasks would require keeping this state and

4.4. TASKS 37

scratch space in the component. There is no hard rule on this tradeoff. But generally, long running tasks can

cause other parts of the OS to perform poorly, so should be avoided when necessary.

Programming Hint 2: Keep tasks short.

The post operation returns an error t. If the task is not already in the task queue, post returns SUCCESS.

If the task is in the task queue (has been posted but has not run yet), post returns FAIL. In either case, the

task will run in the future. Generally, if a component needs a task to run multiple times, it should have the

task repost itself.

Note: one of the largest differences between TinyOS 1.x and 2.0 is the task model. In 1.x, tasks have a

shared, fixed-size queue, and components can post a task multiple times. In 2.0, each task has a reserved

slot. This means that in 1.x, a task post can return FAIL if the task is not already in the queue, and two posts

back-to-back can both return SUCCESS.

Returning to the call to read, here are two possible implementations, which differ only slightly, but

demonstrate very different semantics:

command error_t Read.read() {

return post readDoneTask();

}

Listing 4.16: One–to–one binding of a split–phase call

versus

command error_t Read.read() {

post readDoneTask();

return SUCCESS;

}

Listing 4.17: Many–to–one binding of a split–phase call

The first represents a calling semantics where there is a one-to-one mapping between successful calls

to read and the readDone event. The second represents a many-to-one calling semantics, where a single

readDone event can correspond to many read requests. The question is whether the user of the interface

is responsible for queueing based on whether Read.read returns SUCCESS, or whether it keeps internal

queueing state. In the former approach, the user can’t distinguish between “I’ll be free when you get an

event” and “I’m not free now, try later” unless it keeps state on whether it has a request pending. In the

38 CHAPTER 4. INTERFACES AND MODULES

latter approach, if the user wants to queue it also needs to keep state on whether it has a request pending, as

issuing another Read.read() can confuse it (number of command calls != number of event signals). While

I personally prefer the latter approach, it’s a matter of taste. There are plenty of developers who prefer the

former approach. The important part is that an interface precisely states which semantics it follows.

4.5 Concurrency

Tasks allow software components to emulate the split-phase behavior of hardware. But they have much

greater utility than that. They also provide a mechanism to manage preemption in the system. Because

tasks run atomically with respect to one another, code that runs only in tasks can be rather simple: there’s

no danger of another execution suddenly taking over and modifying data under you. However, interrupts do

exactly that: they interrupt the current execution and start running preemptively.

In nesC and TinyOS, functions that can run preemptively, from outside task context, are labeled with the

async keyword: they run asynchronously with regards to tasks. A rule of nesC is that commands an async

function calls and events an async function signals must be async as well. That is, it can’t call a command

or event that isn’t async. A function that isn’t asynchronous is synchronous (often call “sync” for short).

By default, commands and events are sync: the async keyword specifies if they aren’t. Interface definitions

specify whether their commands and events are async or sync. For example, the Send interface is purely

synchronous:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 4.18: The Send interface

In contrast, the Leds interface is purely asynchronous:

interface Leds {

async command void led0On();

async command void led0Off();

async command void led0Toggle();

async command void led1On();

async command void led1Off();

4.5. CONCURRENCY 39

async command void led1Toggle();

async command void led2On();

async command void led2Off();

async command void led2Toggle();

async command uint8_t get();

async command void set(uint8_t val);

}

Listing 4.19: The Leds interface

All interrupt handlers are async, and so they cannot include any sync functions in their call graph. The

one and only way that an interrupt handler can execute a sync function is to post a task. A task post is an

async operation, while a task running is sync.

For example, consider a packet layer on top of a UART. When the UART receives a byte, it signals an

interrupt. In the interrupt handler, software reads the byte out of the data register and puts it in a buffer.

When the last byte of a packet is received, the software needs to signal packet reception. But the receive

event of the Receive interface is sync. So in the interrupt handler of the final byte, the component posts a

task to signal packet reception.

This raises the question: If tasks introduce latency, why use them at all? Why not make everything

async? The reason is simple: race conditions. The basic problem with preemptive execution is that it can

modify state underneath an ongoing computation, which can cause a system to enter an inconsistent state.

For example, consider this command, toggle, which flips the state bit and returns the old one:

bool state;

async command bool toggle() {

if (state == 0) {

state = 1;

return 1;

}

if (state == 1) {

state = 0;

return 0;

}

}

Listing 4.20: Toggling a state variable

Now imagine this execution, which starts with state = 0:

toggle()

state = 1;

-> interrupt

40 CHAPTER 4. INTERFACES AND MODULES

toggle()

state = 0

return 0;

return 1;

Listing 4.21: A call sequence that could corrupt a variable

In this execution, when the first toggle returns, the calling component will think that state is equal to 1.

But the last assignment (in the interrupt) was to 0.

This problem can be much worse when a single statement can be interrupted. For example, on micaZ

or Telos motes, writing or reading a 32 bit number takes more than one instruction. It’s possible that an

interrupt executes in between two instructions, so that part of the number read is of an old value while

another part is of a new value.

This problem — data races — is particularly pronounced with state variables. For example, imagine this

is a snippet of code from AMStandard, the basic packet abstraction in TinyOS 1.x, with a bunch of details

omitted. The state variable indicates whether the component is busy.

command result_t SendMsg.send ... {

if (!state) {

state = TRUE;

// send a packet

return SUCCESS;

}

return FAIL;

}

Listing 4.22: State transition that is not async–safe

If this command were async, then it’s possible between the conditional “if (!state)” and the assignment

“state = TRUE” that another component jumps in and tries to send as well. This second call will see state

to be false, set state to true, start a send and return SUCCESS. But then the first caller will result, send state

to true again, start a send, and return SUCCESS. Only one of the two packets will be sent successfully, but

barring additional error checks in the call path, it can be hard to find out which one, and this might introduce

all kinds of bugs in the calling components. Note that the command isn’t async.

Programming Hint 3: Keep code synchronous when you can. Code should be async only if its timing is

very important or if it might be used by something whose timing is important.

The problems interrupts introduce means that programs need a way to execute snippets of code that

won’t be preempted. NesC provides this functionality through atomic statements. For example:

4.5. CONCURRENCY 41

command bool increment() {

atomic {

a++;

b = a + 1;

}

}

Listing 4.23: Incrementing with an atomic section

The atomic block promises that these variables can be read and written atomically. Note that this does

not promise that the atomic block won’t be preempted. Even with atomic blocks, two code segments that do

not touch any of the same variables can preempt one another. For example:

async command bool incrementA() {

atomic {

a++;

b = a + 1;

}

}

async command bool incrementC {

atomic {

c++;

d = c + 1;

}

}

Listing 4.24: Incrementing with two independent atomic sections

In this example, incrementC (theoretically) preempt incrementA violating atomicity. But incrementA

can’t preempt itself, nor can incrementC itself.

nesC goes further than providing atomic sections: it also checks to see whether variables aren’t protected

properly and issues warnings when this is the case. For example, if b and c from the prior example didn’t

have atomic sections, then nesC would issue a warning because of possible self-preemption. The rule for

when a variable has to be protected by an atomic section is simple: if it is accessed from an async function,

then it must be protected. nesC’s analysis is flow sensitive. This means that if you have a function that does

not include an atomic block, but is always called from within an atomic block, the compiler won’t issue a

warning. Otherwise, you might have lots of unnecessarily nested atomic blocks. Usually, an atomic block

involves some kind of execution (e.g.. disabling an interrupt), so unnecessary atomics are a waste of CPU

cycles. Furthermore, nesC removes redundant atomic blocks.

While you can make data race warnings go away by liberally sprinkling your code with atomic blocks,

you should do so carefully. On one hand, an atomic block does have a CPU cost, so you want to minimize

how many you have. On the other, shorter atomic blocks delay interrupts less and so improve system

42 CHAPTER 4. INTERFACES AND MODULES

concurrency. The question of how long an atomic block runs is a tricky one, especially when your component

has to call another component.

For example, the SPI bus implementation on the Atmega128 has a resource arbiter to manage access to

the bus. The arbiter allows different clients to request the resource (the bus) and informs them when they’ve

been granted it. However the SPI implementation doesn’t want to specify the arbiter policy (e.g., first come

first served vs. priority), so it has to be wired to an arbiter. This decomposition has implications for power

management. The SPI turns itself off when it has no users, but it can’t know when that is without calling the

arbiter (or replicating arbiter state). This means that the SPI has to atomically see if it’s being used, and if

not, turn itself off:

atomic {

if (!call ArbiterInfo.inUse()) {

stopSpi();

}

}

Listing 4.25: Atomically turning off the SPI bus

In this case, the call to isUse() is expected to be very short (in practice, it’s probably reading a state

variable). If someone wired an arbiter whose inUse() command took 1ms, then this could be a problem. The

implementation assumes this isn’t the case. Sometimes (like this case), you have to make these assumptions,

but it’s good to make as few as possible.

The most basic use of atomic blocks is for state transitions within a component. Usually, a state transition

has two parts, both of which are determined by the existing state and the call: the first is changing to a new

state, the second is taking some kind of action. Returning to the AMStandard example, it looks something

like this:

if (!state) {

state = TRUE;

// send a packet

return SUCCESS;

}

else {

return FAIL;

}

Listing 4.26: State transition that requires a large atomic section

If state is touched by an async function, then you need to make the state transition atomic. But you don’t

want to put the entire block within an atomic section, as sending a packet could take a long enough time that

4.5. CONCURRENCY 43

it causes the system to miss an interrupt. So the code does something like this:

uint8_t oldState;

atomic {

oldState = state;

state = TRUE;

}

if (!oldState) {

//send a packet

return SUCCESS;

}

else {

return FAIL;

}

Listing 4.27: A fast and atomic state transition

If state were already true, it doesn’t hurt to just set it true. This takes fewer CPU cycles than the

somewhat redundant statement of

if (state != TRUE) {state = TRUE;}

Listing 4.28: An unnecessary conditional

In this example, the state transition occurs in the atomic block, but then the actual processing occurs

outside it, based on the state the component started in.

Let’s look at a real example. This component is CC2420ControlP, which is part of the T2 CC2420 radio

stack. CC2420ControlP is responsible for configuring the radio’s various IO options, as well as turning it

on and off. Turning the CC2420 radio has four steps:

1. Turn on the voltage regulator (0.6ms)

2. Acquire the SPI bus to the radio (depends on contention)

3. Start the radio’s oscillator by sending a command over the bus (0.86ms)

4. Put the radio in RX mode (0.2ms)

Some of the steps that take time are split-phase and have async completion events (particularly, 1 and

3). The actual call to start this series of events, however, is SplitControl.start(), which is sync. One way to

implement this series of steps is to assign each step a state and use a state variable to keep track of where

you are. However, this turns out to not be necessary. Once the start sequence begins, it continues until it

completes. So the only state variable you need is whether you’re starting or not. After that point, every

44 CHAPTER 4. INTERFACES AND MODULES

completion event is implicitly part of a state. E.g., the startOscillatorDone() event implicitly means that the

radio is in state 3. Because SplitControl.start() is sync, the state variable can be modified without any atomic

sections:

command error_t SplitControl.start() {

if (m_state != S_STOPPED)

return FAIL;

m_state = S_STARTING;

m_dsn = call Random.rand16();

call CC2420Config.startVReg();

return SUCCESS;

}

Listing 4.29: The first step of starting the CC2420 radio

The startVReg() starts the voltage regulator. This is an async command. In its completion event, the

radio tries to acquire the SPI bus:

async event void CC2420Config.startVRegDone() {

call Resource.request();

}

Listing 4.30: The handler that the first step of starting the CC2420 is complete

In the completion event (when it receives the bus), it sends a command to start the oscillator:

event void Resource.granted() {

call CC2420Config.startOscillator();

}

Listing 4.31: The handler that the second step of starting the CC2420 is complete

Finally, when the oscillator completion event is signaled, the component tells the radio to enter RX mode

and posts a task to signal the startDone() event. It has to post a task because oscillatorDone is async, while

startDone is sync. Note that the component also releases the bus for other users.

async event void CC2420Config.startOscillatorDone() {

call SubControl.start();

call CC2420Config.rxOn();

call Resource.release();

post startDone_task();

}

Listing 4.32: Handler that the third step of starting the CC2420 radio is complete

4.6. ALLOCATION 45

Finally, the task changes the radio’s state from STARTING to STARTED:

task void startDone_task() {

m_state = S_STARTED;

signal SplitControl.startDone(SUCCESS);

}

Listing 4.33: State transition so components can send and receive packets

An alternative implementation could have been to put the following code in the startOscillatorDone()

event:

atomic {

m_state = S_STARTED;

}

Listing 4.34: An alternative state transition implementation

The only possible benefit in doing so is that the radio could theoretically accept requests earlier. But

since components shouldn’t be calling the radio until the startDone event is signaled, this would be a bit

problematic. There’s no chance of another task sneaking in between the change in state and signaling the

event when both are done in the startDone task.

Programming Hint 4: Keep atomic sections short, and have as few of them as possible. Be careful about

calling out to other components from within an atomic section.

4.6 Allocation

Besides power, the most valuable resource to mote systems is RAM. Power means that the radio and CPU

have to be off almost all the time. Of course, there are situations which need a lot of CPU or a lot of

bandwidth (e.g., cryptography or binary dissemination), but by necessity they have to be rare occurances.

In contrast, the entire point of RAM is that it’s always there. The sleep current of the microcontrollers most

motes use today is, for the most part, determined by RAM.

Modules can allocate variables. Following the naming scope rules of nesC, these variables are com-

pletely private to a component. For example, the PeriodicReaderC component allocated a lastVal and a

filterVal, both of which were two bytes, for a total cost of 4 bytes of RAM. Because tasks run to completion,

TinyOS does not have an equivalent abstraction to a thread or process. More specifically, there is no execu-

tion entity that maintains execution state beyond what is stored in components. When a TinyOS system is

46 CHAPTER 4. INTERFACES AND MODULES

quiescent, component variables represent the entire software state of the system.

The only way that components can share state is through function calls, which are (hopefully) part of

interfaces. Just as in C, are two basic ways that components can pass parameters: by value and by reference

(pointer). In the first case, the data is copied onto the stack, and so the callee can modify it or cache it freely.

In the second case, the caller and callee share a pointer to the data, and so components need to carefully

manage access to the data in order to prevent memory corruption and memory leaks. While it’s fine to pass

pointers as arguments, you have to be very careful about storing pointers in a component. The general idea is

that, at any time, every pointer should have a clear owner, and only the owner can modify the corresponding

memory.

For example, abstract data types (ADTs) in TinyOS are usually represented one of two ways: generic

modules or through an interface with by-reference commands. With a generic module, the module allocates

the ADT state and provides accessors to its internal state. For example, many TinyOS components needs to

maintain bit vectors, and so in tos/system there’s a generic module BitVectorC that takes the number of bits

as a parameter:

generic module BitVectorC(uint16_t max_bits) {

provides interface Init;

provides interface BitVector;

}

Listing 4.35: Signature of BitVectorC

This component allocates the bit vector internally and provides the BitVector interface to access it:

interface BitVector {

async command void clearAll();

async command void setAll();

async command bool get(uint16_t bitnum);

async command void set(uint16_t bitnum);

async command void clear(uint16_t bitnum);

async command void toggle(uint16_t bitnum);

async command void assign(uint16_t bitnum, bool value);

async command uint16_t size();

}

Listing 4.36: The BitVector interface

With this kind of encapsulation, assuring that accesses to the data type are race-free is reasonably easy,

as the internal implementation can use atomic sections appropriately. There is always the possibility that

preempting modifications will lead to temporal inconsistencies with accessors. E.g., in BitVector, it’s pos-

sible that, after a bit has been fetched for get() but before it returns, an interrupt fires whose handler calls

4.6. ALLOCATION 47

set() on that same bit. In this case, get() returns after set(), but its return value is the value before set(). If

this kind of interlacing is a problem for your code, then you should call get() from within an atomic section.

Generic modules are discussed in depth in Chapter 7.

TinyOS 1.x uses only the second approach, passing a parameter by reference, because it does not have

generic modules. For example, the Mat virtual machine supports scripting languages with typed variables,

and provides functionality for checking and setting types. In this case, the ADT is a script variable. In the

interface MateTypes below, a MateContext* is a thread and a MateStackVariable* is a variable:

interface MateTypes {

command bool checkTypes(MateContext* context, MateStackVariable* var, uint8_t type);

command bool checkMatch(MateContext* context, MateStackVariable* v1, MateStackVariable* v2);

command bool checkValue(MateContext* context, MateStackVariable* var);

command bool checkInteger(MateContext* context, MateStackVariable* var);

command bool isInteger(MateContext* context, MateStackVariable* var);

command bool isValue(MateContext* context, MateStackVariable* var);

command bool isType(MateContext* context, MateStackVariable* var, uint8_t type);

}

Listing 4.37: Representing an ADT though an interface in TinyOS 1.x

When a component implements an ADT in this way, callers have to be careful to not corrupt the the data

type. Between when a call is made to the ADT’s component and when that call returns, a component should

not modify the variable (i.e., call the ADT component again). In the MateTypes example above, this is easy,

as all of its commands are synchronous: no code that can preempt the call (async) can itself call MateTypes.

ADTs represent the simple case of when pointers are used: they are inevitably single-phase calls. You

don’t for example, expect a MateTypes.isType() command to have a MateTypes.isTypeDone() event. The

much trickier situation for pointers is when they involve a split-phase call. Because the called component

probably needs access to the pointer while the operation is executing, it has to store it in a local variable.

For example, consider the basic Send interface:

interface Send {

command error_t send(message_t* msg, uint8_t len);

event void sendDone(message_t* msg, error_t error);

command error_t cancel(message_t* msg);

command void* getPayload(message_t* msg);

command uint8_t maxPayloadLength(message_t* msg);

}

Listing 4.38: The Send interface

The important pair of functions in this example is send/sendDone. To send a packet, a component calls

48 CHAPTER 4. INTERFACES AND MODULES

send. If send returns SUCCESS, then the caller has passed the packet to a communication stack to use, and

must not modify the packet. The callee stores the pointer in a variable, enacts a state change, and returns

immediately. If the interface user modifies the packet after passing it to the interface provider, the packet

could be corrupted. For example, the radio stack might compute a checksum over the entire packet, then

start sending it out. If the caller modifies the packet after the checksum has been calculated, then the data

and checksum won’t match up and a receiver will reject the packet. When a split-phase interface has this

kind of “pass” semantics, the completion event should have the passed pointer as one of its parameters.

Programming Hint 5: Only one component should be able to modify a pointer’s data at any time. In the

best case, only one component should be storing the pointer at any time.

One of the trickiest examples of this pass approach is the Receive interface. At first glance, the interface

seems very simple:

interface Receive {

event message_t* receive(message_t* msg, void* payload, uint8_t len);

command uint8_t getPayloadLength(message_t* msg);

command void * getPayload(message_t* msg, uint8_t* len);

}

Listing 4.39: The Receive interface

The receive event is rather different than most events: it has a message t* as both a parameter and a

return value. When the communication layer receives a packet, it passes that packet to the higher layer

as a parameter. However, it also expects the higher layer to return it a message t* back. The basic idea

behind this is simple: if the communication layer doesn’t have a message t*, it can’t receive packets, as it

has nowhere to put them. Therefore, the higher layer always has to return a message t*, which is the next

buffer the radio stack will use to receive into. This return value can be the same as the parameter, but it does

not have to be. For example, this is perfectly reasonable, if a bit feature-free, code:

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {

return msg;

}

Listing 4.40: The simplest receive handler

A receive handler can always copy needed data out of the packet and just returned the passed buffer.

There are, however, situations when this is undesirable. One common example is a routing queue. If the

node has to forward the packet it just received, then copying it into another buffer is wasteful. Instead, a

4.6. ALLOCATION 49

queue allocates a bunch of packets, and in addition to a send queue, keeps a free list. When the routing layer

receives a packet to forward, it sees if there are any packets left in the free list. If so, it puts the received

packet into the send queue and returns a packet from the free list, giving the radio stack a buffer to receive

the next packet into. If there are no packets left in the free list, then the queue can’t accept the packet and so

just returns it back to the radio for re-use. The pseudocode looks something like this:

receive (m):

if I’m not the next hop, return m // Not for me

if my free list is empty, return m // No space

else

put m on forwarding queue

return entry from free list

One of the most common mistakes early TinyOS programmers encounter is misusing the Receive inter-

face. For example, imagine a protocol that does this:

event message_t* LowerReceive.receive(message_t* m, void* payload, uint8_t len) {

processPacket(m);

if (amDestimation(m)) {

signal UpperReceive.receive(m, payload, len);

}

return m;

}

Listing 4.41: A broken receive handler that doesn’t respect buffer swapping

The problem with this code is that it ignores the return value from the signal to UpperReceive.receive.

If the component that handles this event performs a buffer swap — e.g., it has a forwarding queue — then

the packet it returns is lost. Furthermore, the packet that it has put on the queue has also been returned to the

radio for the next packet reception. This means that, when the packet reaches the end of the queue, the node

may send something completely different than what it decided to forward (e.g., a packet for a completely

different protocol).

