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Abstract— Superconducting magnetic energy storage (SMES) 

is known to be a very good energy storage device. This article 

provides an overview and potential applications of the SMES 

technology in electrical power and energy systems. SMES is 

categorized into three main groups depending on its power 

conditioning system (PCS), namely, the thyristor-based SMES, 

voltage source converter (VCS) based SMES, and current source 

converter (CSC) based SMES. An extensive bibliography is 

presented on the applications of these three types of SMES. Also, 

a comparison is made among these three types of SMES. This 

study provides a basic guideline to investigate further 

technological development and new applications of SMES, and 

thus benefits the readers, researchers, engineers, and 

academicians who deal with the research works in the area of 

SMES.  

 

Index Terms-- current source converter (CSC), electrical 

power and energy systems, superconducting magnetic energy 

storage (SMES), thyristor, voltage source converter (VSC).  

I.  INTRODUCTION 

variety of storage technologies are in the market but the 

most viable are battery energy storage systems (BESS), 

pumped storage hydroelectric systems, and superconducting 

magnetic energy storage (SMES) system. Some of the 

disadvantages of BESS include limited life cycle, voltage & 

current limitations and potential environmental hazards. Again, 

some of the disadvantages of pumped hydro electric are large 

unit sizes, topographic and environmental limitations. SMES 

is a large superconducting coil capable of storing electric 

energy in the magnetic field generated by DC current flowing 

through it [1]. The real power as well as the reactive power can 

be absorbed by or released from the SMES coil according to 

system power requirements. Although superconductivity was 

discovered in 1911, SMES has been under study for electric 

utility energy storage application since the early 1970s [2]. 

SMES systems have attracted the attention of both electric 

utilities and the military due to their fast response and high 

efficiency (a charge–discharge efficiency over 95%). Possible 
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applications include load leveling, dynamic stability, transient 

stability, voltage stability, frequency regulation, transmission 

capability enhancement, power quality improvement, automatic 

generation control, uninterruptible power supplies, etc.. The 

one major advantage of the SMES coil is that it can discharge 

large amounts of power for a small period of time. Also, 

unlimited number of charging and discharging cycles can be 

carried out [3-8].  

In SMES systems, it is the power conditioning system 

(PCS) that handles the power transfer between the 

superconducting coil and the ac system. According to topology 

configuration, there are three kinds of PCSs for SMES, 

namely, the thyristor based PCS [9-18], voltage source 

converter (VSC) based PCS [19-28], and current source 

converter (CSC) based PCS [29-38]. The thyristor based 

SMES can control mainly the active power, and has a little 

ability to control the reactive power, also the controls of active 

and reactive powers are not independent [39-42]. On the other 

hand, both the VSC and CSC based SMES can control both 

active and reactive powers independently and simultaneously. 

Therefore, the applications in which mainly the active power 

control is required, the thyristor based SMES is used [43-52], 

while the applications in which reactive power or both active 

and reactive powers controls are required, the VSC [53-62] or 

CSC based SMES [63-70] is used. 

This paper attempts to present an overview and a 

bibliography on the SMES technology. A comprehensive set of 

references mainly published in archival journals and 

international conferences starting from the early 1970’s to till 

now on the above-mentioned three types of SMES applications 

are presented. To the best of our knowledge, it is the most up-

to-date information on the bibliography of the SMES 

applications in power and energy systems. The potential 

applications and cost-effectiveness of SMES are discussed in 

this context. Moreover, a comparison is made among these 

three types of SMES. It is hoped this study would serve as a 

basic guideline to investigate further technological 

development and new applications of SMES, and thus benefits 

the readers, researchers, engineers, and academicians who deal 

with the research works in the area of SMES.  

The organization of this paper is as follows: Section II 

describes the overview of SMES technology. Section III 

describes the applications of SMES in power and energy 
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systems. In Section IV, the cost-effectiveness of SMES is 

discussed. Section V provides some conclusions regarding this 

work.  

II.  OVERVIEW OF SMES TECHNOLOGY AND CONTROLS 

An SMES device is a DC current device that stores energy 

in the magnetic field. The DC current flowing through a 

superconducting wire in a large magnet creates the magnetic 

field. Since energy is stored as circulating current, energy can 

be drawn from an SMES unit with almost instantaneous 

response with energy stored or delivered over periods ranging 

from a fraction of a second to several hours.  

An SMES unit consists of a large superconducting coil at 

the cryogenic temperature. This temperature is maintained by a 

cryostat or dewar that contains helium or nitrogen liquid 

vessels. A bypass switch is used to reduce energy losses when 

the coil is on standby. And it also serves other purposes such 

as bypassing DC coil current if utility tie is lost, removing 

converter from service, or protecting the coil if cooling is lost 

[71]. 

Several factors are taken into account in the design of the 

coil to achieve the best possible performance of an SMES 

system at the least cost [5]. These factors may include coil 

configuration, energy capability, structure, and operating 

temperature. A compromise is made between each factor 

considering the parameters of energy/mass ratio, Lorentz 

forces, stray magnetic field, and minimizing the losses for a 

reliable, stable, and economic SMES system. The coil can be 

configured as a solenoid or a toroid. The solenoid type [56]) 

has been used widely due to its simplicity and cost 

effectiveness. Coil inductance (L) or PCS maximum voltage 

(Vmax) and current (Imax) ratings determine the maximum 

energy/power that can be drawn or injected by an SMES coil. 

The ratings of these parameters depend on the application type 

of SMES. The operating temperature used for a 

superconducting device is a compromise between cost and the 

operational requirements. Low temperature superconductor 

devices (LTS) are available now, while high temperature 

superconductor devices are currently in the development stage. 

Different types of SMES technologies and their control 

methodologies are described below. 

A.  Thyristor Based SMES 

Fig. 1 shows the basic configuration of a thyristor based 

SMES unit, which consists of a Wye-Delta transformer, an 

AC/DC thyristor controlled bridge converter, and a 

superconducting coil or inductor.  

The converter impresses positive or negative voltage on the 

superconducting coil. Charge and discharge are easily 

controlled by simply changing the delay angle  that controls 

the sequential firing of the thyristors [72-81]. If  is less than 

90 , the converter operates in the rectifier mode (charging). If 

 is greater than 90 , the converter operates in the inverter 

mode (discharging). As a result, power can be absorbed from 

or released to the power system according to requirement. At 

the steady state, SMES should not consume any real or 

reactive power [82-91].  

 

 

 

 

 

 

 

 

 

 

 

 

 

The voltage Vsm of the DC side of the converter is expressed 

by 

 

            Vsm= Vsm0 cos                                                        (1) 

 

where Vsm0 is the ideal no-load maximum DC voltage of the 

bridge. The current and voltage of superconducting inductor 

are related as 
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where Ism0  is the initial current of the inductor. The real power 

Psm absorbed or delivered by the SMES can be given by 

 

       Psm= Vsm Ism                                                                 (3) 

 

Since the bridge current Ism is not reversible, the bridge 

output power Psm is uniquely a function of , which can be 

positive or negative depending on Vsm. If Vsm is positive, power 

is transferred from the power system to the SMES unit. While 

if Vsm is negative, power is released from the SMES unit [92-

101]. The energy stored in the superconducting inductor is  
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2
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2
sm0 is the initial energy in the inductor. 

B.  VSC Based SMES  

Fig. 2 shows the basic configuration of the VSC based 

SMES unit [102-111], which consists of a Wye-Delta 

transformer, a 6-pulse PWM rectifier/inverter using IGBT, a 

two quadrant DC-DC chopper using IGBT, and a 

(4) 

Fig. 1.  SMES unit with 6-pulse bridge AC/DC thyristor controlled  

converter. 
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superconducting coil or inductor. The PWM converter and the 

DC-DC chopper are linked by a dc link capacitor. 

The PWM VSC provides a power electronic interface 

between AC power system and superconducting coil. The 

control system of the VSC is shown in Fig. 3.  The PI 

controllers determine the reference d- and q-axis currents by 

using the difference between the DC link voltage EDC and 

reference value EDC-ref, and the difference between terminal 

voltage VG and reference value VG-ref, respectively.  The 

reference signal for VSC is determined by converting d- and q-

axis voltages which are determined by the difference between 

reference d-q axes currents and their detected values. The 

PWM signal is generated for IGBT switching by comparing the 

reference signal which is converted to 3-phase sinusoidal wave 

with the triangular carrier signal. The DC voltage across the 

capacitor is kept constant throughout by the 6-pulse PWM 

converter [112-121].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The superconducting coil is charged or discharged by a two 

quadrant DC-DC chopper.  The DC-DC chopper is controlled 

to supply positive (IGBT is turned on) or negative (IGBT is 

turned off) voltage Vsm to SMES coil and then the stored 

energy can be charged or discharged. Therefore, the 

superconducting coil is charged or discharged by adjusting the 

average voltage, Vsm-av, across the coil which is determined by 

the duty cycle of the two quadrant DC-DC chopper. When the 

duty cycle is larger than 0.5 or less than 0.5, the stored energy 

of the coil is either charging or discharging. In order to 

generate the PWM gate signals for the IGBT of the chopper, 

the reference signal is compared with the triangular signal 

[122]. 

C.  CSC Based SMES 

Fig. 4 shows the basic configuration of the CSC based 

SMES unit. The dc side of CSC is directly connected with the 

superconducting coil, and its ac side is connected to the power 

line. A bank of capacitors connected to a CSC input terminal 

is utilized to buffer the energy stored in line inductances in the 

process of commutating direction of ac line current. 