The buffer swap approach of the Receive interface provides isolation between different communication

components. Imagine, for example, a more traditional approach, where the radio dynamically allocates a

packet buffer when it needs one. It allocates buffers and passes them to components on packet reception.

What happens if a component holds on to its buffers for a very long time? Ultimately, the radio stack will

run out of memory to allocate from, and will cease being able to receive packets at all. By pushing the

50 CHAPTER 4. INTERFACES AND MODULES

allocation policy up into the communication components, protocols that have no free memory left are forced

to drop packets, while other protocols continue unaffected.

This approach speaks more generally of how TinyOS components generally handle memory allocation.

All state is allocated in one of two places: components, or the stack. A shared dynamic memory pool

across components makes it much easier for one bad component to cause others to fail. That is not to say

that dynamic allocation is never used. For example, the TinyDB system and some versions the Mat virtua

machine both maintain a dynamic memory pool. Both of them have a component that allocates a block of

memory and provides an interface to allocate and free chunks within that block. However, both allocators

are shared by a relatively small set of components that are designed to work together: this is a much more

limited, and safer, approach than having routing layers, signal processing modules, and applications all share

a memory pool.

Programming Hint 6: Allocate all state in components. If your application requirements necessitate a

dynamic memory pool, encapsulate it in a component and try to limit the set of users.

Modules often need constants of one kind or another, such as a retransmit count or a threshold. Using a

literal constant is problematic, as you’d like to be able to reuse a consistent value. This means that in C-like

languages, you generally use something like this:

const int MAX_RETRANSMIT = 5;

if (txCount < MAX_RETRANSMIT) {

...

}

Listing 4.42: Wasting memory by defining a constant as an integer

The problem with doing this in nesC/TinyOS is that a const int might allocate RAM, depending on the

compiler (good compilers will place it in program memory). You can get the exact same effect by defining

an enum:

enum {

MAX_RETRANSMIT = 5

};

Listing 4.43: Defining a constant as an enum

This allows the component to use a name to maintain a consistent value and does not store the value

either in RAM or program memory. This can even improve performance, as rather than a memory load, the

4.6. ALLOCATION 51

architecture can just load a constant. It’s also better than a #define, as it exists in the debugging symbol table

and application metadata.

Note, however, that using enum types in variable declarations can waste memory, as enums default to

integer width. For example, imagine this enum:

typedef enum {

STATE_OFF = 0,

STATE_STARTING = 1,

STATE_ON = 2,

STATE_STOPPING = 3

} state_t;

Listing 4.44: An example enum

Here are two different ways you might allocate the state variable in question:

state_t state; // platform int size (e.g., 2-4 bytes)

uint8_t state; // one byte

Listing 4.45: Allocating a state variable

Even though the valid range of values is 0-3, the former will allocate a native integer, which on a

microcontroller is usually 2 bytes, but could be 4 bytes on low power microprocessors. The second will

allocate a single byte. So you should use enums to declare constants, but avoid declaring variables of an

enum type.

Programming Hint 7: Conserve memory by using enums rather than const variables for integer constants,

and and don’t declare variables with an enum type.

52 CHAPTER 4. INTERFACES AND MODULES

Chapter 5

Configurations and Wiring

The previous two chapters dealt with modules, which are the basic building blocks of a TinyOS program.

Modules allocate state and implement executable logic. However, like all components, they can only name

functions and variables within their local namespaces, as defined by their signatures. For one module to be

able to call another, we have to map a set of names in one component — generally, an interface — to a set of

names in another component. In nesC, connecting two components in this way is called wiring. In addition

to modules, nesC has a second kind of component, configurations, whose implementation is component

wirings. Modules implement program logic: configurations compose modules into larger abstractions.

In a TinyOS program, there are usually more configurations than modules. There are two reasons for

this. First, except low-level hardware abstractions, any given component is built on top of a set of other ab-

stractions, which are encapsulated in configurations. For example, a routing stack depends on a single-hop

packet layer, which is a configuration. This single-hop configuration wires the actual protocol implementa-

tion module (e.g., setting header fields) to a raw packet layer on top of the radio. This raw packet layer is a

configuration that wires the module which sends bytes out to the bus over which it sends bytes. The bus, in

turn, is a configuration. These layers of encapsulation generally reach very low in the system.

Essentially, encapsulating an abstraction A in a configuration means that it can be ready-to-use: all we

need to do is wire to A’s functionality. In contrast, if it were a module that uses interfaces, then we’d need

to wire up A’s dependencies and requirements as well. That’s sort of like having to link the Java libraries

against the C libraries every time you want to compile a Java program. For example, a radio stack can use a

really wide range of resources, including buses, timers, random number generators, cryptographic support,

and hardware pins. Rather than expecting a programmer to connect the stack up to all of these things, the

entire stack can be encapsulated in a single component. This component connects all of the subcomponents

53

54 CHAPTER 5. CONFIGURATIONS AND WIRING

to the abstractions they need.

In addition to wiring one component to another, configurations also need to export interfaces. This is

another kind of wiring, except that, rather than connect two end points — a provider and a user — an export

(also called pass-through wiring) maps one name to another. This idea is confusing at first, and is best

explained after a few examples, so we’ll return to it later.

Configurations look very similar to modules. They have a specification and an implementation. This is

the configuration LedsC, which presents the TinyOS abstraction of the ubiquitious 3 LEDs1:

configuration LedsC {

provides interface Init @atleastonce();

provides interface Leds;

}

implementation {

components LedsP, PlatformLedsC;

Init = LedsP;

Leds = LedsP;

LedsP.Led0 -> PlatformLedsC.Led0;

LedsP.Led1 -> PlatformLedsC.Led1;

LedsP.Led2 -> PlatformLedsC.Led2;

}

Listing 5.1: The LedsC configuration

A configuration states must name which components it is wiring with the components keyword. Any

number of component names can follow components, and their order does not matter. A configuration

can have multiple components statements. A configuration must name a component before it wires it.

Syntactically, configurations are very simple. They have three operators: ->, <- and =. The first two

are for basic wiring: the arrow points from the user to the provider. For example, the following two lines are

identical:

MyComponent.Random -> RandomC.Random;

RandomC.Random <- MyComponent.Random;

Listing 5.2: Wiring directionality

A direct wiring (a -> or <-) always goes from a user to a provider, and resolves the call paths in both

directions. That is, once an interface is linked with a -> operator, it is considered connected. Here’s a

simple example, the Blink application:

1Don’t worry about the @atleastonce attribute; attributes are discussed in Chapterch:advanced

55

module BlinkC {

uses interface Timer<TMilli> as Timer0;

uses interface Timer<TMilli> as Timer1;

uses interface Timer<TMilli> as Timer2;

uses interface Leds;

uses interface Boot;

}

Listing 5.3: The signature of the BlinkC module

When BlinkC calls Leds.led0Toggle(), it names a function in its own local scope (BlinkC.Leds.led0Toggle).

The LedsC component provides the Leds interface2:

configuration LedsC {

provides interface Init @atleastonce();

provides interface Leds;

}

Listing 5.4: The signature of the LedsC configuration

BlinkC calls the function BlinkC.Leds.led0Toggle. LedsC provides the function LedsC.Leds.led0Toggle().

Wiring the two maps the first to the second:

configuration BlinkAppC {}

implementation {

components MainC, BlinkC, LedsC;

// Some code elided

BlinkC.Leds -> LedsC;

}

Listing 5.5: The BlinkAppC configuration that wires BlinkC to LedsC

This means that when BlinkC calls BlinkC.Leds.led0Toggle, it actually calls LedsC.Leds.led0Toggle.

The same is true for other calls of the Leds interface, such as Leds.led1On. The configuration BlinkAppC

provides a mapping between the local namespaces of the two components. The -> operator maps between

two components that a configuration names, and is always from a user to a provider.

From the perspective of someone using a component, it shouldn’t be relevant whether it is a module

or a configuration. Just like modules, configurations can provide and use interfaces. But as they have no

code, these interfaces must be defined in terms of other components. Take, for example, ActiveMessageC,

the HIL for packet-level communication. Every hardware platform defines a component ActiveMessageC,

which the basic packet components (AMSenderC, AMReceiverC, etc.) wire to. Generally, ActiveMessageC

2Don’t worry about the @atleastonce attribute on Init; we discuss it in Chapter 9. It’s basically a way to make sure somebody

initializes the Leds.

56 CHAPTER 5. CONFIGURATIONS AND WIRING

is just a configuration that renames a particular radio chip’s active message layer. For example, this is the

ActiveMessageC of the Telos platform3:

configuration ActiveMessageC {

provides {

interface Init;

interface SplitControl;

interface AMSend[uint8_t id]

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

implementation {

components CC2420ActiveMessageC as AM;

Init = AM;

SplitControl = AM;

AMSend = AM;

Receive = AM.Receive;

Snoop = AM.Snoop;

Packet = AM;

AMPacket = AM;

PacketAcknowledgements = AM;

}

Listing 5.6: The ActiveMessageC Configuration

All ActiveMessageC does is take CC2420ActiveMessageC and present all of its interfaces with a differ-

ent name. Another option could have been for the CC2420 (a radio chip) code to define an ActiveMessageC.

From an OS standpoint, the problem with this approach is dealing with the situation when a platform has

two radio chips: they both define an ActiveMessageC, and since this is a global name, you need some way

to determine which one.

ActiveMessageC uses the other configuration operator, =, which exports interfaces. While the -> oper-

ator maps between the interfaces of components that a configuration names, the = operator maps between

a configuration’s own interfaces and components that it names, exporting interfaces of components within

the configuration out to the configuration’s namespace. Take, for example, RandomC, the component that

defines the standard TinyOS random number generator:

3Don’t worry about the array brackets on AMSend, Receive, and Snoop: they represent what’s called a parameterized interface,

which is covered in a later chapter.

57

configuration RandomC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}

implementation {

components RandomMlcgC;

components MainC;

Init = RandomMlcgC; // Allow for re-initialization

MainC.SoftwareInit -> RandomMlcgC; // Auto-initialize

SeedInit = RandomMlcgC;

Random = RandomMlcgC;

}

Listing 5.7: The RandomC configuration

Mlgc stands for MLCG (multaplicative linear congruential generator). In the default case, RandomC is a

wrapper around RandomMlcgC. There’s another implementation, RandomLfsrC, that is about twice as fast

but produces not nearly as good random numbers. Platforms or applications that need to use RandomLfsrC

can redefine RandomC to encapsulate RandomLfsrC instead.

RandomMlcgC provides the Init interface. Calling RandomMlcgC.Init.init seeds the random number

generator with the node’s local address. The SeedInit interface allows a component to start the generator

with a specific seed. RandomC wires RandomMlcgC.Init in two different ways:

Init = RandomMlcgC; // Allow for re-initialization

MainC.SoftwareInit -> RandomMlcgC; // Auto-initialize

Listing 5.8: RandomC’s wiring of Init for auto–initialization and re–initialization

In the first, it equates its own RandomC.Init with RandomMlcg.Init. If a component calls RandomC.Init.init(),

it actually calls RandomMlcgC.Init.init(). In the second, RandomC wires RandomMlcgC.Init to the TinyOS

boot sequence (MainC). When TinyOS boots, it calls MainC.SoftwareInit.init (see TEP 107 for the full boot

sequence), and so it calls RandomMlcgC.Init.init(). This means that, before an application starts, RandomC

has made sure that its underlying random number generator has been properly seeded. If the application re-

seeds it by calling RandomC.Init or RandomC.SeedInit, no harm is done. But by wiring to MainC, RandomC

makes sure that an application (or protocol, or system) doesn’t have to remember to initialize RandomC.

This technique — “auto-wiring” initialization — is used in many T2 abstractions. One very common bug

in TinyOS 1.x is to forget to initialize. This usually happens because many components might be initializing

the same component. This approach is wasteful, but since initialization only happens once, it’s not a huge

58 CHAPTER 5. CONFIGURATIONS AND WIRING

issue. The bigger issue is that a component often relies on someone else initializing. For example, imagine

two radio stacks, A and B. A initializes the timer system, B does not. A programmer writes an application

using radio stack A and forgets to initialize the timer system. Because radio stack A does, everything works

fine. The programmer then decides to switch to radio stack B, and nothing works: neither the application

nor the stack initialize the timers, and so the system just hangs. For software initialization – setting fields,

etc. – generally doesn’t matter (Init is not supposed to call anything besides Init). Hardware initialization

is a much trickier problem, and is generally handled on a per-platform basis. Refer to TEP 107 for more

details.

Programming Hint 8: In the top-level configuration of a software abstraction, auto-wire Init to MainC.

This removes the burden of wiring Init from the programmer, which removes unnecessary work from the

boot sequence and removes the possibility of bugs from forgetting to wire.

From an implementation standpoint, the two configuration operators have two very different purposes.

The = operator defines how a configuration’s interfaces are implemented. Like a module, a configuration

is an abstractions defined by a signature. A module directly implements the functions it needs to (events

from its used interfaces, commands from its provided interfaces). A configuration, in contrast, delegates

the implementation to another component using the = operator. For example, RandomC delegates the im-

plementation of the Random interface to RandomMlcgC. In contrast, the -> operator combines existing

components, completing existing signatures.

TinyOS component names all end in either C or P. C stands for Component and means that it represents

a usable abstraction. P stands for Private, and generally means that you shouldn’t wire to it: instead, there’s

usually a C that encapsulates it in some way to make it useful. Once you have written the signature for a

C component, changing it is very hard: any number of other components might depend on it, and chang-

ing it will cause compilation errors. In contrast, because a P component is only wired to by higher-level

configurations within that software abstraction, their signatures are much more flexible. E.g., changing the

signature of AMSenderC would break almost all TinyOS code, but an internal change to CC2420ReceiveP

(and changing its wiring in CC2420ReceiveC) should not be apparent to the user.

The distinction between C (an externally usable abstraction) and P (an internal implementation) is par-

ticularly important in nesC because of the component model. In languages such as C, an implementation

can directly reference what it depends on (e.g., library calls). In nesC, a configuration needs to resolve those

dependencies.

59

Programming Hint 9: If a component is a usable abstraction by itself, its name should end with C. If it is

intended to be an internal and private part of a larger abstraction, its name should end with P. Never wire to

P components from outside your package (directory).

Let’s look at a complete (but very simple) example of how all of these issues can be resolved: Ran-

domC. As mentioned above, RandomC is name for the standard TinyOS random number generator. It is a

configuration with this signature:

configuration RandomC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}

Listing 5.9: The RandomC signature

The default implementation of RandomC lives in tos/system. As shown above, maps RandomC to a

specific implementation, RandomMlcgC, while auto-wiring to the boot sequence. RandomMlcgC is itself a

(trivial) configuration:

configuration RandomMlcgC {

provides interface Init;

provides interface ParameterInit<uint16_t> as SeedInit;

provides interface Random as Random;

}

implementation {

components RandomMlcgP;

Init = RandomMlcgP;

SeedInit = RandomMlcgP;

Random = RandomMlcgP;

}

Listing 5.10: The RandomMlcgC signature

RandomMlcgC represents a complete random number generator abstraction that is multiplicative linear

congruential generator (MLCG). RandomMlcgP is a particular implementation of such a generator. In this

case, it’s completely in software. A platform that has a hardware random number generator could have a

different RandomMlcgP. Because this different implementation might have a different signature — e.g., it

might require accessing registers through an HPL — it also requires a different RandomMlcgC that resolves

these dependencies to present a complete abstraction.

In short, the configuration RandomC maps the standard number generator to a specific algorithm, Ran-

60 CHAPTER 5. CONFIGURATIONS AND WIRING

domMlcgC. The configuration RandomMlcgC encapsulates a specific implementation as a complete ab-

straction. RandomMlcgP is an implementation of the multiplicative linear congruential generator. Similarly,

there is also a RandomLfsrC, which is a linear feed shift register random number generator. RandomLfsrC

is a configuration that just exports the interfaces of RandomLfsrP, the software implementation. This hier-

archy of names means that a system can wire to a specific random number generator if it cares which one

it uses, or wire to the general one that TinyOS provides (RandomC). An application can change what the

default random number generator is by defining its own RandomC, which maps to a different algorithm.

5.0.1 The as keyword and other namespace tricks

Components sometimes name two instances of an interface in their signature:

// A greatly elided signature of ActiveMessageC

configuration ActiveMessageC {

provides interface Receive[am_id_t];

provides interface Receive as Snoop[am_id_t];

}

Listing 5.11: A truncated ActiveMessageC configuration

The as keyword allows you to rename an interface in a signature. The Snoop interface above, for

example, is still of type Receive: you can wire any “uses interface Receive” to it. However, its name allows

you to distinguish between Snoop (packets not destined for the local node) and Receive (packets destined

for you). Technically, the statement

uses interface StdControl;

Listing 5.12: Using StdControl

is actually

uses interface StdControl as StdControl;

Listing 5.13: The implicit as keyword in uses and provides

That is, the first StdControl is the type, and the second is the name. Because this is so common, nesC

allows you to use the shorthand.

The as keyword can also be used within configurations. Because nesC components are in a global

namespace, sometimes they have very long and descriptive names. For example, the lowest level (byte)

SPI bus abstraction on the Atmega128 is HplAtm128SpiP, which means, “This is the private hardware

61

presentation layer component of the Atmega128 SPI bus.” Typing that in a configuration is a real pain, and

it’s not very easy to read. So, the slightly higher level abstraction, the configuration Atm128SpiC, names it

like this:

HplAtm128SpiC as HplSpi;

Listing 5.14: Using the as keyword with components

which makes the wiring a good deal more comprehensible. Similarly, CC2420ReceiveC, the receive

path of the CC2420 radio, is a configuration that wires packet logic to things like interrupts and status pins:

configuration CC2420ReceiveC {...}

implementation {

components CC2420ReceiveP;

components new CC2420SpiC() as Spi;

components HplCC2420PinsC as Pins;

components HplCC2420InterruptsC as InterruptsC;

// rest of the implementation elided

}

Listing 5.15: CC2420ReceiveC’s use of the as keyword

Because all interfaces are types, when wiring you can sometimes elide one of the interface names.

You’ve actually seen this a lot in the previous examples, such as RandomC:

MainC.SoftwareInit -> RandomMlcgC; // Auto-initialize

Listing 5.16: Autoinitializing RandomMlcgC

On the left side, MainC.SoftwareInit is an instance of the Init interface. On the right side is RandomMl-

cgC, without an interface name. Because RandomMlcgC only provides one instance of the Init interface,

nesC assumes that this is the one you mean. So technically, this line is

MainC.SoftwareInit -> RandomMlcgC.Init;

Listing 5.17: Expanding implicit interface wiring

If it’s an export wiring, then the component name is implicit on one side, so you always have to name

the interface. For example,

Init = RandomMlcgC; // Allow for re-initialization

Listing 5.18: Enabling re–initialization of RandomMlcgC

62 CHAPTER 5. CONFIGURATIONS AND WIRING

means “wire Init of this component to the interface of type Init of RandomMlcgC.” This form of short-

hand works in terms of types, not names. It would work just as well if RandomMlcgC provided Init as

“RandomInit”. However, you can’t do this:

= RandomMlcgC.Init;

Listing 5.19: An illegal wiring

If a component has two instances of the same interface, then you have to name which instance you mean.

For example, this is ActiveMessageC for the telos platforms:

configuration ActiveMessageC {

provides {

interface Init;

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

}

}

implementation {

components CC2420ActiveMessageC as AM;

Init = AM;

...

Receive = AM.Receive;

Snoop = AM.Snoop;

...

}

Listing 5.20: Using the as keyword to distinguish interface instances

Because CC2420ActiveMessageC provides two instances of the Receive interface, ActiveMessageC has

to name them. Basically, wiring has to be precise and unambiguous, but if nesC lets you use shorthand in

the common cases of redundancy.

The as keyword make code more readable and comprehensible. Because there is a flat component

namespace, some components have long and complex names which can be easily summarized, and using the

as keyword with interfaces can add greater semantic information on the role of that interface. Additionally,

by using the as keyword, you create a level of indirection. E.g., if a configuration uses the as keyword

to rename a component, then changing the component only requires changing that one line. Without the

keyword, you have to change every place it’s named in the configuration.

Programming Hint 10: Use the “as” keyword liberally.

5.1. PASS THROUGH WIRING 63

5.1 Pass Through Wiring

Sometimes you don’t want a configuration to specify the endpoint of an interface. Instead, you need a

configuration to act as a renaming mechanism, or as a thin shim which interposes on some (but not all) of

the interfaces of a given abstraction. You don’t want the component using the shim component to know

which are interposed. This practice is very rare in TinyOS 2.0 (there isn’t a single instance of it in the core),

but it was used some times in 1.x, and so it’s here for completeness sake.

Pass through wiring is when a configuration wires two interfaces in its signature together. It must wire a

uses to a provides, and it does so with the = operator. For example, this is a configuration that does nothing

except introduce a name change on the interface:

configuration NameChangeC {

provides interface Send as SpecialSend;

uses interface Send as SubSend;

}

implementation {

SpecialSend = SubSend;

}

Listing 5.21: Using a pass–through wiring to rename an abstraction

A component that wires to NameChangeC.SpecialSend wires to whatever NameChangeC.SubSend has

been wired to.

5.1.1 Multiple Wirings, Fan-in, and Fan-out

Not all wirings are one-to-one. For example, this is part of the component CC2420TransmitC, a configura-

tion that encapsulates the transmit path of the CC2420 radio (there’s also a CC2420ReceiveC):

configuration CC2420TransmitC {

provides interface Init;

provides interface AsyncControl;

provides interface CC2420Transmit;

provides interface CSMABackoff;

provides interface RadioTimeStamping;

}

implementation {

components CC2420TransmitP;

components AlarmMultiplexC as Alarm;

Init = Alarm;

Init = CC2420TransmitP;

// further wirings elided

}

64 CHAPTER 5. CONFIGURATIONS AND WIRING

Listing 5.22: Fan–out on CC2420TransmitC’s Init

This wiring means that CC2420TransmitC.Init maps both to Alarm.Init and CC2420TransmitP.Init.

What does that mean? There certainly isn’t any analogue in C-like languages. In nesC, a multiple-wiring

like this means that when a component calls CC2420TransmitC.Init.init(), it calls both Alarm.Init.init() and

CC2420TransmitP.Init.init(). The order of the two calls is not defined.

This ability to multiply wire might seem strange. In this case, you have a single call point, CC2420TransmitC.Init.init,

which fans-out to two callees. There are also fan-ins, which are really just a fancy name for “multiple people

call the same function.” But the similarity of the names “fan-in” and “fan-out” is important, as nesC inter-

faces are bidirectional. For example, coming from C, wiring two components to RandomC.Random doesn’t

seem strange: two different components might need to generate random numbers. In this case, as Random

only has commands, all of the functions are fan-in, as there are multiple callers for a single callee, just like

a library function.

But as nesC interfaces are bidirectional. if there is fan-in on the command of an interface, then when that

component signals an event on the interface, there are multiple callees. Take, for example, the power control

interfaces, StdControl and SplitControl. StdControl is single-phase: it only has commands. SplitControl, as

its name suggests, is split-phase: the commands have completion events. In this wiring,

components A, B, C;

A.StdControl -> C;

B.StdControl -> C;

Listing 5.23: Fan–in on StdControl

Then either A or B can call StdControl to start or stop C. However, in this wiring, there are also com-

pletion events:

components A, B, C;

A.SplitControl -> C;

B.SplitControl -> C;

Listing 5.24: Fan–out and fan–in on SplitControl

Either A or B can call SplitControl.start. When C issues the SplitControl.startDone() event, though,

both of them are wired to it, so both A.SplitControl.startDone and B.SplitControl.startDone are called. The

implementation has no way of determining which called the start command.4

4There are ways to disambiguate this, through parameterized interfaces, which are covered in the next chapter.

5.1. PASS THROUGH WIRING 65

Interfaces are not a one-to-one relationship. Instead, they are an n-to-k relationship, where n is the

number of users and k is the number of providers. Any provider signaling will invoke the event handler on

all n users, and any user calling a command will invoke the command on all k providers.

Anecdote: Historically, multiple wirings come from the idea that TinyOS components can be thought

of as hardware chips. In this model, an interface is a set of pins on the chip. The term wiring comes

from this idea: connecting the pins on one chip to those of another. In hardware, though, you can easily

connect N pins together. For example, a given GPIO pin on a chip might have multiple possible triggers,

or a bus have multiple end devices that are controlled with chip select pins. It turns out that taking this

metaphor literally has several issues. When TinyOS moved to nesC, these problems were done away with.

Specifically, consider this configuration:

configuration A {

uses interface StdControl;

}

configuration B {

provides interface StdControl;

uses interface StdControl as SubControl; // Called in StdControl

}

configuration C {

provides interface StdControl;

}

A -> B.StdControl;

A -> C.StdControl;

B.SubControl -> C;

Listing 5.25: Why the metaphor of “wires” is only a metaphor

If you take the multiple wiring metaphor literally, then the wiring of B to C joins it with the wiring of

A to B and C. That is, they all form a single “wire.” The problem is that B’s call to C is the same wire as

A’s call to B. B enters an infinite recursion loop, as it calls SubControl, which calls StdControl, which calls

SubControl, and so on and so on. Therefore, nesC does not take the metaphor literally. Instead, the wirings

from one interface to another are considered separately. So the code

A -> B.StdControl;

A -> C.StdControl;

B.SubControl -> C;

Listing 5.26: How nesC handles multiple wirings

66 CHAPTER 5. CONFIGURATIONS AND WIRING

Makes it so that when A calls StdControl.start it calls B and C, and when B calls SubControl.start it calls

C.

In practice, multiple wirings allow an implementation to be independent of the number of components it

depends on. Consider, for example, MainC, which presents the abstraction of the boot sequence to software

systems:

configuration MainC {

provides interface Boot;

uses interface Init as SoftwareInit;

}

Listing 5.27: MainC

It only has two interfaces. The first, SoftwareInit, it calls when booting so that software components

which need so can be sure they’re initialized before execution begins. The second, Boot, signals an event

once the entire boot sequence is over. Many components need initialization. For example, in the very simple

application RadioCountToLeds, there are ten components wired to MainC.SoftwareInit. Rather than use

many Init interfaces and call them in some order, MainC just calls SoftwareInit once and this call forks out

to all of the components that have wired to it.5

5.2 Combine Functions

Fan-out raises an interesting question: if

call SoftwareInit.init()

Listing 5.28: Calling SoftwareInit.init()

actually calls ten different functions, then what is its return value?

nesC provides the mechanism of combine functions to specify the return value. A data type can have an

associated combine function. Because a fan-out always involves calling N functions with identical signa-

tures, the caller’s return value is the result of applying the combine function to the return values of all of the

callees. When nesC compiles the application, it autogenerates a fan-out function which applies the combine

function.
5Another approach could have been to use a parameterized interface (covered in the next chapter), but as the calls to Init are

supposed to be very self-contained, the idea is that the increased complexity wouldn’t be worth it.

5.2. COMBINE FUNCTIONS 67

For example, error t’s combine function is ecombine (defined in types/TinyError.h):

error_t ecombine(error_t e1, error_t e2) {

return (e1 == e2)? e1: FAIL;

}

Listing 5.29: The combine function for error t

If both calls return the same value, ecombine returns that value. Otherwise, as only one of them could

be SUCCESS, it returns FAIL. This combine function is bound to error t with a C attribute:

typedef uint8_t error_t __attribute__((combine(ecombine)));

Listing 5.30: Associating a combine function with a type

When asked to compile the following configuration

configuration InitExample {}

implementation {

components MainC;

components AppA, AppB;

MainC.SoftwareInit -> AppA;

MainC.SoftwareInit -> AppB;

}

Listing 5.31: Fan–out on SoftwareInit

ncc will generate something like the following code6:

error_t MainC\$SoftwareInit\$init() {

error_t result;

result = AppA\$SoftwareInit\$init();

result = ecombine(result, AppB\$SoftwareInit\$init());

return result;

}

Listing 5.32: Resulting code from fan–out on SoftwareInit

Some return values don’t have combine functions, either due to programmer oversight or the semantics

of the data type. Examples of the latter include things like data pointers: if both calls return a pointer, say,

to a packet, there isn’t a clear way to combine them into a single pointer. If your program has fan-out on a

call whose return value can’t be combined, the nesC compiler will issue a warning along the lines of
6The nesC compiler actually compiles to C, which it then passes to a native C compiler. Generally, it uses $ as the delimiter

between component, interface, and function names. Because nesC does not allow $, this allows the compiler to enforce component

encapsulation (there’s no way to call a function with a $ from within nesC and break the component boundaries).

68 CHAPTER 5. CONFIGURATIONS AND WIRING

“calls to Receive.receive in CC2420ActiveMessageP are uncombined”

or

“calls to Receive.receive in CC2420ActiveMessageP fan out, but there is no combine function fpecified

for the return value.”

Programming Hint 11: Never ignore combine warnings.

Chapter 6

Parameterized Wiring

Sometimes, a component wants to provide many instances of an interface. For example, the basic timer

implementation component HilTimerMilliC1 doesn’t provide just one timer: it needs to provide many timers.

One way it could do so is by having a long signature:

configuration HilTimerMilliC {

provides interface Timer<TMilli> as Timer0;

provides interface Timer<TMilli> as Timer1;

provides interface Timer<TMilli> as Timer2;

provides interface Timer<TMilli> as Timer3;

...

provides interface Timer<TMilli> as Timer100;

}

Listing 6.1: Timers without parameterized interfaces

While this works, it’s kind of a pain and leads to a lot of repeated code. Every instance needs to have

its own implementation. That is, there will be 100 different startPeriodic functions, even though they’re

almost completely identical. Another approach could be to have a call parameter to the Timer interface that

specifies which timer is being changed, sort of like a file descriptor in POSIX file system calls. In this case,

HilTimerMilliC would look like this

configuration HilTimerMilliC {

provides interface Timer;

}

Listing 6.2: Timers with a single interface

1See TEP 102 for details.

69

70 CHAPTER 6. PARAMETERIZED WIRING

Components that use timers would have some way of generating unique timer identifiers, and would

pass them in every call:

call Timer.startPeriodic(timerDescriptor, 1024); // Fire at 1Hz

Listing 6.3: Starting a timer with a run–time parameter

While this approach works it doesn’t lead to multiple implementations passing the parameter is gen-

erally unnecessary, in that components generally allocate some number of timers and then only use those

timers. That is, the set of timers a component uses and the size of the set are generally known at compile

time. Making the caller pass the parameter at runtime is therefore unnecessary, and could possibly introduce

bugs (e.g., if it were, due to laziness, stored in a variable).

There are other situations when a component wants to provide a large number of interfaces, such as

communication. Active messages have an 8-bit type field, which is essentially a protocol identifier. In the

Internet, the valid protocol identifiers for IP are well specified2, and many port numbers for TCP are well

established. When a node receives an IP packet with protocol identifier 6, it knows that this is a TCP packet

and dispatches it to the TCP stack. Active messages need to perform a similar function, albeit without the

standardization of IANA: a network protocol needs to be able to register to send and receive certain AM

types. Like timers, with basic interfaces there are two ways to approach this: code redundancy or run-time

parameters. That is, you could either have a configuration like this

configuration NetworkProtocolC {...}

implementation {

components NetworkProtocolP, PacketLayerC;

NetworkProtocolP.Send -> PacketLayerC.Send15;

}

Listing 6.4: Wiring to AM type 15 by name

or the network protocol code could look like this:

call Send.send(15, msg, sizeof(payload_t));

Listing 6.5: Calling AM type 15 with a compile–time parameter

Neither of these solutions is very appealing. The first leads to a lot of redundant code, wasting code

memory. Also, as the wiring is by name, it is also difficult to wire to. That is, there is no way to manipulate

constants in order to control the wiring. For example, if a sensor filter and a routing stack both wire to

2http://www.iana.org/assignments/protocol-numbers

71

Timer3, there’s no way to separate them without changing the code text of one of them to read “Timer4.”

One way to manage the namespace would be to have components leave their timers unwired and then

expect the application to resolve all of them. But this places a large burden on an application developer. For

example, a small application that builds on top of a lot of large libraries might have to wire eight different

timers. Additionally, it means that the components it includes aren’t self-contained, working abstractions:

they have remaining dependencies that an application developer needs to resolve.

The second approach is superior to the first at first glance, but it turns out to have even more significant

problems. First, in many cases the identifier is a compile-time constant. Requiring the caller to pass it as a

run-time parameter is unnecessary and is a possible source of bugs. Second, and more importantly, it pushes

identifier management into the caller. For example, let’s return to the timer example:

call Timer.startPeriodic(timerDescriptor, 1024); // Fire at 1Hz

Listing 6.6: Starting a timer with a run–time parameter

From the calling component’s perspective, it doesn’t care which timer it’s using. All it cares is that it

has its own timer. By making the identifier part of the call, this forces the module to know (and manage)

the name of the identifier. The third and largest problem, however, isn’t with calls out to other components:

it’s with calls in from other components. In Timer, for example, how does the timer service signal a fired()

event? Because the identifier is a runtime parameter, the only way is for Timer.fired() fan-out to all timers,

and have them all check the identifier.

To support abstractions that have sets of interfaces, nesC has parameterized interfaces. You’ve seen them

in a few of the earlier example signatures. A parameterized interface is essentially an array of interfaces,

and the array index is the parameter. For example, this is the signature of ActiveMessageC:

configuration ActiveMessageC {

provides {

interface Init;

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

72 CHAPTER 6. PARAMETERIZED WIRING

Listing 6.7: ActiveMessageC signature

AMSend, Receive, and Snoop are all parameterized interfaces. Their parameter is the AM type of the

message (the protocol identifier). Normally, components don’t wire directly to ActiveMessageC. Instead,

they use AMSenderC, AMReceiverC, and the other virtualized abstractions. 3 However, there are some

test applications for the basic AM abstraction, such as TestAM. The module TestAMC sends and receives

packets:

module TestAMC {

uses {

...

interface Receive;

interface AMSend;

...

}

}

Listing 6.8: Signature of TestAMC

TestAMAppC is the configuration that wires up the TestAMC module:

configuration TestAMAppC {}

implementation {

components MainC, TestAMC as App;

components ActiveMessageC;

MainC.SoftwareInit -> ActiveMessageC;

App.Receive -> ActiveMessageC.Receive[240];

App.AMSend -> ActiveMessageC.AMSend[240];

...

}

Listing 6.9: Wiring TestAMC to ActiveMessageC

Note that TestAM has to wire SoftwareInit to ActiveMessageC because it doesn’t use the standard

abstractions, which auto-wire it. This configuration means that when TestAMC calls AMSend.send, it

calls ActiveMessageC.AMSend number 240, so packets with protocol ID 240. Similarly, TestAMC receives

packets with protocol ID 240. Because these constants are specified in the configuration, they are not bound

in the module: from the module’s perspective, they don’t even exist. That is, from TestAMC’s perspective,

these two lines of code are identical:

3See TEP 116: Packet Protocols, for details.

73

TestAMC.AMSend -> ActiveMessageC.AMSend240; // Not real TinyOS code

TestAMC.AMSend -> ActiveMessageC.AMSend[240];

Listing 6.10: Wiring to a single interface versus an instance of a parameterized interface

The different lies in the component with the parameterized interface. The parameter is essentially an-

other argument in functions of that interface. In ActiveMessageC.AMSend, for example, the parameter is

an argument passed to it in calls to send() and which it must pass in signals of sendDone(). But the parame-

terized interface gives you two key things. First, it automatically fills in this parameter when TestAMC calls

send (nesC generates a stub function to do so, and inlining makes the cost negligible). Second, it automat-

ically dispatches on the parameter when ActiveMessageC signals sendDone (nesC generates a switch table

based on the identifier).

In reality, ActiveMessageC is a configuration that encapsulates a particular chip, such as CC2420ActiveMessageC,

which encapsulates that chip’s implementation, such as CC2420ActiveMessageP:

module CC2420ActiveMessageP {

provides {

interface AMSend[am_id_t id];

...

}

}

Listing 6.11: A possible module underneath ActiveMessageC

Within CC2420ActiveMessageP, this is what the parameterized interface looks like:

command error_t AMSend.send[am_id_t id](am_addr_t addr, message_t* msg, uint8_t len) {

cc2420_header_t* header = getHeader(msg);

header->type = id;

...

}

Listing 6.12: Parameterized interface syntax

The interface parameter precedes the function argument list, and the implementation can treat it like any

other argument. Basically, it is a function argument that the nesC compiler fills in when components are

composed. When CC2420ActiveMessageP wants to signal sendDone, it pulls the protocol ID back out of

the packet and uses that as the interface parameter:

event void SubSend.sendDone(message_t* msg, error_t result) {

signal AMSend.sendDone[call AMPacket.type(msg)](msg, result);

}

74 CHAPTER 6. PARAMETERIZED WIRING

Listing 6.13: Dispatching on a parameterized interface

If the AM type of the packet is 240, then the dispatch code nesC generates will cause this line of code to

signal the sendDone() wired to ActiveMessageC.AMSend[240], which in this case is TestAMC.AMSend.sendDone.

CC2420ActiveMessageP.Receive looks similar to sendDone. The AM implementation receives a packet

from a lower level component and dispatches on the AM type to deliver it to the correct component. Depend-

ing on whether the packet is destined to the local node, it signals either Receive.receive or Snoop.receive:

event message_t* SubReceive.receive(message_t* msg, void* payload, uint8_t len) {

if (call AMPacket.isForMe(msg)) {

return signal Receive.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

}

else {

return signal Snoop.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

}

}

Listing 6.14: How active message implementations decide on whether to signal to Receive or Snoop

The subtraction of CC2420 SIZE is because the lower layer has reported the entire size of the packet,

while to layers above AM the size of the packet is only the data payload (the entire size minus the size of

headers and footers, that is, CC2420 SIZE).

Parameterized interfaces get the best of both worlds. Unlike the name-based approach (e.g. Send240)

described above, there is a single implementation of the call. Additionally, since the parameter is a value,

unlike a name it can be configured and set. E.g., a component can do something like this:

\#ifndef ROUTING_TYPE

\#define ROUTING_TYPE 201

\#endif

RouterP.AMSend -> PacketSenderC.AMSend[ROUTING_TYPE];

Listing 6.15: Defining a parameter

It also avoids the pitfalls of the runtime parameter approach. Because the constant is set at compile-time,

nesC can automatically fill it in and dispatch based on it, simplifying the code and improving the efficiency

of outgoing function invocations.

Note that you can also wire entire parameterized interfaces:

configuration CC2420ActiveMessageC {

provides interface AMSend[am_id_t id];

6.1. DEFAULTS 75

} {...}

configuration ActiveMessageC {

provides interface AMSend[am_id_t id];

}

implementation {

components CC2420ActiveMessageC;

AMSend = CC2420ActiveMessageC;

}

Listing 6.16: Wiring full parameterized interface sets

Programming Hint 12: If a function has an argument which is one of a small number of constants, consider

defining it as a few separate functions to prevent bugs. If the functions of an interface all have an argument

that’s almost always a constant within a large range, consider using a parameterized interface to save code

space. If the functions of an interface all have an argument that’s a constant within a large range but only

certain valid values, implement it as a parameterized interface but expose it as individual interfaces, to both

minimize code size and prevent bugs.

Parameterized interfaces aren’t limited to a single parameter. For example, this is valid code:

provides interface Timer[uint8_t x][uint8_t y];

In practice, however, this leads to large and inefficienct code (nested swich statements), and so compo-

nents rarely (if ever) use it.

6.1 Defaults

Because a module’s call points are resolved in configurations, a common compile error in nesC is to forget

to wire something. The equivalent in C is to forget to include a library in the link path, and in Java it’s

to include a jar. Usually, a dangling wire represents a bug in the program. With parameterized interfaces,

however, often they don’t.

Take, for example, the Receive interface of ActiveMessageC. Most applications receive a few AM types,

maybe 15 at most: they don’t respond to or use every protocol ever developed. However, there’s these call

in CC2420ActiveMessageP:

return signal Receive.receive[call AMPacket.type(msg)](msg, payload, len - CC2420_SIZE);

Listing 6.17: Signaling Receive.receive

76 CHAPTER 6. PARAMETERIZED WIRING

On one hand, if all of the nodes in the network run the same executable, it’s possible that none of them

will ever send a packet of, say, AM type 144. However, if there are other nodes nearby, or if packets are

corrupted in memory before being sent (or after being received), then it’s very possible that a node which

doesn’t care about protocol 144 will receive a packet of this type. Therefore nesC expects the receive event

to have a handler: it needs to execute a function when this happens. But the application doesn’t wire to

Receive[144], and making a developer wire to all of the unwired instances is unreasonable, especially as

they’re all null functions (in the case of Receive.receive, the handler just returns the packet passed to it).

nesC therefore has default handlers. A default handler is an implementation of a function that’s used

if no implementation is wired in. If a component wires to the interface, then that implementation is used.

Otherwise, the call (or signal) goes to the default handler. For example, CC2420ActiveMessageP has the

following default handlers:

default event message_t* Receive.receive[am_id_t id](message_t* msg, void* payload, uint8_t len) {

return msg;

}

default event message_t* Snoop.receive[am_id_t id](message_t* msg, void* payload, uint8_t len) {

return msg;

}

default event void AMSend.sendDone[uint8_t id](message_t* msg, error_t err) {

return;

}

Listing 6.18: Default events in an active message implementation

In the TestAM application, TestAMAppC wires TestAMC to ActiveMessageC.Receive[240]. There-

fore, on the telos or micaz platform, when the radio receives a packet of AM type 240, it signals Tes-

tAMC.Receive.receive(). Since the application doesn’t use any other protocols, when it receives an active

message of any other type it signals CC2420ActiveMessageP’s default handler.

Default handlers are dangerous, in that using them improperly can cause your code to stop working.

For example, while CC2420ActiveMessageP has a default handler for Send.sendDone, TestAMC does not

have a default handler for Send.send. Otherwise, you could forget to wire TestAMC.Send and the program

would compile fine. That is, defaults should only be used when an interface is not necessary for the proper

execution of a component. This almost always involves parameterized interfaces, as it’s rare that all of the

parameter values are used.