Furthermore, the capacitors can filter the high-order harmonics 

of the ac line current. In CSC, through regulating the trigger 

signals of the switching devices, the current in the 

superconducting coil can be modulated to generate 

controllable three-phase pulse width modulation (PWM) 

current at the ac side. As the SMES system is inherently a 

current system, the transfer of both active and reactive powers 

between the CSC and power network is very fast [36]. 

In case of 12-pulse CSC based SMES, to improve the Total 

Harmonics Distortion (THD) of the AC source currents, an 

optimal PWM switching strategy is used to minimize the 5th, 

7th, 11th, and 13th harmonics. It has been proved that the 5th, 

7th, 11th and 13th harmonics can be minimized to zero with 

the modulation index M ranging from 0.2 to 1 [37]. Compared 

to a 6-pulse CSC, the 12-pulse CSC has smaller voltage 

ripples on the DC side, which means a further reduction of the 

AC losses in the SMES coil. 

For the magnet training, a DC current (Id) control algorithm 

is applied [37]. The block diagram is shown in Fig. 5, where 

Idref is the reference value of Id, PI is a proportional-integral 

regulator, L is the inductance of the SMES coil, Rd is the 

resistance in the DC circuit, and Vd is the DC voltage. With 

the phase angle a being fixed to zero, the DC voltage is 

proportional to the modulation index M, which determines the 

charging rate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Basic configuration of VSC based SMES system.  
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D.  Comparison of Thyristor Based, VSC Based, and CSC 

Based SMES  

Table I shows a comparison of the thyristor-based, VSC-

based, and CSC-based SMES. The comparison is done in 

terms of real and reactive powers control ability, control 

structure, total harmonic distortion (THD), and SMES coil 

voltage ripple. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III.  APPLICATIONS OF SMES IN POWER AND ENERGY SYSTEMS 

It is the fast response that makes SMES able to provide 

benefit to a lot of potential utility applications. The 

applications of SMES are described in the following. 

 

1) Energy storage - An SMES unit could provide the 

potential for energy storage of up to 5000 MWh with a high 

return efficiency (up to 95% for a large unit) and a rapid 

response time for dynamic change of energy flow 

(milliseconds) [123-131]. This aspect makes it ideal for large 

variations in energy requirements between daytime peak 

demand and off-peak back-down as well as large amounts of 

energy available for replacement of major unit trips. This may 

provide for the potential reduction of spinning reserve 

requirements. 

 

2) Load following - An SMES unit has the ability to 

follow system load changes almost instantaneously which 

provides for conventional generating units to operate at 

constant output [123], [126]. 

 

2) System stability - An SMES unit has the capability to 

dampen out low frequency power oscillations and to 

stabilize system frequency as a result of system 

transients [42], [74], [96], [120], [123-124]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Automatic Generation Control - An SMES unit can be 

the controlling function in an AGC system to provide for a 

minimum of area control error [123]. 

 

5) Spinning reserve - In case a major generating unit or 

major transmission line is forced out of service a certain 

TABLE I 

COMPARISON OF SMES TECHNOLOGIES 
 

 
Criteria SMES topologies 

Thyristor based SMES VSC based SMES CSC based SMES 

Real and reactive 

powers control ability 

The thyristor based SMES exhibits a 

lagging power factor to the power 

system network at all times, and 

significant low order harmonics caused 

by the thyristor firing pattern. Thus, the 

thyristor based SMES can control 

mainly the active power, and has a little 

ability to control the reactive power, 

also the controls of active and reactive 

powers are not independent. 

The VSC based SMES allows an 

independent control of the real and 

reactive power flowing between the 

superconducting coil and the power 

system network.  

Also, VSC based SMES can provide 

continuous rated capacity VAR 

support even at low or no coil current. 

The CSC based SMES allows an 

independent control of the real and 

reactive power flowing between the 

superconducting coil and the power 

system network. However, the CSC 

topology is able to supply a high 

level of capacitive reactive power. 

Also, CSC based SMES is 

dependent of coil in providing VAR 

support.  

 

Control structure 

Having only one AC/DC module, the 

thyristor based SMES is easier to 

control.  

The VSC based SMES includes not 

only an AC/DC circuit but also a 

DC/DC chopper, thus the control is 

complicated compared to both the 

thyristor based SMES and CSC based 

SMES. 

Having only one AC/DC module, 

the CSC based SMES is easier to 

control.  

Also, in the application of high 

power, the CSC has an additional 

advantage, that is, being easily 

paralleled of multiple bridges. 

Total harmonic 

distortion (THD) 

The total harmonic distortion is much 

higher than that of both the VSC and 

CSC topologies. 

A low total harmonic distortion can be 

obtained in VSC topology. 
A low total harmonic distortion can 

be obtained in CSC topology. 