6.2. UNIQUE() AND UNIQUECOUNT() 77

6.2 unique() and uniqueCount()

Parameterized interfaces were originally intended to support abstractions like active messaging. It turns out,

however, that they are much more powerful than that. If you look at the structure of most basic TinyOS

2.0 abstractions, there’s a parameterized interface in there somewhere. The ability to specify compile-time

constants outside of modules, combined with dispatch, means that we can use parameterized interfaces to

distinguish between many different callers. A component can provide a service through a parameterized

interface, and every client that needs to use the service can wire to a different parameter ID. For split-phase

calls, this means that you can avoid fan-out on the completion event. Consider these two examples:

components RouterC, SourceAC, SourceBC;

SourceAC.Send -> RouterC;

SourceBC.Send -> RouterC;

Listing 6.19: Single–wiring a Send

versus

components RouterC, SourceAC, SourceBC;

SourceAC.Send -> RouterC.Send[0];

SourceBC.Send -> RouterC.Send[1];

Listing 6.20: Wiring to a parameterized Send

In both cases, SourceAC and SourceBC can call Send.send. In the first case, when RouterC signals

Send.sendDone, that signal will fan-out to both SourceAC and SourceBC, who will have to determine —

by examining the message pointer, or internal state variables — whether the event is intended for them or

someone else. In the second case, however, if RouterC keeps the parameter ID passed in the call to Send,

then it can signal the appropriate completion event. E.g., SourceBC calls Send.send, RouterC stores the ID

1, and when it signals sendDone it signals it on Send.sendDone[1](...).

Let’s return to the timer example, where this abstraction is particularly powerful. The timer component

HilTimerMilliC has the following signature:

configuration HilTimerMilliC {

provides interface Timer<TMilli>[uint8_t];

}

Listing 6.21: Partial HilTimerMilliC signature

78 CHAPTER 6. PARAMETERIZED WIRING

Because Timer is parameterized, many different components can wire to separate interface instances.

When a component calls Timer.startPeriodic, nesC fills in the parameter ID, which the timer implementation

can use to keep track of which timer is being told to start. Similarly, the timer implementation can signal

Timer.fired on specific timer instances.

For things such as network protocols, where the parameter to an interface is a basis for communica-

tion and interoperability, the actual parameter used is important. For example, if you have two different

compilations of the same application, but one wires a protocol with

RouterC.Send -> ActiveMessageC.Send[210];

Listing 6.22: Wiring to Send instance 210

while the other wires it with

RouterC.Send -> ActiveMessageC.Send[211];

Listing 6.23: Wiring to Send instance 211

then they will not be able to communicate. In these cases, the parameter used is shared across nodes,

and so needs to be globally consistent. Similarly, if you had two protocols wire to the same AM type, then

this is a basic conflict that an application developer is going to have to resolve. Generally, protocols use

named constants (enums) to avoid these kinds of typos.

With timers and the Send client example above, however, there is no such restriction. The parameter

represents a unique client ID, rather than a piece of shared data. A client doesn’t care which timer it wires

to, as long as it wires to one that nobody else does. For this case, rather than force clients to guess Ids and

hope there is no collision, nesC provides a special compile-time function, unique().

It is a compile-time function because it is resolved at compile time. When nesC compiles an application,

it transforms all calls to unique() into an integer identifier. The unique function takes a string key as an

argument, and promises that every instance of the function with the same key will return a unique value.

Two calls to unique with different keys can return the same value. So if two components, AppOneC and

AppTwoC, both want timers, they could do this

AppOneC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

AppTwoC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

Listing 6.24: Generating a unique parameter for the HilTimerMilliC’s Timer interface

6.2. UNIQUE() AND UNIQUECOUNT() 79

and be assured that they will have distinct timer instances.4 If there are n calls to unique, then the unique

values will be in the range of 0 – (n-1).

The combination of parameterized interfaces and the unique function allow services to provide a limited

form of isolation between their clients (i.e., no fan-out on completion events). For example, in TinyOS 2.0,

there are several situations when more than one component wants to access a shared resource. For timing

reasons, fully virtualizing the resource (i.e., using a request queue) isn’t feasible. Instead, the components

need to be able to request the resource and know when it has been granted to them. TinyOS provides this

mechanism through the Resource interface:

interface Resource {

async command error_t request();

async command error_t immediateRequest();

event void granted();

async command void release();

async command uint8_t getId();

}

Listing 6.25: The Resource Interface

A component can request the resource either through request() or requestImmediate(). The latter returns

SUCCESS only if the user was able to acquire the resource at that time and otherwise does nothing (it is a

single-phase call). The request() call, in contrast, is split-phase, with the granted indicating that it is safe to

use the resource.

Resource is for when multiple clients need to share the component. So TinyOS has Arbiters, which are

components that institute a sharing policy between different clients. An arbiter providers a parameterized

Resource interface:

configuration FcfsArbiterC {

provides interface Resource[uint8_t id];

...

}

Listing 6.26: The First–Come–First–Served arbiter

Each client wires to a unique instance of the Resource interface, and the arbiter uses the client Ids to

keep track of who has the resource.

4In practice, clients rarely call unique() directly. Instead, these calls are encapsulated inside generic components, which are

discussed in the next chapter. One common problem with unique() encountered in TinyOS 1.x is that a mistyped key will generate

a non-unique value and possibly cause very strange behavior.

80 CHAPTER 6. PARAMETERIZED WIRING

In these examples – Timer and Resource – there is an additional factor to consider: each client requires

the component to store some amount of state. For example, arbiters have to keep track of which clients have

pending requests, and timer systems have to keep track of the period of each timer, how long until it fires,

and whether it’s active. Because the calls to unique define the set of valid client Ids, nesC has a second

compile-time function, uniqueCount(). This function also takes a string key. If there are n calls to unique

with a given key (returning values 0...n-1), then uniqueCount returns n, and this is resolved at compile-time.

Being able to count the number of unique clients allows a component to allocate the right amount of state

to support them. Early versions of nesC didn’t have the uniqueCount function: components were forced to

allocate a fixed amount of state. If there were more clients than the state could support, one or more would

fail at runtime. If there were fewer clients than the state could support, then there was wasted RAM. Because

a component can count the number of clients and know the set of client Ids that will be used, it can promise

that each client will be able to work and use the minimum amount of RAM needed. Returning to the timer

example from above:

AppOneC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

AppTwoC.Timer -> HilTimerMilliC.Timer[unique("Timer")];

Listing 6.27: Wiring to HilTimerMilliC with unique parameters

and HilTimerMilliC could allocate state for each client:

timer_t timers[uniqueCount("Timer")];

Listing 6.28: Counting how many clients have wired to HilTimerMilliC

Assuming the above two were the only timers, then HilTimerMilliC would allocate two timer struc-

tures. If we assume that AppOneC.Timer was assigned ID 0 and AppTwoC.Timer was assigned ID 1, then

HilTimerMilliC can directly use the parameters as an index into the state array. This isn’t how HilTimer-

MilliC works: it’s actually a bit more complicated, as it uses generic components, which the next chapter

discusses.

Chapter 7

Generic Components

Generic components (and typed interfaces) are the biggest addition in nesC 1.2. They are, for the most part,

what lead TinyOS 2.0 to be significantly different than 1.x. Normally, components are singletons. That is,

a component’s name is a single entity in a global namespace. When two different configurations reference

MainC, they are both referencing the same piece of code and state. In the world of C++ and Java, a singleton

is similar (but not identical) to a static class.

Generic components are not singletons. They can be instantiated within a configuration. Take, for exam-

ple, something like a bit vector. Many components need and use bit vectors. By having a single component

that provides this abstraction, we prevent bugs by reducing code repetition. If you only have singletons,

then every bit vector has to be a different component, each of which has a separate implementation. By

making a bit vector a generic component, we can write it once and use it many times. This is the signature

of BitVectorC, which we saw in an earlier chapter:

generic module BitVectorC(uint16_t max_bits) {

provides interface Init;

provides interface BitVector;

}

Listing 7.1: The BitVectorC generic module

A configuration instantiates a generic component with the keyword new. This is constrast to singleton

components, which are just named. Instantiation is private to the configuration, so every time new is used an

instance is created. Instantiating modules copies their code. Therefore, while generic modules can simplify

the source code of an application and prevent bugs from code copying, they do not inherently reduce the

size of the final executable.

For example, the code

81

82 CHAPTER 7. GENERIC COMPONENTS

configuration ExampleVectorC {}

implementation {

components new BitVectorC(10);

}

Listing 7.2: Instantiating a BitVectorC

creates a BitVectorC of size 10. This creates a copy of the BitVectorC code where every instance of the

argument max bits is replaced by the constant 10.

Generic components use a code-copying approach for two reasons: simplicity and types. If generic

modules did not use a code-copying approach, then there would be a single copy of the code that works for

all instances of the component. This is difficult when a generic component can take a type as a argument, as

allocation size, offsets, and other considerations can make a truly single copy unfeasible (C++ templates, for

example, create a single copy of code for each template type). Code sharing within identical types requires

adding an argument, such as a pointer, to all of the functions. This argument indicates which instance

is executing. Additionally, all variable accesses would have to offset from this pointer. In essence, the

execution time and costs of functions could change significantly (offsets rather than constant accesses). In

order to provide simple, easy to understand and run-time efficient components, nesC uses a code-copying

approach, sacrificing possible reductions in code size.

A generic component is private to the configuration that instantiates it, as no other configuration can

name it. However, the instantiator can make the generic accessible to other components by exporting its

interfaces. If the exporting configuration is a singleton, then it can provide a globally accessible name to

the component within (the section below on the TinyOS 2.0 timer system describes an example of this

approach).

Code-copying applies to configurations as well as modules. One (reasonably accurate) way to think

of a generic component is that it literally creates a copy of the source file. In the case of modules, this is

executable code and variables that will be in the final application. In the case of configurations, however, this

copying can instantiate other components and create wirings. A generic module defines a piece of repeatable

executable logic: a generic configuration defines a repeatable pattern of composition between components.

Generic components differ in syntax from singleton components by having an argument list. Generics

with no arguments have an empty list, just like a function. For example:

configuration TimerMilliImplC {...}

generic configuration TimerMilliC() {...}

module Msp430ClockP {...}

7.1. GENERIC MODULES 83

generic module VirtualizeTimerC(typedef precision_tag, int max_timers) {...}

Listing 7.3: Generic Component Syntax

Both generics have a argument list. TimerMilliC takes no arguments, however, so the list is empty.

VirtualizeTimerC, in contrast, takes two arguments, a type (used to check precision) and a count of the

number of timers it should provide. Generic components support three types for arguments:

1. Types: these can be arguments to typed interfaces

2. Numeric constants

3. Constant strings

7.1 Generic Modules

BitVectorC is a generic module with a single argument, a uint16 t. If an argument is a type, then it is

declared with the typedef keyword. For example, HilTimerMilliC is often built on top of a single timer.

Components in the timer library (lib/timer) virtualize the single underlying timer into many timers. The

timer interface, however, has a type as an argument to ensure that the precision requirements are met. This

means that a component which virtualizes timers must have this type passed into it. This is the signature of

VirtualizeTimerC:

generic module VirtualizeTimerC(typedef precision_tag, int max_timers) {

provides interface Timer<precision_tag> as Timer[uint8_t num];

uses interface Timer<precision_tag> as TimerFrom;

}

Listing 7.4: The VirtualizeTimerC generic module

It is a generic module with two arguments. The first argument is the timer precision tag, which is a

type and therefore has a type of typedef. In the case of HilTimerMilliC, this is TMilli. This precision tag

provides additional type checking for an interface. Rather than have separate Timer interfaces for different

time fidelities, TinyOS uses a single Timer interface with the fidelity as an argument. The argument itself is

an empty struct that is never allocated; because it is a struct, it is very unlikely that there will be inadvertent

implicit casts.

The second argument is the number of virtualized timers the component provides. This is usually com-

puted with a uniqueCount(). Because VirtualizeTimerC is a module, instantiating one will allocate the

necessary state. As generic modules create code copies, the lines

84 CHAPTER 7. GENERIC COMPONENTS

components new VirtualizeTimerC(TMilli, 3) as TimerA;

components new VirtualizeTimerC(TMilli, 4) as TimerB;

Listing 7.5: Instantiating two VirtualizeTimerC components

generate two copies of the VirtualizeTimerC’s code, one of which allocates three timers, the other of

which allocates four. Again, nesC does this because different instances of VirtualizeTimerC might have

different types and different constants. For example, the max timers argument can be used in loops, say,

when checking if timers are pending. Rather than go for an object-oriented (or C++ template-like) approach

of passing data pointers around, nesC just creates copies of the code. Because all of these copies come from

a single source file, they are all consistent and don’t create maintenance problems in the way that multiple

source files can.

7.2 HilTimerMilliC: An Example Use of Generic Components

Implementing a solid and efficient timer subsystem is very difficult. T2 makes the task simpler by having

a library of reusable components (lib/timer) that provide many of the needed pieces of functionality.

Each supported microcontroller provides a timer system by layering these library components on top of

some low-level hardware abstractions. Because many microcontrollers have several clock sources, most

of these library components are generic components, so that a platform can readily provide several timer

systems of different fidelities.

For example, this is the full code for HilTimerMilliC on the micaZ platform. It is defined in platfor-

m/mica, which contains common abstractions across the entire mica family (e.g., mica2, mica2dot, micaz):

\#include "Timer.h"

configuration HilTimerMilliC {

provides interface Init;

provides interface Timer<TMilli> as TimerMilli[uint8_t num];

provides interface LocalTime<TMilli>;

}

implementation {

enum {

TIMER_COUNT = uniqueCount(UQ_TIMER_MILLI)

};

components AlarmCounterMilliP, new AlarmToTimerC(TMilli),

new VirtualizeTimerC(TMilli, TIMER_COUNT),

new CounterToLocalTimeC(TMilli);

7.2. HILTIMERMILLIC: AN EXAMPLE USE OF GENERIC COMPONENTS 85

Init = AlarmCounterMilliP;

TimerMilli = VirtualizeTimerC;

VirtualizeTimerC.TimerFrom -> AlarmToTimerC;

AlarmToTimerC.Alarm -> AlarmCounterMilliP;

LocalTime = CounterToLocalTimeC;

CounterToLocalTimeC.Counter -> AlarmCounterMilliP;

}

Listing 7.6: The full code of HilTimerMilliC

The only singleton component in this configuration is AlarmCounterMilliP, which is an abstraction of

a low-level microcontroller timer. HilTimerMilliC uses three generic components on top of AlarmCounter-

MilliP to provide a full timer system:

• CounterToLocalTimerC turns a hardware counter into a local timebase;

• AlarmToTimerC turns an Alarm interface, which provides an async one-shot timer, into a Timer

interface, which provides a sync timer with greater functionality;

• VirtualizeTimerC vitualizes a single Timer into many Timers, specified by an argument to the com-

ponent.

All of the generics have the type TMilli as one of their arguments. These type arguments make sure

that timer fidelities are not accidentally changed. E.g., VirtualizeTimerC takes a single timer of fidelity

precision tag and virtualizes it into timer count timers of precision tag. The timer library has components

that translate between precisions.

UQ TIMER MILLI is a #define (from Timer.h) for the string “HilTimerMilliC.Timer”. This is a com-

mon approach in T2. Using a #define makes it harder to run into bugs caused by errors in the string: chances

are that a typo in the define will be a compile time error. This is generally good practice for components that

depend on unique strings.

Programming Hint 13: If a component depends on unique, then #define a string to use in a header file, to

prevent bugs from string typos.

The first thing HilTimerMilliC does is define an enum for the number of timers being used. It assumes

that each timer has wired to TimerMilli with a call to unique(UQ TIMER MILLI). It takes an async, hard-

ware timer — AlarmCounterMilliP — and turns it into a virtualized timer. It does this with three steps. The

first step turns the Alarm (the async timer) into a Timer, with the generic component AlarmToTimerC:

86 CHAPTER 7. GENERIC COMPONENTS

AlarmToTimerC.Alarm -> AlarmCounterMilliP;

Listing 7.7: Turning an Alarm into a Timer

The second step virtualizes a single timer into many timers:

VirtualizeTimerC.TimerFrom -> AlarmToTimerC;

Listing 7.8: Virtualizing a Timer

It then exports the parameterized timer interface:

TimerMilli = VirtualizeTimerC;

Listing 7.9: Exporting the virtualized Timer interface

Additionally, some aspects of the timer system require being able to access a time base, for example, to

specify when in the future a timer fires. So HilTimerMilliC takes a hardware counter and turns it into a local

time component,

CounterToLocalTimeC.Counter -> AlarmCounterMilliP;

Listing 7.10: Wiring to a counter for a time base

then exports the interface:

LocalTime = CounterToLocalTimeC;

Listing 7.11: Exporting the LocalTime interface

Many of the components in the timer library are generics because a platform might need to provide

a wide range of timers. For example, depending on the number of counters, compare registers, and their

width, a platform might provide millisecond, microsecond, and 32kHz timers. The variants of the MSP430

chip family that some platforms use, for example, can easily provide millisecond and 32kHz timers with a

very low interrupt load: their compare registers are 16 bits, so even at 32kHz they only fire one interrupt

every two seconds.

Generic modules work very well for abstractions that have to allocate per-client state, such as timers or

resource arbiters. A generic module allows you to specify the size – the number of clients – in the config-

uration that instantiates the module, rather than within the module itself. For example, if VirtualizeTimerC

were not a generic, then inside its code there would have to be a uniqueCount() with the proper key.

7.3. GENERIC CONFIGURATIONS 87

Unlike standard components, generics can only be named by the configuration that instantiates them.

For example, in the case of HilTimerMilliC, no other component can wire to the VirtualizeTimerC that it

instantiates. The generic is private to HilTimerMilliC. The only way it can be made accessible is to export

its interfaces (which HilTimerMilliC does). This is how you can make an instance that many components

can wire to. You create a singleton by writing a configuration with the identical signature and just exporting

all of the interfaces. For example, let’s say you needed a bit vector to keep track of which system services

are running or not. You want many components to be able to access this vector, but BitVectorC is a generic.

So you write a component like this:

configuration SystemServiceVectorC {

provides interface BitVector;

}

implementation {

components MainC, new BitVectorC(uniqueCount(UQ_SYSTEM_SERVICE));

MainC.SoftwareInit -> BitVectorC;

BitVector = BitVectorC;

}

Listing 7.12: The fictional component SystemServiceVectorC

Now many components can refer to this particular bit vector. While you can make a singleton out of a

generic by instantiating it within one, the opposite is not true: a component is either instantiable or not.

7.3 Generic Configurations

Generic modules are a way to reuse code and separate common abstractions into well-tested building blocks

(there only needs to be one FIFO queue implementation, for example). nesC also has generic configurations,

which are a very powerful tool for building TinyOS abstractions and services. However, just as configura-

tions are harder for a novice programmer to understand than modules, generic configurations are a bit more

challenging than generic modules.

The best way to describe what role a generic configuration can play in a software design is to start from

first principles:

A module is a component that contains executable code; A configuration defines relationships between

components to form a higher-level abstraction; A generic module is reusable piece of executable code;

therefore, A generic configuration is a reusable set of relationships that form a higher-level abstraction.

Several examples in this book have mentioned and described HilTimerMilliC. But if you look at TinyOS

code, there is only one component that references it. Although it is a very important component, programs

88 CHAPTER 7. GENERIC COMPONENTS

never directly name it. It is the core part of the timer service, but applications that need timers instantiate a

generic component named TimerMilliC.

Before delving into generic configurations, however, let’s consider what code looks like without them.

Let’s say we have HilTimerMilliC, and nothing more. Many components need timers; HilTimerMilliC

enables this through its parameterized interface. Remember that HilTimerMilliC encapsulates an instance

of VirtualizeTimerC, whose size parameter is a call to unique(UQ TIMER MILLI). This means that if a

component AppP needs a timer, then its configuration AppC must wire it like this:

configuration AppP {...}

implementation {

components AppP, HilTimerMilliC;

AppP.Timer -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

}

Listing 7.13: Wiring directly to HilTimerMilliC

Now, let’s say that AppP actually needs three timers. The code would look like this:

configuration AppP {...}

implementation {

components AppP, HilTimerMilliC;

AppP.Timer1 -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

AppP.Timer2 -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

AppP.Timer3 -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

}

Listing 7.14: Wiring directly to HilTimerMilliC three times

This approach can work fine: it’s how TimerC in TinyOS 1.x works. But it does have some issues.

First, there are references to UQ TIMER MILLI is sprinkled throughout many components in the system:

changing the identifier used is not really possible. This is especially true because a call to unique() with the

incorrect (but valid) parameter will not return an error. For example, if a component did this

AppP.Timer1 -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MICRO)];

Listing 7.15: A buggy wiring to HilTimerMilliC

by accident, then there will be two components wiring to the same instance of Timer and the program

will probably exhibit really troublesome behavior. The issue is that a detail about the internal implementation

of the timer system — the key for unique that it uses — has to be exposed to other components. Usually, all

a component wants to do is allocate a new timer. It doesn’t care — and shouldn’t have to care — about how

it is implemented.

7.4. EXAMPLES 89

Generic configurations simplify this by defining a wiring pattern that can be instantiated. For example,

all of above users of timer just want to wire to a millisecond timer; they shouldn’t have to worry about

unique keys, which provide details of the HilTimerMilliC implementation and are an easy source of bugs.

The basic wiring pattern is this:

AppP.Timer1 -> HilTimerMilliC.TimerMilli[unique(UQ_TIMER_MILLI)];

Listing 7.16: The wiring pattern to HilTimerMilliC

The next section describes how TimerMilliC codifies this pattern to simplify using timers. It turns out

that generic configurations have a much broader (and more powerful) set of uses than simple unique key

management, and the next section covers some of these as well.

7.4 Examples

Because generic configurations are a challenging concept, we present four examples of their use for basic

abstractions in the TinyOS core. The examples increase in complexity.

7.4.1 TimerMilliC

The standard millisecond timer abstraction, TimerMilliC, provides this abstraction. TimerMilliC is a generic

configuration that provides a single Timer interface. Its implementation wires this interface to an instance of

the underlying parameterized Timer interface using the right unique key. This means that unique() is called

in only one file; as long as all components allocate timers with TimerMilliC, there is no chance of a key

match mistake. TimerMilliC’s implementation is very simple:

generic configuration TimerMilliC() {

provides interface Timer<TMilli>;

}

implementation {

components TimerMilliP;

Timer = TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)];

}

Listing 7.17: The TimerMilliC generic configuration

TimerMilliP is a singleton configuration that auto-wires HilTimerMilliC to the boot sequence and ex-

ports HilTimerMilliC’s parameterized interface:

90 CHAPTER 7. GENERIC COMPONENTS

configuration TimerMilliP {

provides interface Timer<TMilli> as TimerMilli[uint8_t id];

}

implementation {

components HilTimerMilliC, MainC;

MainC.SoftwareInit -> HilTimerMilliC;

TimerMilli = HilTimerMilliC;

}

Listing 7.18: TimerMilliP auto–wires HilTimerMilliC to Main.SoftwareInit

TimerMilliC encapsulates a wiring pattern — wiring to the timer service with a call to unique — for

other components to use. When a component instantiates a TimerMilliC, it creates a copy of the TimerMilliC

code, which includes a call to unique(UQ TIMER MILLI). The line of code

components X, new TimerMilliC();

X.Timer -> TimerMilliC;

Listing 7.19: Instantiating a TimerMilliC

is essentially this:

components X, TimerMilliP;

X.Timer -> TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)];

Listing 7.20: Expanding a TimerMilliC Instantiation

TimerMilliP is itself a configuration, which wires to HilTimerMilliC, which is a configuration. When

a component calls Timer.start() on a TimerMilliC, the actual function it invokes is Timer.start() on Virtual-

izeTimerC. Let’s step through the complete wiring path for an application that creates a timer. BlinkAppC

wires the BlinkC module to its three timers:

configuration BlinkAppC{}

implementation {

components MainC, BlinkC, LedsC;

components new TimerMilliC() as Timer0;

components new TimerMilliC() as Timer1;

components new TimerMilliC() as Timer2;

BlinkC -> MainC.Boot;

MainC.SoftwareInit -> LedsC;

BlinkC.Timer0 -> Timer0;

BlinkC.Timer1 -> Timer1;

BlinkC.Timer2 -> Timer2;

BlinkC.Leds -> LedsC;

}

7.4. EXAMPLES 91

Listing 7.21: The Blink application

Wiring BlinkC.Timer0 to Timer0 establishes this wiring chain (the key to unique, UQ TIMER MILLI,

is elided for readability):

BlinkC.Timer0 -> Timer0.Timer

Timer0.Timer = TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)]

TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)] = HilTimerMilliC[unique(UQ_TIMER_MILLI)]

HilTimerMilliC[unique(UQ_TIMER_MILLI)] = VirtualizeTimerC.Timer[unique(UQ_TIMER_MILLI)]

Listing 7.22: The full module–to–module wiring chain in Blink (BlinkC to VirtualizeTimerC)

BlinkC and VirtualizeTimerC are the two modules; the intervening components are all configurations.

When nesC compiles this code, all of the intermediate layers will be stripped away, and BlinkC.Timer0.start

will be a direct function call on VirtualizeTimerC.Timer[...].start.

Many of TinyOS’s basic services use this pattern of a generic configuration to managing a keyspace for

a parameterized interface. For example, one of the non-volatile storage abstractions in TinyOS is BlockStor-

ageC (covered in TEP 103). This abstraction is intended for reading and writing large objects in a random

access fashion. This abstraction provides the BlockRead and BlockWrite interfaces. The abstraction sup-

ports there being multiple readers and writers with a similar pattern to what Timer uses, although unlike

Timer only one read or write can be outstanding at any time. The underlying implementation therefore

keeps track of who’s outstanding and enqueues other requests.

7.4.2 AMSenderC

TimerMilliC is reasonably simple: all it really does is encapsulate a wiring with unique() in order to make

sure there aren’t client collisions and in order to simplify wiring. Because HilTimerMilliC has to know the

state of all of the outstanding timers in order to do its job well, it provides a virtualized abstraction, which

TimerMilliC can just export.

Active messages are slightly different. The basic platform active message component, ActiveMessageC,

provides AMSend, parameterized by the AM id. However, ActiveMessageC can only have a single packet

outstanding at any time. If it is already sending a packet and a component calls SendAM.send, ActiveMes-

sageC returns FAIL or EBUSY. From the perspective of a caller, this is a bit of a pain. If it wants to send the

packet, it has to wait until the radio is free, but doesn’t have a very easy way of figuring out when this will

occur.

92 CHAPTER 7. GENERIC COMPONENTS

TinyOS 1.x had a global (not parameterized) sendDone event, which the radio would signal whenever

it finished sending any packet. That way, if a component tried to send and received a FAIL, it could try to

resent when it handled the sendDone event. This mostly works, except that if multiple components wire

to sendDone, then the fan-out determines the priority of the send requests. E.g., if a hog of a component

handles sendDone and happens to be first in the fan-out, it will always get first dibs and will monopolize the

radio.

T2 solves this problem through the AMSender component, which is a generic configuration. AMSender

is a virtualized abstraction: every instance of AMSender acts like ActiveMessageC. That is, each AMSender

can handle a single outgoing packet. This means that each component that wires to an AMSender can act

independently of the other components, and not worry about fan-out scheduling. The one-deep queue of

ActiveMessageC is replaced by N one-deep queues, one for each of the N clients.

Each AMSenderC having its own one-deep queue is not sufficient. There’s also the question of what

order the senders get to send their packets. Under the covers, what the active message layer does is maintain

an array of N pending packets, where N is the number of AMSenderC components. Each AMSenderC is

a client of the active message sending abstraction, and so has a client ID that indexes into this array. The

implementation keeps track of the last client that was able to send a packet, and makes sure that everyone

else waiting gets a chance before that client does again.

Accomplishing this is a little tricker than TimerMilliC, because a request to send has a few parameters.

With Timer, those parameters (period, single-shot vs. repeat) are state that the timer implementation has

to keep track of in the first place. With the AMSenderC, it’s a bit different: those parameters just need

to be stored until the call to the underlying ActiveMessageC. The send queue could just store all of these

parameters, that uses up 4 extra bytes of RAM per entry (2 for the destination, 1 for the AM type, and 1 for

the length).

It turns out that the Packet and AMPacket interfaces have operations exactly for this situation. They

allow a component to get and set packet fields. For example, a component can call Packet.setLength to

set the length field and recover it with Packet.length. For components that just need basic send or receive

abstractions , they can just use AMSend or Receive. The Packet interface, though, allows data structures

such as queues to store temporary state within the packet and then recover it when it’s time to actually send

so it can be passed as parameters. This means that the AM send queue with n clients allocates a total of (2n

+1) bytes of state, as pointers on microcontrollers are usually 2 bytes (on the intelmote2, though, they’re

four bytes, so it allocates 4n+1).

This means that the AMSenderC abstraction needs to do the following things:

7.4. EXAMPLES 93

1. Provide an AMSend interface

2. Store the AMSend.send parameters before putting a packet on the queue

3. Statically allocate a single private queue entry

4. Store a send request packet in the queue entry when it’s not full

5. When it’s actually time to send the packet, reconstitute the send parameters and call ActiveMessageC

What makes this abstraction more tricky is that there are two keyspaces. ActiveMessageC provides

AMSend based on the AM type keyspace. The send queue, in contrast, has a client ID keyspace for keeping

track of which AMSenderC is sending. Because the queue needs to be able to send any AM type, it uses

a parameterized AMSend and directly wires to ActiveMessageC.AMSend. So the overall structure goes

something like this:

1. Component calls AMSenderC.AMSend.send

2. This calls AMSenderP, which stores the length, AM id, and destination in the packet

3. AMSenderP is a client of AMSendQueueP and call Send.send with its client ID

4. AMSendQueueP checks that the queue entry is free and puts the packet into it.

5. Some time later, AMSendQueueP pulls the packet off the queue and calls AMSend.send on Ac-

tiveMessageC with the parameters that AMSenderP stored.

6. When ActiveMessageC signals AMSend.sendDone, AMSendQueueP signals Send.sendDone to AM-

SenderP, which signals AMSend.sendDone to the original calling component.

This is the code for AMSenderC:

generic configuration AMSenderC(am_id_t AMId) {

provides {

interface AMSend;

interface Packet;

interface AMPacket;

interface PacketAcknowledgements as Acks;

}

}

implementation {

components new AMQueueEntryP(AMId) as AMQueueEntryP;

94 CHAPTER 7. GENERIC COMPONENTS

components AMQueueP, ActiveMessageC;

AMQueueEntryP.Send -> AMQueueP.Send[unique(UQ_AMQUEUE_SEND)];

AMQueueEntryP.AMPacket -> ActiveMessageC;

AMSend = AMQueueEntryP;

Packet = ActiveMessageC;

AMPacket = ActiveMessageC;

Acks = ActiveMessageC;

}

Listing 7.23: The AMSenderC generic configuration

A send queue entry is just responsible for storing send information in a packet:

generic module AMQueueEntryP(am_id_t amId) {

provides interface AMSend;

uses{

interface Send;

interface AMPacket;

}

}

implementation {

command error_t AMSend.send(am_addr_t dest,

message_t* msg,

uint8_t len) {

call AMPacket.setDestination(msg, dest);

call AMPacket.setType(msg, amId);

return call Send.send(msg, len);

}

command error_t AMSend.cancel(message_t* msg) {

return call Send.cancel(msg);

}

event void Send.sendDone(message_t* m, error_t err) {

signal AMSend.sendDone(m, err);

}

command uint8_t AMSend.maxPayloadLength() {

return call Send.maxPayloadLength();

}

command void* AMSend.getPayload(message_t* m) {

return call Send.getPayload(m);

}

}

Listing 7.24: AMSendQueueEntryP

7.4. EXAMPLES 95

The queue itself sits on top of ActiveMessageC:

configuration AMQueueP {

provides interface Send[uint8_t client];

}

implementation {

components AMQueueImplP, ActiveMessageC;

Send = AMQueueImplP;

AMQueueImplP.AMSend -> ActiveMessageC;

AMQueueImplP.AMPacket -> ActiveMessageC;

AMQueueImplP.Packet -> ActiveMessageC;

}

Listing 7.25: AMQueueP

Finally, within AMSendQueueImplP, the logic to send a packet looks like this:

nextPacket();

if (current == QUEUE_EMPTY) {

return;

}

else {

message_t* msg;

am_id_t id;

am_addr_t addr;

uint8_t len;

msg = queue[current];

id = call AMPacket.getType(msg);

addr = call AMPacket.getDestination(msg);

len = call Packet.getLength(msg);

if (call AMSend.send[id](addr, msg, len) == SUCCESS) {

...

...

}

Listing 7.26: AMSendQueueImplP pseudocode

7.4.3 CC2420SpiC

Another, more complex example of using generic congfigurations is CC2420SpiC. This component provides

access to the CC2420 radio over an SPI bus. When the radio stack software wants to interact with the radio,

it makes calls on an instance of this component. For example, telling the CC2420 to send a packet if there

is a clear channel involves writing to one of the radio’s registers (TXONCCA). To write to the register, the

stack sends a small series of bytes over the bus, which basically say “I’m writing to register number X with

96 CHAPTER 7. GENERIC COMPONENTS

value Y.” The very fast speed of the bus means that small operations such as these can made synchronous

without any significant concurrency problems.

In addition to small register reads and writes, the chip also supports accessing the receive and transmit

buffers, which are 128-byte regions of memory, as well as the radio’s configuration memory, which stores

things such as cryptographic keys and the local address (which is used for determining whether to send an

acknowledgment). These operations are split-phase. For example, before the stack writes to TXONCCA

to send a packet, it must first execute a split-phase write with the CC2420Fifo interface (the receive and

transmit buffers are FIFO memories).

All of the operations boil down to four interfaces:

• CC2420Strobe: Access to command registers. Writing a command register tells the radio to take an

action, such as transmit a packet, clear its packet buffers, or transition to transmit mode. This interface

has a single command, strobe, which writes to the register.

• CC2420Register: Access to data registers. These registers can be both read and written, and store

things such as hardware configuration, addressing mode, and clear channel assessment thresholds.

This interface supports reads and writes as single-phase operations.

• CC2420Ram: Access to configuration memory. This interface supports both reads and writes, as

split-phase operations.

• CC2420Fifo: Access to the receive and transmit FIFO memory buffers. This interface supports both

reads and writes, as split-phase operations. While one can write to the receive buffer, the CC2420

supports this only for debugging purposes.

A component that needs to interact with the CC2420 instantiates an instance of CC2420SpiC:

generic configuration CC2420SpiC() {

provides interface Resource;

provides interface CC2420Strobe as SFLUSHRX;

provides interface CC2420Strobe as SFLUSHTX;

provides interface CC2420Strobe as SNOP;

provides interface CC2420Strobe as SRXON;

provides interface CC2420Strobe as SRFOFF;

provides interface CC2420Strobe as STXON;

provides interface CC2420Strobe as STXONCCA;

provides interface CC2420Strobe as SXOSCON;

provides interface CC2420Strobe as SXOSCOFF;

7.4. EXAMPLES 97

provides interface CC2420Register as FSCTRL;

provides interface CC2420Register as IOCFG0;

provides interface CC2420Register as IOCFG1;

provides interface CC2420Register as MDMCTRL0;

provides interface CC2420Register as MDMCTRL1;

provides interface CC2420Register as TXCTRL;

provides interface CC2420Ram as IEEEADR;

provides interface CC2420Ram as PANID;

provides interface CC2420Ram as SHORTADR;

provides interface CC2420Ram as TXFIFO_RAM;

provides interface CC2420Fifo as RXFIFO;

provides interface CC2420Fifo as TXFIFO;

}

Listing 7.27: CC2420SpiC

CC2420SpiC takes the implementation of the SPI protocol (CC2420SpiP) and wires it to the platform’s

raw SPI implementation. The raw SPI implementation has two interfaces: SPIByte, for writing a byte as a

single-phase operation, and SpiPacket, for writing a series of bytes as a split-phase operation.1 The protocol

implementation uses an interesting approach to have a simple implementation that can also find compile-

time errors. While CC2420SpiC provides each register as a separate interface, CC2420SpiP provides a

parameterized interface:

configuration CC2420SpiP {

provides interface CC2420Fifo as Fifo[uint8_t id];

provides interface CC2420Ram as Ram[uint16_t id];

provides interface CC2420Register as Reg[uint8_t id];

provides interface CC2420Strobe as Strobe[uint8_t id];

}

Listing 7.28: CC2420SpiP

Each CC2420 register has a unique identifier, which is a small integer. Having a separate implementation

for each register operation wastes code space and the code repetition would be an easy way to introduce

bugs. So CC2420SpiP has a single implementation, which takes a compile-time parameter, the register

identifier. However, not all values of a uint8 t are valid registers, so allowing components to wire directly to

the parameterized interface could lead to invalid wirings. Of course, CC2420SpiP could incorporate some

run-time checks to make sure that register values are valid, but this wastes CPU cycles, especially when the

1The SPI protocol is bidirectional. To read bytes from the chip, the stack has to write onto the bus. The chip also writes onto

the bus, but it is clocked by the CPU’s writes. The write operation therefore takes a uint8 t as the byte to write, and a uint8 t* as a

pointer to where it should store the reply.

98 CHAPTER 7. GENERIC COMPONENTS

parameters are almost always valid. So CC2420SpiC maps the a subset of the valid parameters into interface

instances. It only maps a subset because there are some debugging registers the stack doesn’t need to use.

The implementation looks like this:

configuration CC2420SpiC { ...}

implementation {

...

components CC2420SpiP as Spi;

SFLUSHRX = Spi.Strobe[CC2420_SFLUSHRX];

SFLUSHTX = Spi.Strobe[CC2420_SFLUSHTX];

SNOP = Spi.Strobe[CC2420_SNOP];

SRXON = Spi.Strobe[CC2420_SRXON];

SRFOFF = Spi.Strobe[CC2420_SRFOFF];

STXON = Spi.Strobe[CC2420_STXON];

STXONCCA = Spi.Strobe[CC2420_STXONCCA];

SXOSCON = Spi.Strobe[CC2420_SXOSCON];

SXOSCOFF = Spi.Strobe[CC2420_SXOSCOFF];

}

Listing 7.29: CC2420SpiC mappings to CC2420SpiP

This approach gives us the best of both worlds: there is a single function for writing to a strobe register,

which takes as an argument which register to write to, and the argument does not need run-time checking.

However, the caller does not have to provide this identifier, and so cannot by accident specify an invalid one.

Components that wire to CC2420SpiC can only wire to valid strobe registers, and rather than

call CC2420Strobe.strobe(CC2420_STXONCCA);

Listing 7.30: Strobing a register with a runtime parameter

they write

call TXONCCA.strobe();

Listing 7.31: Strobing a register through wiring

One issue that arises with CC2420SpiC is that multiple components might want to interact with the radio

at the same time. For example, in the CC2420 implementation, the receive and transmit paths have (almost)

completely separate logic. The radio might signal that a packet has arrived while a component is trying to

send. Only one of these can access the bus (e.g., to read the RXFIFO or to write the TXFIFO) at any time.

So the hardware presentation layer (HPL) of the SPI bus has a resource arbiter. Each user of the SPI bus is

an arbiter client.

7.4. EXAMPLES 99

Combining these two abstractions together, an instance of CC2420SpiC needs to do two things:

1. Map named interface instances to parameters

2. Instantiate a client to the SPI bus

HplCC2420SpiC is the component representing a client instance to the SPI bus. It signature is this:

generic configuration HplCC2420SpiC() {

provides interface Init;

provides interface Resource;

provides interface SPIByte;

provides interface SPIPacket;

}

Listing 7.32: HplCC2420SpiC

The Init, SpiByte, and SPIPacket interfaces are rather simple: they just directly export the actual HPL

bus abstraction’s interfaces. Resource is an exported instance of the SPI arbiter’s parameterized Resource

interface. The instance parameter is generated with a call to unique(). Iinstantiating CC2420SpiC creates

an instance of HplCC2420SpiC so it can arbitrate for access to the bus, but actually exports the interfaces of

CC2420SpiP. Here’s the implementation:

generic configuration CC2420SpiC {...}

implementation {

components HplCC2420PinsC as Pins;

components new HplCC2420SpiC();

components CC2420SpiP as Spi;

Init = HplCC2420SpiC;

Resource = HplCC2420SpiC;

SFLUSHRX = Spi.Strobe[CC2420_SFLUSHRX];

...

}

Listing 7.33: The implementation of CC2420SpiC

Let’s look at what this means at a function level. CC2420SpiC.SNOP is the interface for the no-op

strobe register. CC2420SpiC wires it like this:

SNOP = Spi.Strobe[CC2420_SNOP];

Listing 7.34: Wiring a strobe register

100 CHAPTER 7. GENERIC COMPONENTS

where Spi is CC2420SpiP. This means that every component which wires to SNOP on an instance

of CC2420SpiC wires to Spi.Strobe[CC242 SNOP]. This wiring ultimately terminates in the component

CC2420SpiImplP:

async command cc2420_status_t Strobe.strobe[uint8_t addr]() {

cc2420_status_t status;

call SPIByte.write(addr, \&status);

return status;

}

Listing 7.35: The strobe implementation

which writes a single byte to the bus and reads the status result. To step through each layer,

1. A component (e.g., CC2420TransmitP) calls SNOP.strobe() on an instance of CC2420SpiC

2. The nesC wiring transforms this call into CC2420SpiP.Strobe[CC2420 SNOP].strobe()

3. After the naming transformations, this actuall calls CC2420SpiImplP.Strobe[CC2420 SNOP].strobe()

Note that since the layer of indirection between 2) and 3) is purely wiring, the nesC compiler removes it.

After all of the optimizations and inlining, the statement

call SNOP.strobe()

Listing 7.36: Strobing the SNOP register

effectively becomes

cc2420_status_t status;

call SPIByte.write(CC2420_SNOP, \&status);

Listing 7.37: The resulting C code of strobing the SNOP register

with possible optimizations across even the write function call boundary (it might just inline the SPI into

the function, removing any need for function calls).

7.4.4 BlockStorageC

BlockStorageC is one of the most complicated example uses of generics, because it deals with four different

sets of parameterized interfaces. In T2, non-volatile storage is divided into volumes. A volume is a con-

tiguous region of storage with a certain format and that can be accessed with an associated interface. TEP

7.4. EXAMPLES 101

103 defines two basic formats: Logging and Block.2 Logging is for append-only writes and streaming reads

and Block is for random-access reads and writes. Logging has the advantage that its more limited interface

allows for atomic operations: when a write to a Logging volume completes, it guaranteed to be written. In

contrast, the Block interface has a separate commit operation.

Every volume has a unique identifier, and every BlockStorageC is associated with a single volume. How-

ever, there can be multiple BlockStorageC components that access the same volume, and not all volumes

may have BlockStorageC components. A client has to be associated with a volume so that the underlying

code can generate an absolute offset into the chip from a relative offset within a volume. E.g., if a 1MB chip

is divided into two 512kB volumes, then address 16k on volume 1 is address 528k on the chip. This means

that there are at least two keyspaces. The first keyspace is the volume ID keyspace, and the second is the

client ID keyspace.

In practice, there is a third keyspace, clients to the arbiter for the HAL of the storage chip. This keyspace

is shared between block clients, logging clients, and other abstractions that need exclusive access to the chip.

So, all in all, BlockStorageC has to manage three different keyspaces:

1. Client key: which block storage client this is (for block storage client state)

2. Chip key: which client to the storage chip this is (for arbitration of the shared resource)

3. Volume key: which volume this client accesses (for calculating absolute offsets in the chip)

One of the most difficult parts of nesC programming is understanding how parameterized interfaces can

be used, and how to manage their keyspaces. BlockStorageC is a good example, because it represents a

non-trivial use of wiring to build a simple abstraction from a bunch of underlying components and how to

make them interact properly.

Both the client key and chip key are generated with unique(). The client key is only among BlockStor-

ageC components, so it uses a string UQ BLOCK STORAGE defined in BlockStorage.h. The chip key is

shared across all components that use underlying chip. In the case of the at45db chip (used in the micaZ

platform), the string UQ AT45DB defined in At45db.h. The volume key is not generated by unique, as,

among other things, it must remain consistent across compiles. It is specified in a header file that describes

the volumes defined for the storage chip.

After all of that introduction, you might think that BlockStorageC is many lines of code. It isn’t: it only

has four wiring statements, which we’ll step through one by one:
2There is also a third format, Configure, used for small items of configuration data, but this requires a different kind of chip than

that which Logging and Block usually sit on top of.

102 CHAPTER 7. GENERIC COMPONENTS

generic configuration BlockStorageC(volume_id_t volid) {

provides {

interface BlockWrite;

interface BlockRead;

}

}

implementation {

enum {

BLOCK_ID = unique(UQ_BLOCK_STORAGE),

RESOURCE_ID = unique(UQ_AT45DB)

};

components BlockStorageP, WireBlockStorageP, StorageManagerC, At45dbC;

BlockWrite = BlockStorageP.BlockWrite[BLOCK_ID];

BlockRead = BlockStorageP.BlockRead[BLOCK_ID];

BlockStorageP.At45dbVolume[BLOCK_ID] -> StorageManagerC.At45dbVolume[volid];

BlockStorageP.Resource[BLOCK_ID] -> At45dbC.Resource[RESOURCE_ID];

}

Listing 7.38: BlockStorageC

The first two lines,

BlockWrite = BlockStorageP.BlockWrite[BLOCK_ID];

BlockRead = BlockStorageP.BlockRead[BLOCK_ID];

Listing 7.39: Wiring BlockWrite and BlockRead as a unique client

make the BlockWrite and BlockRead interfaces clients of the service that implements them, BlockStor-

ageP. When a component wired to a BlockStorageC calls to read or write from a block, nesC automatically

includes a client ID into the call by the time it reaches the implementation.

The next line

BlockStorageP.At45dbVolume[BLOCK_ID] -> StorageManagerC.At45dbVolume[volid];

Listing 7.40: Wiring a BlockStorage client to its volume

translates between the client and volume keyspaces. When BlockStorageP makes a call on the Storage-

ManagerC, it includes the client ID in the call as an outgoing parameter. This client ID is bound to a volume

ID. nesC automatically builds a switch statement that translates between the two, so what when Storage-

ManagertC receives the call, nesC has filled in the volume ID as the parameter. Note that there can be a

many-to-one mapping between client IDs and volume IDs, as there might be multiple clients that access the

same volume.

7.5. CONFIGURATIONS, REVISITED 103

The final line,

BlockStorageP.Resource[BLOCK_ID] -> At45dbC.Resource[RESOURCE_ID];

Listing 7.41: Wiring a BlockStorage client as a client of the flash Resource

is what allows the block storage client to cooperate with other clients (blocking and logging) for access

to the actual flash chip. BlockStorageP makes each of its clients a client of the flash chip resource manager.

Overall, the logic goes like this:

1. A component accesses volume V through an instance of BlockStorageC with client id C

2. The component calls BlockStorageC to read from a block

3. It becomes a call on BlockStorageP with with parameter C

4. BlockStorageP notes that there is a call pending, stores the arguments in the state allocated for C, and

requests the Resource with C, which maps to resource id R

5. BlockStorageP receives the resource for client R (which maps back to C)

6. BlockStorageP requests operations on StorageManagerC with C, which maps to volume V

The two complicated parts are the mapping between key spaces. In the case of the client id and resource

id, the keyspaces are used to distinguish different callers, especially for storing state. The volume keyspace,

however, is a little different. It is used to calculate an offset into the storage medium. The motivation for

its being a parameter of a parameterized interface is a bit different. It is more like AMSend, where the

value is a constant and can be easily decoupled from the implementation. Rather than passing a volume ID

into a module and forcing it to include the constant as an argument to every function call, putting it into a

configuration lets nesC automatically generate code to include the constant in all calls and a dispatch table

for all events.

7.5 Configurations, revisited

At first glance, configurations are rather simple: they’re a way to connect components into a larger abstrac-

tion. Because nesC components are constrained to a local naming scope, a module cannot introduce any

inter-component dependencies. It can introduce a dependency on a particular interface, but not on an imple-

mentation of that interface, or even name how that implementation might be found. This is very different

104 CHAPTER 7. GENERIC COMPONENTS

from C-based systems languages, whose global naming scope forces levels of indirection that can only be

resolved at runtime.

A configuration can name other components and their interfaces, but in and of itself does not have any

code. This means that many abstractions are broken into two parts, a module and a configuration. For

example, a module that sends packets with AMSend doesn’t introduce a dependency on AMSender, but a

configuration that wires AMSend to an AMSender does.

Chapter 8

Design Patterns

To quote the Gang of Four, design patterns are “descriptions of communicating objects and classes that are

customized to solve a general design problem in a particular context.” As mentioned in Chapter 3, many (but

certainly not all) design patterns in C-like languages deal with the problem of flexibly composing software

when you have a single global namespace for functions.

This chapter presents eight nesC design patterns: three behavioural (relating to component interaction):

Dispatcher, Decorator and Adapter, three structural (relating to how applications are structured): Service

Instance, Placeholder and Facade and two namespace (management of identifiers such as message types):

Keyset and Keymap. Each pattern’s presentation follows the model of the Design Patterns book. Each one

has an Intent, which briefly describes its purpose. A more in-depth Motivation follows, providing an exam-

ple drawn from TinyOS. Applicable When provides a succinct list of conditions for use and a component

diagram shows the Structure of how components in the pattern interact.1 In the component diagrams, solid

rectangles are modules and open rectangles are configurations. Triangles pointing into a rectangle are pro-

vided interfaces, triangles pointing out are used interfaces. Lines are wires, and component names are in

bold. A folded sub-box contains source code (a floating folded box represents source code in some other,

unnamed, component). The diagram is followed by a Participants lists explaining the role of each compo-

nent. Sample Code shows an example nesC implementation in TinyOS 1.x, T2, or both, and Known Uses

points to some uses of the pattern in TinyOS. Consequences describes how the pattern achieves its goals,

and notes issues to consider when using it. Finally, Related Patterns compares to other relevant patterns.

1This diagram is omitted for the Keyset pattern as it is not concerned with component interactions.

105

106 CHAPTER 8. DESIGN PATTERNS

8.1 Behavioural: Dispatcher

Intent

Dynamically select between a set of operations based on an identifier. Provides a way to easily extend

or modify a system by adding or changing operations.

Motivation

At a high level, sensor network applications execute operations in response to environmental input such

as sensor readings or network packets. The operation’s details are not important to the component that

presents the input. We need to be able to easily extend and modify what inputs an application cares about,

as well as the operation associated with an input.

For example, a node can receive many kinds of active messages (packets). Active messages (AM) have

an 8-bit type field, to distinguish between protocols. A flooding protocol uses one AM type, while an

ad-hoc routing protocol uses another. AMStandard, the component that signals the arrival of a packet,

should not need to know what processing a protocol performs or whether an application supports a protocol.

AMStandard just delivers packets, and higher level communication services respond to those they care

about.

The traditional approach to this problem is to use function pointers or objects, which are dynamically

registered as callbacks. In many cases, even though registered at run time, the set of operations is known at

compile time. Thus these callbacks can be replaced by a dispatch table compiled into the executable, with

two benefits. First, this allows better cross-function analysis and optimization, and secondly it conserves

RAM, as no pointers or callback structures need to be stored.

Such a dispatch table could be built for the active message example by using a switch statement in

AMStandard. But this is very inflexible: any change to the protocols used in an application requires a

change in a system component.

A better approach in TinyOS is to use the Dispatcher pattern. A Dispatcher invokes operations us-

ing a parameterised interface, based on a data identifier. In the case of AMStandard, the interface is

ReceiveMsg and the identifier is the active message type field. AMStandard is independent of what

messages the application handles, or what processing those handlers perform. Adding a new handler re-

quires a single wiring to AMStandard. If an application does not wire a receive handler for a certain type,

AMStandard defaults to a null operation.

Another example of a Dispatcher is the scheduler of the Maté virtual machine. Each instruction is

a separate component that provides the MateBytecode interface. The scheduler executes a particular

8.1. BEHAVIOURAL: DISPATCHER 107

bytecode by dispatching to the instruction component using a parameterised MateBytecode interface.

The instruction set can be easily changed by altering the wiring of the scheduler.

Applicable When

• A component needs to support an externally customisable set of operations.

• A primitive integer type can identify which operation to perform.

• The operations can all be implemented in terms of a single interface.

Structure

Dispatcher

Operations[id]

interface Op

Operation1
Op1

components Dispatcher, Operation2;
Dispatcher.Operations[KEY2] -> Operation2.Op2;

Operation2
Op2

Participants

• Dispatcher: invokes its parameterized interface based on an integer type.

• Operation: implements the desired functionality and wires it to the dispatcher.

1.x Sample Code

AMStandard is the radio stack component that dispatches received messages:

module AMStandard {

// Dispatcher interface for messages

uses interface ReceiveMsg as Recv[uint8_t id];

}

implementation {

TOS_MsgPtr received(TOS_MsgPtr packet) {

return signal Recv.receive[packet->type](packet);

}

...

}

Listing 8.1: AMStandard

and the App configuration registers AppM to handle two kinds of messages:

108 CHAPTER 8. DESIGN PATTERNS

configuration App {}

implementation {

components AppM, AMStandard;

AppM.ClearIdMsg -> AMStandard.Receive[AM_CLEARIDMSG];

AppM.SetIdMsg -> AMStandard.Receive[AM_SETIDMSG];

}

Listing 8.2: Wiring to AMStandard

2.x Sample Code

Dispatchers in TinyOS 2.0 are very similar to those in 1.x, except that often they are encapsulated in

a generic configuration. Rather than have a component wire to a parameterized interface, it wires to a

generic configuration that takes the parameter is an argument. For example, rather than wire directly to

ActiveMessageC to receive packets, a component instantiates an AMReceiverC:

generic configuration AMReceiverC(am_id_t amId) {

provides {

interface Receive;

interface Packet;

interface AMPacket;

}

}

implementation {

components ActiveMessageImplP as Impl;

Receive = Impl.Receive[amId];

Packet = Impl;

AMPacket = Impl;

}

Listing 8.3: AMReceiverC

Known Uses

The Active Messages networking layer (AMStandard, AMPromiscuous in 1.x, ActiveMessageC in

2.0) uses a dispatcher for packet reception. It also provides a parameterized packet sending interface, so

services can easily match packet sends to reception handlers.

The 1.x Maté virtual machine uses a dispatcher to allow easy customization of instruction sets.

The 1.x Drip management protocol uses a Dispatcher to allow per-application configuration of manage-

ment attributes.

Consequences

By leaving operation selection to nesC wirings, the dispatcher’s implementation remains independent

of what an application supports. However, finding the full set of supported operations can require looking

8.1. BEHAVIOURAL: DISPATCHER 109

at many files. Sloppy operation identifier management can lead to dispatch problems. If two operations

are wired with the same identifier, then a dispatch will call both, which may lead to resource conflicts, data

corruption, or memory leaks from lost pointers. For example, the ReceiveMsg interface uses a buffer swap

mechanism to pass buffers between the radio stack and network services, in which the higher component

passes a new buffer in the return value of the event. If two services are wired to a given ReceiveMsg

instance, only one of their pointers will be passed and the second will be lost. Wiring in this fashion is a

compile-time warning in nesC, but it is still a common bug for novice TinyOS developers.

The key aspects of the dispatcher pattern are:

• It allows you to easily extend or modify the functionality an application supports: adding an operation

requires a single wiring.

• It allows the elements of functionality to be independently implemented and re-used. Because each

operation is implemented in a component, it can be easily included in many applications. Keeping

implementations separate can also simplify testing, as the components will be smaller, simpler, and

easier to pinpoint faults in. The nesC compiler will automatically inline small operations, or you can

explicitly request inlining; thus this decomposition has no performance cost.

• It requires the individual operations to follow a uniform interface. The dispatcher is usually not well

suited to operations that have a wide range of semantics. As all implementations have to meet the

same interface, broad semantics leads to the interface being overly general, pushing error checks from

compile-time to run-time. An implementor forgetting a run-time parameter check can cause a hard to

diagnose system failure.

The compile-time binding of the operation simplifies program analysis and puts dispatch tables in the

compiled code, saving RAM. Dispatching provides a simple way to develop programs that execute in reac-

tion to their environment.

Related Patterns

• Service Instance: a service instance creates many instances of an implementation of an interface,

while a dispatcher selects between different implementations of an interface.

• Placeholder: a placeholder allows an application to select an implementation at compile-time, while

a dispatcher allows it to select an implementation at runtime.

• Keyset: the identifiers used to identify a Dispatcher’s operation typically form a Global Keyset.

110 CHAPTER 8. DESIGN PATTERNS

8.2 Structural: Service Instance

Intent

Allows multiple users to have separate instances of a particular service, where the instances can collab-

orate efficiently. The basic mechanism for virtualizing services.

Motivation

Sometimes many components or subsystems need to use a system abstraction, but each user wants a

separate instance of that service. We don’t know how many users there will be until we build a complete

application. Each instance requires maintaining some state, and the service implementation needs to access

all of this state to make decisions.

For example, a wide range of TinyOS components need timers, for everything from network timeouts

to sensor sampling. Each timer appears independent, but they all operate on top of a single hardware clock.

An efficient implementation thus requires knowing the state of all of the timers. If the implementation can

easily determine which timer has to fire next, then it can schedule the underlying clock resource to fire as

few interrupts as possible to meet this lowest timer’s requirement. Firing fewer interrupts allows the CPU to

sleep more, saving energy and increasing lifetime.

The traditional object-oriented approach to this problem is to instantiate an object representing the ser-

vice and use another class to coordinate state. This approach is not applicable in TinyOS 1.x as nesC 1.1

cannot have multiple copies of components, so either requires requires sharing state across objects, which is

contrary to encapsulation, or it requires state copying, which uses additional RAM.

Implementing each timer in a separate module leads to duplicated code and requires inter-module coor-

dination in order to figure out how to set the underlying hardware clock. Just setting it at a fixed rate and

maintaining a counter for each Timer is inefficient: timer fidelity requires firing at a high rate, but it wastes

energy to fire at 1KHz if the next timer is in four seconds.

The Service Instance pattern provides a solution to these problems. Using this pattern, each user of a

service can have its own (virtual) instance, but instances share code and can access each other’s state. A

component following the Service Instance pattern provides its service in a parameterised interface; each

user wires to a unique instance of the interface using unique. The underlying component receives the unique

identity of each client in each command, and can use it to index into a state array. The component can

determine at compile-time how many instances exist using the uniqueCount function and dimension the

state array accordingly.

Applicable When

8.2. STRUCTURAL: SERVICE INSTANCE 111

• A component needs to provide multiple instances of a service, but does not know how many until

compile time.

• Each service instance appears to its user to be independent of the others.

• The service implementation needs to be able to easily access the state of every instance.

Structure

NUSERS = uniqueCount(“Service”);
StateType state[NUSERS];

ServiceProvider

Svc[id]

ResourceImpl
AResourceUsedResource

User2
Svc

interface Service

interface Resource

User1
Svc

components User2, ServiceProvider;
User2.Svc -> ServiceProvider.Svc[unique(“Service”)];

Participants

• ServiceProvider: allocates state for each instance of the service and coordinates underlying resources

based on all of the instances.

• ResourceImpl: an underlying system resource that ServiceProvider multiplexes/demultiplexes ser-

vice instances on.

Sample 1.x Code

TimerC wires TimerM, which contains the actual timer logic, to an underlying hardware clock and

exports its Timer interfaces:

configuration TimerC {

provides interface Timer[uint8_t id];

}

implementation {

components TimerM, ClockC;

Timer = TimerM.Timer;

TimerM.Clock -> ClockC.Clock;

}

Listing 8.4: TimerM builds on top of ClockC

112 CHAPTER 8. DESIGN PATTERNS

and TimerM uses uniqueCount to determine how many timers to allocate and accesses them using

unique IDs:

module TimerM {

provides interface Timer[uint8_t clientId];

uses interface Clock;

}

implementation {

// per-client state

timer_t timers[uniqueCount("Timer")];

command result_t Timer.start[uint8_t clientId](...) {

if (timers[clientId].busy)

...

}

}

Listing 8.5: TimerM uses uniqueCount to count the timers

Clients wanting a timer wire using unique:

C.Timer -> TimerC.Timer[unique("Timer")];

Listing 8.6: Wiring a timer with unique

Known Uses

The TinyOS 1.x and 2.x timer systems, as detailed above, uses a service instance pattern to manage

various application timers.

The viral code propagation subsystem of the Maté virtual machine uses a service instance to manage

version metadata for code capsules. As the virtual machine is customizable, the number of needed capsules

isn’t known until the virtual machine is actually compiled.

In a similar vein, the epidemic dissemination protocol Drip uses the service instance pattern to maintain

epidemic state for each disseminated value.

Sample 2.x Code

HilTimerMilliC uses a VirtualizeTimerC to present a Service Instance of millisecond precision timers.

VirtualizeTimerC takes a single underlying timer and virtualizes it to n timers for others to use:

generic module VirtualizeTimerC(typedef precision_tag, int max_timers) {

provides interface Timer<precision_tag> as Timer[uint8_t num];

uses interface Timer<precision_tag> as TimerFrom;

}

Listing 8.7: VirtualizeTimerC

8.2. STRUCTURAL: SERVICE INSTANCE 113

It takes two parameters, a type for the Timer precision tag, and the number of timers (the number of

service instances). There are therefore four files involved:

1. Timer.h, a header file that defines the unique key as UQ TIMER MILLI

2. VirtualizeTimerC, which provides n virtualized timers

3. HilTimerMilliC, which instantiates a VirtualizeTimerC with a call to uniqueCount passing UQ TIMER MILLI

4. TimerMilliC, which wires to HilTimerMilliC’s parameterized interface with a call to unique passing

UQ TIMER MILLI

Consequences

The key aspects of the Service Instance pattern are:

• It allows many components to request independent instances of a common system service: adding an

instance requires a single wiring.

• It controls state allocation, so the amount of RAM used is scaled to exactly the number of instances

needed, conserving memory while preventing run-time failures due to many requests exhausting re-

sources.

• It allows a single component to coordinate all of the instances, which enables efficient resource man-

agement and coordination.

Because the pattern scales to a variable number of instances, the cost of its operations may scale linearly

with the number of users. For example, if setting the underlying clock interrupt rate depends on the timer

with the shortest remaining duration, an implementation might determine this by scanning all of the timers,

an O(n) operation.

If many users require an instance of a service, but each of those instances are used rarely, then allocating

state for each one can be wasteful. The other option is to allocate a smaller amount of state and dynamically

allocate it to users as need be. This can conserve RAM, but requires more RAM per real instance (client

IDs need to be maintained), imposes a CPU overhead (allocation and deallocation), can fail at run-time

(if there are too many simultaneous users), and assumes a reclamation strategy (misuse of which would

lead to leaks). This long list of challenges makes the Service Instance an attractive – and more and more

commonly used – way to efficiently support application requirements. There are situations, however, when

a component internally re-uses a single service instance for several purposes: for example, the Maté code

114 CHAPTER 8. DESIGN PATTERNS

propagation component MVirus uses a single timer instance for several different timers which never operate

concurrently.

Related Patterns

• Dispatcher: a service instance creates many instances of an implementation of an interface, while a

dispatcher selects between different implementations of an interface.

• Keyset: a Service Instance’s instance identifiers form a Local Keyset.

8.3 Namespace: Keysets

Intent

Provide namespaces for referring to protocols, structures, or other entities in a program.

Motivation

A typical sensor network program needs namespaces for the various entities it manages, such as proto-

cols, data types, or structure instances. Limited resources mean names are usually stored as small integer

keys.

For data types representing internal program structures, each instance must have a unique name, but as

they are only relevant to a single mote, the names can be chosen freely. These local namespaces are usually

dense, for efficiency. The Service Instance pattern (Section 8.2) uses a local namespace to identify instances.

In contrast, communication requires a shared, global namespace: two motes/applications must agree on an

element’s name. As a mote may only use a few elements, global namespaces are typically sparse. The

Dispatcher pattern (Section 8.1) uses a global namespace to select operations.

The Keyset patterns provide solutions to these problems. Using these patterns, programs can refer to

elements using identifiers optimised for their particular use. Components using the Keyset patterns often take

advantage of a parameterised interface, in which the parameter is an element in a Keyset. Local Keysets are

designed for referring to local data structures (e.g., arrays) and are generated with unique; Global Keysets

are designed for communication and use global constants.

The bytecodes of the Maté virtual machine form a Global Keyset. The Maté scheduler uses these in

conjunction with a Dispatcher to execute individual instructions, each of which is implemented in a separate

component. Maté also uses a Local Keyset to identify locks corresponding to resources used by Maté

programs. These lock identifiers are allocated with unique as the Maté virtual machine can be compiled

with varying sets of resources.

8.3. NAMESPACE: KEYSETS 115

The file descriptors of the Matchbox flash filesystem form a Local Keyset.

Applicable When

• A program must keep track of a set of elements or data types.

• The set is known and fixed at compile-time.

Sample 1.x Code

The Maté bytecodes are defined as global constants:

typedef enum {

OP_HALT = 0x0,

OP_MADD = 0x1,

OP_MBA3 = 0x2,

OP_MBF3 = 0xa,

...

} MateInstruction;

Listing 8.8: Mate VM bytecodes

and used by the Maté scheduler to execute individual instructions:

module MateEngineM {

uses interface MateBytecode[uint8_t bytecode];

...

}

implementation {

void computeInstruction(MateContext* context) {

MateOpcode instr = getOpcode(context);

context->pc += call MateBytecode.byteLength[instr]();

call MateBytecode.execute[instr](context);

}

...

}

Listing 8.9: Mate VM execution loop

The Maté lock subsystem identifies locks by small integers:

module MLocks {

provides interface MateLocks as Locks;

}

implementation {

MateLock locks[MATE_LOCK_COUNT];

command void Locks.lock(MateContext* uint8_t lockNum) {

locks[lockNum].holder = context;

context->heldSet[lockNum / 8] |= 1 << (lockNum % 8);

116 CHAPTER 8. DESIGN PATTERNS

}

...

Listing 8.10: Mate lock subsystem

Locks are allocated in components providing shared resources:

module OPgetsetvar1M { ... } // a shared variable

implementation {

typedef enum {

MATE_LOCK_1_0 = unique("MateLock"),

MATE_LOCK_1_1 = unique("MateLock"),

} LockNames;

...

module OPbpush1M { ... } // a shared buffer

implementation {

typedef enum {

MATE_BUF_LOCK_1_0 = unique("MateLock"),

MATE_BUF_LOCK_1_1 = unique("MateLock"),

} BufLockNames;

...

Listing 8.11: Mate lock allocation

and uniqueCount is used to find the total number of locks:

enum {

MATE_LOCK_COUNT = uniqueCount("MateLock")

};

Listing 8.12: Using uniqueCount to count the Mate locks

Sample 2.x Code

Keysets in 2.x operate exactly as they do in 1.x, with the exception that sometimes they are encapsulated

in generic configurations. Active message IDs, for example, are global constants, while queue entries in the

AM send queue are local indentifiers.

Known Uses

Many components use Local Keysets: they are a fundamental part of the Service Instance pattern. See

for example the timer service, TimerC, or the Matchbox flash file system.

Maté uses a Local Keyset to keep track of Maté shared resource locks (see above).

Active Messages (AMStandard) uses a Global Keyset for Active Message types.

The Drip management protocol uses a Global Keyset for referring to configurable variables.

The TinyDB sensor-network-as-database application uses a Global Keyset for its attributes; in this case,

8.4. NAMESPACE: KEYMAP 117

however, the keyset is composed of strings, which are then mapped to a Local Keyset using a table.

Consequences

Keysets allow a component to refer to data items or types through a parameterised interface. In a Local

Keyset, unique ensures that every element has a unique identifier. Global Keysets can also have unique

identifiers, but this requires external namespace management.

As Local Keysets are generated with unique, mapping names to keys (e.g., for debugging purposes) is

not obvious. The nesC constant generator, ncg, can be used to extract this information.

Keysets are rarely used in isolation; they support other patterns such as Dispatcher and Service Instance.

Related Patterns

• Keymap: two Keysets are often related, e.g., one Service Instance may be built on top of another,

requiring a mapping between two Keysets. The Keymap pattern provides an efficient way of imple-

menting such maps.

• Service Instance: the identifiers used to identify individual services form a Local Keyset.

• Dispatcher: the identifiers used by a dispatcher are typically taken from a Global Keyset.

8.4 Namespace: Keymap

Intent

Map keys from one keyset to another. Allows you to translate global, shared names to local, optimized

names, or to efficiently subset another keyset.

Motivation

Mapping between namespaces is often useful: it allows motes to use a global, sparse namespace for easy

cross-application communication and an internal, compact namespace for efficiency.

The Drip management protocol uses the Keyset and Keymap patterns to allow a user to configure param-

eters at run-time. A component registers a parameter with the DripC component with a Global Keyset, so it

can be named in an application-independent manner. The user modifies a parameter by sending a key-value

pair using an epidemic protocol, which distributes the change to every mote. DripC maintains state for

each configurable parameter with the Service Instance pattern, using a Local Keyset. A Keymap maps the

global key to the local key.

Keymaps are also useful for mapping between two local keysets, when some service, based on the

Service Instance pattern, accesses a subset of the resources provided by another service, also based on the

118 CHAPTER 8. DESIGN PATTERNS

Service Instance pattern.

For instance, in TinyOS 2.0, there are three storage abstractions with different interfaces: blocks, logs

and configuration data. Each of these is identified by keys from its own local keyset. However, all three are

built upon a common volume abstraction (provided by the StorageManagerC component) used to partition

a mote’s flash chip into independent areas. The volumes used by an application are identified by a local

keyset. Thus it is necessary to map a block’s identifier to its corresponding volume identifier.

Maps could be implemented using a table and some lookup code. However, this has several problems. If

we want to store this table in ROM, then it must be initialised in one place. However, this conflicts with the

desire to specify keys in separate components (either with unique or with constants). If the table is stored

in RAM, then keys can be specified in separate components, but RAM is in very short supply on motes.

Finally, keys of Global Keysets are sparse, so the resulting tables would be large and waste space.

Instead, we can use nesC’s wiring to build Keymaps. By mapping a parameterised interface indexed

with one key to another parameterised interface indexed by a second key, we can have the nesC compiler

generate the map at compile-time. Additionally, as the map exists as an automatically generated switch

statement, it uses no RAM.

Applicable When

• An application uses global identifiers for communication (or other purposes) and wishes to map them

to local identifiers for efficiency.

• Two services are implemented following the Service Instance pattern, and the first service needs an

instance of the second service for each of its own instances.

• The identifiers are integer constants.

• The map is known at compile-time.

Structure

Service1

Svc2[id1]

interface Service1

components Service1, Service2, User2;
User2.Svc -> Service1.Svc1[KEY1];
Service1.Svc2[KEY1] -> Service2.Svc2[KEY2];

User2
Svc

User1
Svc Svc1[id1]

Service2

Svc2[id2]

interface Service2

8.4. NAMESPACE: KEYMAP 119

Participants

• Service1: service accessed via key 1, dependent on Service2.

• Service2: service accessed via key 2.

Sample 1.x Code

The DripC component provides a parameterised interface for components to register configurable val-

ues with a Global Keyset:

enum { DRIP_GLOBAL = 0x20};

App.Drip -> DripC.Drip[DRIP_GLOBAL];

Listing 8.13: A Drip global ID

DripC uses another component to manage its internal state, DripStateM. DripStateM uses a

Local Keyset for the configurable values (an example of the Service Instance pattern, in Section 8.2), and a

Keymap maps between the two:

enum { DRIP_LOCAL = unique("DripState")};

DripC.DripState[DRIP_GLOBAL] -> DripStateM.DripState[DRIP_LOCAL];

Listing 8.14: A Drip local ID

In this example, a user can generate a new value for App’s parameter, and distribute it based on the

DRIP GLOBAL key. DripC uses the global key to refer to the value, but DripStateM can use a local key

to refer to the state it maintains for that value. The wiring compiles down to a simple switch statement that

calls DripStateM with the proper local key.

The BlockStorageC component follows the Service Instance pattern to provide access to blocks, and

the StorageManagerC uses the same pattern to provide access to volumes:

configuration BlockStorageC {

provides interface Block[int blockId];

} ...

configuration StorageManagerC {

provides interface Volume[int volumeId];

} ...

Listing 8.15: BlockStorageC uses the Service Instance Pattern

To use a block, you need to allocate unique block and volume identifiers and wire BlockStorageC

to StorageManagerC to form the Keymap:

120 CHAPTER 8. DESIGN PATTERNS

enum {

MY_BLOCK = unique("Block"),

MY_VOLUME = unique("Volume")

};

configuration MyBlock {

provides interface Block;

}

implementation {

components BlockStorageC, StorageManagerC;

Block = BlockStorageC.Block[MY_BLOCK];

BlockStorageC.Volume[MY_BLOCK] -> StorageManagerC.Volume[MY_VOLUME];

}

Listing 8.16: Allocating a block storage instance

Sample 2.x Code

Keymaps operate in TinyOS 2.0 just as they do in 1.x.

Known Uses

The Drip parameter configuration component – described above – uses a Keymap.

The TinyOS 2.0 storage system – also described above – uses a Keymap to map the different storage

abstractions to the common volume abstraction.

Consequences

A Keymap uses nesC wiring to allow components to transparently map between different keysets. As

with Keysets, the Keymap must be fixed at compile-time.

A Keymap translates into a switch at compile-time. It thus doesn’t use any RAM; its speed depends

on the behaviour of the C compiler used to compile nesC’s output.

Keymaps only support mapping between integers. If you need, e.g., to map from strings to a Local

Keyset, you will need to build your own map.

Related Patterns

• Keyset: A Keymap establishes a map from one keyset to another.

8.5 Structural: Placeholder

Intent

Easily change which implementation of a service an entire application uses. Prevent inadvertent inclu-

sion of multiple, incompatible implementations.

8.5. STRUCTURAL: PLACEHOLDER 121

Motivation

Many TinyOS systems and abstractions have several implementations. For example, there are many ad-

hoc tree routing protocols (Route, MintRoute, ReliableRoute), but they all expose the same interface, Send.

The standardized interface allows applications to use any of the implementations without code changes.

Simpler abstractions can also have multiple implementations. For example, the LedsC component actually

turns the LEDs on and off, while the NoLedsC component, which provides the same interface, has null

operations. During testing, LedsC is useful for debugging, but in deployment it is a significant energy cost

and usually replaced with NoLedsC.

Sometimes, the decision of which implementation to use needs to be uniform across an application. For

example, if a network health monitoring subsystem (HealthC) wires to MintRoute, while an application

uses ReliableRoute, two routing trees will be built, wasting resources. As every configuration that wires to a

service names it, changing the choice of implementation in a large application could require changing many

files. Some of these files, such as HealthC, are part of the system; an application writer should not have to

modify them.

One option is for every implementation to use the same component name, and put them in separate

directories. Manipulating the nesC search order allows an application to select which version to use. This

approach doesn’t scale well: each implementation of each component needs a separate directory. Streamlin-

ing this structure by bundling several implementations (e.g., the “safe” versions and the “optimized” ones) in

a single directory requires all-or-nothing inclusion. This approach also precludes the possibility of including

two implementations, even if they can interoperate.

The Placeholder pattern offers a solution. A placeholder configuration represents the desired service

through a level of naming indirection. All components that need to use the service wire to the placeholder.

The placeholder itself is just “a pass through” of the service’s interfaces. A second configuration (typically

provided by the application) wires the placeholder to the selected implementation. This selection can then

be changed centrally by editing a single file. As the level of indirection is solely in terms of names – there

is no additional code generated – it imposes no CPU overhead.

Applicable When

• A component or service has multiple, mutually exclusive implementations.

• Many subsystems and parts of your application need to use this component/service.

• You need to easily switch between the implementations.

Structure

122 CHAPTER 8. DESIGN PATTERNS

Placeholder
ActualSvc

Svc = Actual;

User1
Svc

User2
Svc

components User2, Placeholder;
User2.Svc -> Placeholder.Svc;

interface Service

Alternate
Svc

Implementation
Svc

Participants

• Placeholder: the component that all other components wire to. It encapsulates the implementation

and exports its interfaces with pass-through wiring. It has the same signature as the Implementation

component.

• Implementation: the specific version of the component.

Sample 1.x Code

Several parts of an application use ad-hoc collection routing to collect and aggregate sensor readings.

However, the application design is independent of a particular routing implementation, so that improvements

or new algorithms can be easily incorporated. The routing subsystem is represented by a Placeholder, which

provides a unified name for the underlying implementation and just exports its interfaces:

configuration CollectionRouter {

provides interface StdControl as SC;

uses interface StdControl as ActualSC;

provides interface SendMsg as Send;

uses interface SendMsg as ActualSend;

}

implementation {

SC = ActualSC; // Just "forward" the

Send = ActualSend; // interfaces

}

Listing 8.17: CollectionRouter

Component using collection routing wire to CollectionRouter:

SensingM.Send -> CollectionRouter.Send;

Listing 8.18: Wiring to CollectionRouter

8.5. STRUCTURAL: PLACEHOLDER 123

and the application must globally select its routing component by wiring the “Actual” interfaces of the

Placeholder to the desired component:

configuration AppMain { }

implementation {

components CollectionRouter, EWMARouter;

CollectionRouter.ActualSC -> EWMARouter.SC;

CollectionRouter.ActualSend -> EWMARouter.Send;

...

}

Listing 8.19: Wiring CollectionRouter to an implementation

Sample 2.x Code

The Telos platform uses a Placeholder to map ActiveMessageC to its radio stack, CC2420ActiveMessageC:

configuration ActiveMessageC {

provides {

interface Init;

interface SplitControl;

interface AMSend[uint8_t id];

interface Receive[uint8_t id];

interface Receive as Snoop[uint8_t id];

interface Packet;

interface AMPacket;

interface PacketAcknowledgements;

}

}

implementation {

components CC2420ActiveMessageC as AM;

Init = AM;

SplitControl = AM;

AMSend = AM;

Receive = AM.Receive;

Snoop = AM.Snoop;

Packet = AM;

AMPacket = AM;

PacketAcknowledgements = AM;

}

Listing 8.20: Telos ActiveMessageC

Known Uses

The Maté virtual machine uses Placeholders for all its major abstractions (stacks, type checking, locks,

124 CHAPTER 8. DESIGN PATTERNS

etc). The motlle language replaces the Maté stack handler because it uses a different value representation –

the replacement stack handler converts between the motlle and Maté value representations.

HIL abstractions in TinyOS 2.0 (e.g., ActiveMessageC) are often built with placeholders. This allows a

platform to map the global name to a particular implementation that it supports. In the case of ActiveMes-

sageC, for example, this can be important if a platform has two radios and one should be used as the default.

Consequences

The key aspects of the Placeholder pattern are:

• Establishes a global name that users of a common service can wire to.

• Allows you to specify the implementation of the service on an application-wide basis.

• Does not require every component to use the Placeholder’s implementation.

By adding a level of naming indirection, a Placeholder provides a single point at which you can choose

an implementation. Placeholders create a global namespace for implementation-independent users of com-

mon system services. As using the Placeholder pattern generally requires every component to wire to the

Placeholder instead of a concrete instance, incorporating a Placeholder into an existing application can re-

quire modifying many components. However, the nesC compiler optimises away the added level of wiring

indirection, so a Placeholder imposes no run-time overhead. The Placeholder supports flexible composition

and simplifies use of alternative service implementations.

Related Patterns

• Dispatcher: a placeholder allows an application to select an implementation at compile-time, while a

dispatcher allows it to select an implementation at runtime.

• Facade: a placeholder allows easy selection of the implementation of a group of interfaces, while a

facade allows easy use of a group of interfaces. An application may well connect a placeholder to a

facade.

8.6 Structural: Facade

Intent

Provides a unified access point to a set of inter-related services and interfaces. Simplifies use, inclusion,

and composition of the subservices.

8.6. STRUCTURAL: FACADE 125

Motivation

Complex system components, such as a filesystem or networking abstraction, are often implemented

across many components. Higher-level operations may be based on lower-level ones, and a user needs

access to both. Complex functionality may be spread across several components. Although implemented

separately, these pieces of functionality are part of a cohesive whole that we want to present as a logical

unit.

For example, the Matchbox filing system provides interfaces for reading and writing files, as well as

for metadata operations such as deleting and renaming. Separate modules implement each of the interfaces,

depending on common underlying services such as reading blocks.

One option would be to put all of the operations in a single, shared interface. This raises two problems.

First, the nesC wiring rules mean that a component that wants to use any command in the interface has to

handle all of its events. In the case of a file system, all the operations are split-phase; having to handle

a half dozen events (readDone, writeDone, openDone, etc.) merely to be able to delete a file is

hardly usable. Second, the implementation cannot be easily decomposed into separate components without

introducing internal interfaces, as the top-level component will need to call out into the subcomponents.

Implementing the entire subsystem as a single huge component is not easy to maintain.

Another option is to export each interface in a separate component (e.g., MatchboxRead, MatchboxWrite,

MatchboxRename, etc.). This increases wiring complexity, making the abstraction more difficult to use. For

a simple open, read, and write sequence, the application would have to wire to three different components.

Additionally, each interface would need a separate configuration to wire it to the subsystems it depends on,

increasing clutter in the component namespace. The implementer needs to be careful with these configura-

tions, to prevent inadvertent double-wirings.

The Facade pattern provides a better solution to this problem. The Facade pattern provides a uniform

access point to interfaces provided by many components. A Facade is a nesC configuration that defines a

coherent abstraction boundary by exporting the interfaces of several underlying components. Additionally,

the Facade can wire the underlying components, simplifying dependency resolution.

A nesC Facade has strong resemblances to the object oriented pattern of the same name. The distinction

lies in nesC’s static model. An object-oriented Facade instantiates its subcomponents at run-time, storing

pointers and resolving operations through another level of call indirection. In contrast, as a nesC Facade is

defined through naming (pass through wiring) at compile time, there is no run time cost.

Applicable When

• An abstraction, or series of related abstractions, is implemented across several separate components.

126 CHAPTER 8. DESIGN PATTERNS

• It is preferable to present the abstraction in whole rather than in parts.

Structure
Facade

User
SvcImpl1
Svc

interface Service1

interface Service2

SvcImpl2
Svc

Svc2

Svc1

Svc2

Svc1

components Svc1Impl, Svc2Impl;
Svc1 = Svc1Impl.Svc;
Svc2 = Svc2Impl.Svc;

components User, Facade;
User.Svc1 = Facade.Svc1;
User.Svc2 = Facade.Svc2;

Participants

• Facade: the uniform presentation of a set of related services.

• SvcImpl: the separate implementations of each service composing the Facade.

Sample 1.x Code

The Matchbox filing system uses a Facade to present a uniform filesystem abstraction. File operations

are all implemented in different components, but the top-level Matchbox configuration provides them in a

single place. Each of these components depends on a wide range of underlying abstractions, such as a block

interface to non-volatile storage; Matchbox wires them appropriately, resolving all of the dependencies.

configuration Matchbox {

provides {

interface FileRead[uint8_t fd];

interface FileWrite[uint8_t fd];

interface FileDir;

interface FileRename;

interface FileDelete;

}

}

implementation {

// File operation implementations

components Read, Write, Dir, Rename, Delete;

FileRead = Read.FileRead;

FileWrite = Write.FileWrite;

FileDir = Dir.FileDir;

FileRename = Rename.FileRename;

FileDelete = Delete.FileDelete;

// Wiring of operations to sub-services omitted

}

Listing 8.21: The Matchbox facade

8.6. STRUCTURAL: FACADE 127

Sample 2.x Code

The CC2420 stack is broken up into three call paths: control, transmission, and reception. The top-level

CC2420CsmaC component presents these three paths together as a single abstraction using a Facade:

configuration CC2420CsmaC {

provides interface Init;

provides interface SplitControl;

provides interface Send;

provides interface Receive;

provides interface PacketAcknowledgements as Acks;

uses interface AMPacket;

}

implementation {

components CC2420CsmaP as CsmaP;

Init = CsmaP;

SplitControl = CsmaP;

Send = CsmaP;

Acks = CsmaP;

AMPacket = CsmaP;

components CC2420ControlC;

Init = CC2420ControlC;

AMPacket = CC2420ControlC;

CsmaP.Resource -> CC2420ControlC;

CsmaP.CC2420Config -> CC2420ControlC;

components CC2420TransmitC;

Init = CC2420TransmitC;

CsmaP.SubControl -> CC2420TransmitC;

CsmaP.CC2420Transmit -> CC2420TransmitC;

CsmaP.CsmaBackoff -> CC2420TransmitC;

components CC2420ReceiveC;

Init = CC2420ReceiveC;

Receive = CC2420ReceiveC;

CsmaP.SubControl -> CC2420ReceiveC;

components RandomC;

CsmaP.Random -> RandomC;

components LedsC as Leds;

CsmaP.Leds -> Leds;

}

128 CHAPTER 8. DESIGN PATTERNS

Listing 8.22: The CC2420CsmaC uses a Facade

Known Uses

Stable, commonly used abstract boundaries such as radio stacks (CC2420CsmaC, CC1000CsmaRadioC)

and storage (BlockStorageC) often use a Facade. This allows them to implement complex abstractions in

smaller, distinct parts, which simplifies code.

Consequences

The key aspects of the Facade pattern are:

• Provides an abstraction boundary as a set of interfaces. A user can easily see the set of operations the

abstraction support, and only needs to include a single component to use the whole service.

• Presents the interfaces separately. A user can wire to only the needed parts of the abstraction, but be

certain everything underneath is composed correctly.

A Facade is not always without cost. Because the Facade names all of its sub-parts, they will all be

included in the application. While the nesC compiler attempts to remove unreachable code, this analysis is

necessarily conservative and may end up keeping much useless code. In particular, unused interrupt handlers

are never removed, so all the code reachable from them will be included every time the Facade is used. If

you expect applications to only use a very narrow part of an abstraction, then a Facade can be wasteful.

Related Patterns

• Placeholder: a placeholder allows easy selection of the implementation of a group of interfaces, while

a facade allows easy use of a group of interfaces. An application may well connect a placeholder to a

facade.

8.7 Behavioural: Decorator

Intent

Enhance or modify a component’s capabilities without modifying its implementation. Be able to apply

these changes to any component that provides the interface.

Motivation

We often need to add extra functionality to an existing component, or to modify the way it works without

changing its interfaces. For instance, the standard ByteEEPROM component provides a LogData interface

8.7. BEHAVIOURAL: DECORATOR 129

to log data to a region of flash memory. In some circumstances, we would like to introduce a RAM write

buffer on top of the interface. This would reduce the number of actual writes to the EEPROM, conserving

energy (writes to EEPROM are expensive) and the lifetime of the medium.

Adding a buffer to the ByteEEPROM component forces all logging applications to allocate the buffer.

As some application may not able to spare the RAM, this is undesirable. Providing two versions, buffered

and unbuffered, replicates code, reducing reuse and increasing the possibility of incomplete bug fixes. It is

possible that several implementers of the interface – any component that provides LogData – may benefit

from the added functionality. Having multiple copies of the buffering version, spread across several services,

further replicates code.

There are two traditional object-oriented approaches to this problem: inheritance, which defines the

relationship at compile time through a class hierarchy, and decorators, which define the relationship at run

time through encapsulation. As nesC is not an object-oriented language, and has no notion of inheritance,

the former option is not possible. Similarly, run-time encapsulation is not readily supported by nesC’s static

component composition model and imposes overhead in terms of pointers and call forwarding. However,

we can use nesC’s component composition and wiring to provide a compile time version of the Decorator.

A Decorator component is typically a module that provides and uses the same interface type, such

as LogData. The provided interface adds functionality on top of the used interface. For example, the

BufferedLog component sits on top of a LogData provider. It implements its additional functionality

by aggregating several BufferedLog writes into a single LogData write.

Using a Decorator can have further benefits. In addition to augmenting existing interfaces, they can

introduce new ones that provide alternative abstractions. For example, BufferedLog provides a syn-

chronous (not split phase) FastLog interface; a call to FastLog writes directly into the buffer.

Finally, separating added functionality into a Decorator allows it to apply to any implementation. For

example, a packet send queue Decorator can be interposed on top of any networking abstraction that provides

the Send interface; this allows flexible interpositioning of queues and queueing policies in a networking

system.

Applicable When

• You wish to extend the functionality of an existing component without changing its implementation,

or

• You wish to provide several variants of a component without having to implement each possible

combination separately.

130 CHAPTER 8. DESIGN PATTERNS

Structure

Decorator Original
SvcOrigSvc

Ext

// implement Svc, Ext
// using Orig

interface Service

interface Extension

OldUser
Svc

NewUser
Ext

components NewUser, Decorator;
NewUser.Ext -> Decorator.Ext;

components OldUser, Decorator;
OldUser.Svc -> Decorator.Svc;

Participants

• Original: the original service.

• Decorator: the extra functionality added to the service.

Sample 1.x Code

The standard LogData interface includes split-phase erase, append and sync operations. BufferedLog

adds buffering to the LogData operations, and, additionally, supports a FastLogData interface with a

non-split-phase append operation (for small writes only):

module BufferedLog {

provides interface LogData as Log;

provides interface FastLogData as FastLog;

uses interface LogData as UnbufferedLog;

}

implementation {

uint8_t buffer1[BUFSIZE], buffer2[BUFSIZE];

uint8_t *buffer;

command result_t FastLog.append(data, n) {

if (bufferFull()) {

call UnbufferedLog.append(buffer, offset);

// ... switch to other buffer ...

}

// ... append to buffer ...

}

Listing 8.23: The BufferedLog decorator

The SendQueue Decorator introduces a send queue on top of a split-phase Send interface:

module SendQueue {

provides interface Send;

uses interface Send as SubSend;

8.8. BEHAVIOURAL: ADAPTER 131

}

implementation {

TOS_MsgPtr queue[QUEUE_SIZE];

uint8_t head, tail;

command result_t Send.send(TOS_MsgPtr msg) {

if (!queueFull()) enqueue(msg);

if (!subSendBusy()) startSendRequest();

}

Listing 8.24: The SendQueue decorator

Known Uses

BufferedLog improves split-phase logging interface by buffering small writes.

CRCFilter decorates a ReceiveMsg interface by filtering packets that did not pass a CRC check:

packets that pass are signalled up, those that don’t are not.

QueuedSend decorates a SendMsg interface by enqueuing multiple requests, which it serlialises onto

an underlying SendMsg, providing in-order transmission.

Consequences

Applying a Decorator allows you to extend or modify a component’s behaviour though a separate com-

ponent: the original implementation can remain unchanged. Additionally, the Decorator can be applied to

any component that provides the interface.

In most cases, a decorated component should not be used directly, as the Decorator is already handling

its events. The Placeholder pattern (Section 8.5) can be used to help ensure this.

Additional interfaces are likely to use the underlying component, creating dependencies between the

original and extra interfaces of a Decorator. For instance, in BufferedLog, FastLog uses UnbufferedLog,

so concurrent requests to FastLog and Log are likely to conflict: only one can access the UnbufferedLog

at once.

Decorators are a lightweight but flexible way to extend component functionality. Interpositioning is a

common technique in building networking stacks, and Decorators enable this style of composition.

Related Patterns

• Adapter: An Adapter presents the existing functionality of a component with a different interface,

rather than adding additional functionality and preserving the current interface.

8.8 Behavioural: Adapter

Intent

132 CHAPTER 8. DESIGN PATTERNS

Convert the interface of a component into another interface, without modifying the original implemen-

tation. Allow two components with different interfaces to interoperate.

Motivation

Sometimes, a piece of functionality offered by a component with one interface needs to be accessed

by another component via a different interface. For instance, the TinyDB application – which provides a

database-like abstraction over a sensor network – accesses the “database attributes” of the sensor network

via the AttrRegister interface. These attributes represent, amongst other things, the sensors attached to

the sensor network’s motes. However, in TinyOS, sensors are accessed via the ADC interface.

Modifying each sensor to provide an AttrRegister as well, or instead of, its current interfaces is

not desirable, as AttrRegister provides functionality which is not desirable for all applications (named

access to sensors) and does not provide necessary functionality (access to sensors from interrupt handlers).

Instead, TinyDB uses Adapter components which implement the AttrRegister interface based on the

functionality of the the ADC interface provided by sensors.

An Adapter is a component which provides an interface of type A, e.g., AttrRegister, and uses an

interface of type B, , e.g., ADC, and implements the operations of A in terms of those of B. An Adapter

may also need to implement functionality not provided by the B interface, e.g., AttrRegister needs to

provide a name for the attribute. More generally, an Adapter may provide several interfaces A1, . . . , An and

implement them in terms of several used interfaces B1, . . . , Bm.

Applicable When

• You wish to provide the functionality of an existing component with a different interface.

Structure

Adapter
Original
SvcOldNew

// implement New
// using Old

interface NewService

interface OldService

User
Svc

components User, Adapter;
User.Svc -> Adapter.New;

Participants

• Original: the original service.

8.8. BEHAVIOURAL: ADAPTER 133

• Adapter: implements the new interface in terms of the functionality offered by the old.

Sample Code

The AttrPhotoM component adapts the standard Photo (light) sensor for use with TinyDB. It gives

the attribute a name, implements getting the attribute using the underlying ADC interface and refuses requests

to set the attribute:

module AttrPhotoM {

provides interface StdControl;

provides interface AttrRegister;

uses interface ADC;

}

implementation {

void *buffer;

command void StdControl.init() {

// register the attribute with a friendly name and size

signal AttrRegister.registerAttr("light", 2);

}

command result_t AttrRegister.getAttr(void *result) {

buffer = result;

return call ADC.getData();

}

event void ADC.dataReady(uint16_t data) {

(uint16_t)buffer = data;

signal AttrRegister.getAttrDone(result);

}

command result_t AttrRegister.setAttr(void *attrVal) {

// cannot "set" a sensor

return FAIL;

}

}

Listing 8.25: Adapting the ADC interface to AttrRegister

Known Uses

Many TinyDB attributes are implemented using Adapters.

In TinyOS 2.0, hardware resources such as A/D converters are presented by a hardware abstraction layer

(HAL) which offers high-level, but hardware-specific interfaces and a hardware independent layer (HIL)

which offers high-level, platform-independent interfaces. The HIL layer is typically an Adapter over the

HAL layer. For example, see the AdcP A/D converter component for the ATmega128.

TinyOS 2.0 offers two timing interfaces: Alarm, which signals timer events immediately (within an

interrupt handler), and Timer which signals its events in a task (with some delay). The AlarmToTimerC

134 CHAPTER 8. DESIGN PATTERNS

component is an Adapter for converting between these interfaces.

Consequences

An Adapter allows a component to be reused in circumstances other than initially planned for, without

changing the original implementation.

In many cases, a component used with an Adapter cannot be used independently in the same appli-

cation, as the Adapter will already be handling its events. As with the Decorator, the Placeholder pattern

(Section 8.5) can help ensure this.

An Adapter can be used to adapt many different implementations of its used interfaces if it doesn’t

embody assumptions or behaviour specific to a particular adapted component. However, the singleton nature

of nesC components means that a particular adapter can only be used once in a given application.

Adding an additional layer to convert between interfaces may increase the application’s resource con-

sumption (ROM, RAM and execution time).

Related Patterns

• Decorator: A Decorator adds functionality to an existing component while preserving its original

interface. An Adapter presents existing (and possibly additional) functionality via a different interface.

Chapter 9

Advanced Topics

The prior chapers have dealt with the basics of nesC programming: components and composition. Besides

generic components, version 1.2 of nesC introduces several new language features which deal with limita-

tions and problems encountered in TinyOS 1.x. This chapter describes two major features, attributes and

external types. The former is a general mechanism for extending the language and as of TinyOS 2.0 has

only a few uses, including wiring checks. The latter is a way to specify platform-independent data formats,

thereby supporting cross-platform message formats that do not require C preprocessor macros or utility

functions such as the ntoh and hton of sockets fame.

9.1 Attributes

Attributes are a way to associate metadata with program statements. nesC attributes are based on the ap-

proach taken with Java 5 attributes. All of the details are a bit beyond the scope of this document, but it’s

worthwhile to present the most common attributes and how they are used.

First, there are two kinds of attributes: gcc and nesC. gcc attributes look like this:

__attribute__((...))

Listing 9.1: A gcc attribute

An example of a gcc attribute is packed, which tells gcc to ignore normal platform struct alignment

requirements and instead pack a structure tightly. This attribute is used somewhat in 1.x:

typedef struct RPEstEntry {

uint16_t id;

uint8_t receiveEst;

135

136 CHAPTER 9. ADVANCED TOPICS

} __attribute__ ((packed)) RPEstEntry;

Listing 9.2: The dreaded “packed” attribute in the 1.x MintRoute library

The packed attribute was originally thought of as a good way to make data structures platform indepen-

dent. Specifically, to make it so code running on an atmega128 and code running on an x86 could agree on a

data format. The problem is that not all architectures can deal with packed structures properly (they require

that you be able to load unaligned words). For example, the MSP430 family (used in Telos motes) can’t

handle packed structures. In short, using packed structures leads to code that can only run on certain plat-

forms. The next section of this chapter discusses the way to address cross-platform data formats in TinyOS

2.0. Most of the gcc attributes have nesC equivalents; their use is slowly being phased out.

Programming Hint 14: Never, ever use the “packed” attribute.

nesC attributes look more like Java attributes. An attribute declaration is a struct declaration where the

name is preceded by @. Attributes can therefore have fields, which can be initialized. The nesC reference

manual goes into greater depth on this topic: for the most part, all currently used nesC attributes do not

have fields and so this detail isn’t too important. To annotate code with an attribute, you instantiate it. For

example

struct @atleastonce { };

configuration LedsC {

provides interface Init @atleastonce();

provides interface Leds;

}

Listing 9.3: nesC attributes

This example shows the declaration of the atleastonce attribute, which has no fields. The configura-

tion LedsC annotates its Init interface with the attribute. By default, the @atleastonce attribute doesn’t do

anything. But the nesC compiler has tools to output information about an application, including attributes.

Part of the default T2 compilation process includes running a script that checks wiring constraints, of which

atleastonce is one (the others are atmostonce, exactlyonce).

The tool checks that an interface annotated with atleastonce is wired to at least once. In the case of some-

thing like Init, the utility of this check is pretty clear: you can check at compile time that your component is

being initialized.

Attributes provide a way to expend the nesC language without introducing new keywords, which could

break older code. The current common attributes are:

9.2. PLATFORM INDEPENDENT TYPES 137

• @spontaneous: this function might be called from outside the nesC program, and so should not be

pruned by nesC’s dead code elimination. This attribute is needed for interrupt handlers and whenever

you want to link binaries (e.g., with TOSSIM).

• @C: this function should be considered a C, rather than a nesC, function. Specifically, if a component

defines a function with this attribute, then it is not make private to the component. This attribute is

needed for when C code needs to call nesC code (e.g., in TOSSIM).

• @hwevent: this function will be called as a result of a hardware event. Implies spontaneous.

• @atomic hwevent: this function will be called as a result of a hardware event, and will execute in an

atomic section. Implies spontaneous. The distinction between this attribute and @hwevent is needed

so nesC can know whether additional atomic sections are needed.

• @atmostonce: this interface must be wired to zero or one times.

• @atleastonce: this interface must be wired one or more times.

• @exactlyonce: this interface must be wired to once, no more, no less.

• @integer: this type parameter to a generic component must be an integer. This attribute allows

generic components to use arithmetic on the type, which is important for things like scaling timers.

• @combine: this attribute is used to specify a combine function for a type when the type is declared.

It takes a parameter, a string of the name of the combine function.

9.2 Platform Independent Types

The previous section alluded to a problem encountered in TinyOS programs that the packed attribute tried

to solve and failed: platform independent data formats. The basic problem is that TinyOS generally uses

structs to define message formats. For example, the standard header of a CC2420 packet (from CC2420.h)1

looks something like this:

typedef struct cc2420_header_t {

uint8_t length;

uint16_t fcf;

uint8_t dsn;

1Standard in that 802.15.4 has several options, such as 0-byte, 2-byte, or 8-byte addressing, and so this is just the format TinyOS

uses by default.

138 CHAPTER 9. ADVANCED TOPICS

uint16_t destpan;

uint16_t dest;

uint16_t src;

uint8_t type;

} cc2420_header_t;

Listing 9.4: CC2420 packet header

That is, it has a one byte length field, a two-byte frame control field, a one byte sequence number, a two

byte group, a two byte destination, a two byte source, and one byte type fields. Defining this as a structure

allows you to easily access the fields, allocate storage, etc. The problem, though, is that the layout and

encoding of this structure depends on the chip you’re compiling for. For example, the CC2420 expects all

of these fields to be little endian. If your microcontroller is big endian, then you won’t be able to easily

access the bits of the frame control field. On an atmega128, the structure fields will be aligned on one-byte

boundaries, so the layout will work fine. On an MSP430, however, two-byte values have to be aligned on

two-byte boundaries: you can’t load an unaligned word. So the MSP430 compiler will introduce a byte

of padding after the length field, making the structure incompatible with the CC2420 and other platforms.

There are a couple of other issues that arise, but the eventual point is the same: TinyOS programs need to

be able to specify platform-independent data formats that can be easily accessed and used.

To accomplish this goal, nesC 1.2 introduces platform independent types. Platform independent sim-

ple types (integers) are either big-endian or little-endian, independently of the underlying chip hardware.

Generally, an external type is the same as a normal type except that it has nx preceding it:

nx_uint16_t val; // A big endian 16-bit value

nxle_uint32_t otherVal; // A little endian 32-bit value

Listing 9.5: Examples of external simple types

In addition to simple types, there are also platform independent structs, declared with nx struct. Every

field of a platform independent struct must be a platform independent type, and it aligns all fields on byte

boundaries. For example, this is how TinyOS 2.0 declares the CC2420 header:

typedef nx_struct cc2420_header_t {

nxle_uint8_t length;

nxle_uint16_t fcf;

nxle_uint8_t dsn;

nxle_uint16_t destpan;

nxle_uint16_t dest;

nxle_uint16_t src;

nxle_uint8_t type;

} cc2420_header_t;

9.2. PLATFORM INDEPENDENT TYPES 139

Listing 9.6: The CC2420 header

Any hardware architecture that compiles this structure uses the same memory layout and the same

endianness for all of the fields. This enables platform code without resorting to macros to pack and unpack

stuctures, or utility functions such as UNIX socket htonl and ntohs.

Programming Hint 15: Always use platform independent types when defining message structures.

Under the covers, nesC translates network types into byte arrays, which it packs and unpacks with each

access. For most nesC codes, this has a negligible runtime cost. For example, this code

nx_uint16_t x = 5;

uint16_t y = x;

Listing 9.7: Translating between local and platform independent types

will rearrange the bytes of x into a native chip layout for y, which takes a few cycles. This means that

if you need to perform significant computation on arrays of multibyte values (e.g., encryption), then you

should copy them to a native format before doing so, then move them back to a platform indepenent format

when done. A single access costs a few cycles, but thousands of accesses costs a few thousand cycles.

Programming Hint 16: If you have to perform significant computation on a platform independent type or

access it many (hundreds or more) times, then temporarily copying it to a native type can be a good idea.

Acknolwedgements

I’d like to thank several people for their contributions to this book. First is Mike Horton, of Crossbow, Inc.,

who first proposed writing it. Second is David Gay; it is safe to say that at least half of the concepts and

ideas in this book came from him, as well as some of the design pattern text. Third is Pablo Guerrero, who

gave detailed comments and corrections. Fourth is Joe Polastre of Moteiv, who gave valable feedback on

how to better introduce generic components. Last but not least, I’d like to thank my father, who although he

doesn’t program, read the entire thing!

	Preface
	Programming Hints, Condensed
	Linking and Namespaces
	C
	C++
	Java
	Components and Interfaces
	Why?

	Interfaces and Modules
	Split Phase
	Interfaces with Arguments
	Module Implementation
	Tasks
	Concurrency
	Allocation

	Configurations and Wiring
	The as keyword and other namespace tricks
	Pass Through Wiring
	Multiple Wirings, Fan-in, and Fan-out

	Combine Functions

	Parameterized Wiring
	Defaults
	unique() and uniqueCount()

	Generic Components
	Generic Modules
	HilTimerMilliC: An Example Use of Generic Components
	Generic Configurations
	Examples
	TimerMilliC
	AMSenderC
	CC2420SpiC
	BlockStorageC

	Configurations, revisited

	Design Patterns
	Behavioural: Dispatcher
	Structural: Service Instance
	Namespace: Keysets
	Namespace: Keymap
	Structural: Placeholder
	Structural: Facade
	Behavioural: Decorator
	Behavioural: Adapter

	Advanced Topics
	Attributes
	Platform Independent Types