Coil voltage ripple 

 

There appears ripple in the coil voltage 

when using the thyristor based SMES 

topology. 

There appears ripple in the coil voltage 

when using the VSC based SMES 

topology. 

The superconducting coil voltage 

ripple is much smaller when using 

the CSC based topology, especially 

the twelve-pulse one. This implies a 

reduction in the superconducting 

coil ac losses. 
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amount of generation must be kept unloaded as “spinning 

reserve”. A SMES unit can represent a tremendous amount of 

spinning reserve capacity when in the charged mode. This 

lowers the costs for spinning reserve requirements over 

comparable values and methods of maintaining spinning 

reserve [123-124], [126]. 

 

6) VAR control and power factor correction - An SMES 

unit can increase the stability and power carrying capacity of a 

transmission system [123]. 

 

7) Black start capability - An SMES unit can provide 

power to start a generating unit without power from the grid. 

This provides for grid restoration when area failures have 

occurred [123]. 

 

8) Bulk energy management - An SMES unit has the 

ability to store large quantities of energy, and thus can act as a 

storage and transfer point for bulk quantities of energy based 

on the economics, potentially lowering the cost of electricity 

[123]. 

 

9) Transient voltage dip improvement - A transient 

voltage dip lasting for 10-20 cycles can result when a major 

disturbance on the power system occurs. SMES and associated 

converter equipment has been shown to be effective for 

providing voltage support which can result in increasing the 

power transfer limitations on the transmission system [127]. 

 

10) Dynamic voltage stability - Dynamic voltage 

instability can occur when there is a major loss of generation 

or heavily loaded transmission line and there is insufficient 

dynamic reactive power to support voltages. SMES has been 

shown to be effective in mitigating dynamic voltage instability 

by supplying real and reactive power simultaneously 

supplanting loss of generation or a major transmission line 

[126-127]. 

  

11) Tie line control - When power is scheduled between 

utility control areas it is important that the actual net power 

matches closely with the scheduled power. Unfortunately when 

generators are ramped up in one control area and down in the 

receiving control area to send power, the system load can 

change causing an error in the actual power delivered. This 

Area Control Error (ACE) can result in inefficient use of 

generation. SMES can be designed with appropriate controls 

to inject power to virtually eliminate this error and insure that 

generation is efficiently used and power schedules are met 

[127]. 

 

12) Underfrequency load shedding reduction - When the 

power system suffers the loss of a major resource such as a 

generating plant or major importing transmission lines the 

system frequency will drop and continue to decline until the 

generating resource – load balance is restored. Because SMES 

can inject real power rapidly into the system it is an effective 

method to offset, or reduce, underfrequency load shedding 

because it reduces the mismatch between load and supply 

capability of the system disturbance [127]. 

 

13) Circuit breaker reclosing - Following clearance of a 

fault, circuit breakers attempt to reclose and return the affected 

transmission line to service. This is accomplished routinely 

whenever the power angle difference across the circuit breaker 

is within acceptable limits. However, protective relays prevent 

the circuit breaker from reclosing if the angle difference is too 

large. By briefly supplying some fraction of the power 

normally transmitted by the transmission line, SMES can 

reduce the power angle difference across a circuit breaker and 

allow reclosure of the circuit breaker. This allows restoration 

of the system power transfers quickly following outages of 

major transmission lines [127]. 

 

14) Power quality improvement - SMES can provide ride 

through capability and smooth out disturbances on power 

systems that would otherwise interrupt sensitive customer 

loads. When momentary disturbances such as transmission line 

flashovers or lightning strikes occur, power can be lost if the 

transmission line trips, or voltages can dip low. SMES has 

very fast response can inject real power in less than one power 

cycle preventing important customers from losing power [127]. 

 

15) Backup power supply - The energy storage capacity of 

SMES can be used as a back up power supply for large 

industrial customers in case of loss of the utility main power 

supply. Studies have shown SMES can be sized with the 

appropriate energy storage and capacity to provide back up 

through most disturbances and be cost effective [126-127]. 

 

16) Sub-synchronous resonance damping - Generators 

which are connected to transmission lines which have high 

levels of series compensation (series capacitors) can be 

exposed to a phenomenon called Sub-Synchronous Resonance 

(SSR) which can result in serious damage to the generator. 

SMES as an active device can be designed to provide 

mitigation of SSR and allow higher levels of series 

compensation to be installed [12], [75-76], [78], [111], [127].  

 

17) Electromagnetic launcher – An electromagnetic 

launcher requiring high power pulse sources has been 

developed as a railgun for military applications.  A railgun can 

launch projectiles at velocities higher than 2000 m/s, 

surpassing the conventional possibilities. Due to its high 

power density, SMES is a very interesting energy storage 

device for an electromagnetic launcher [132]. 
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18) Wind generator stabilization - Wind generators have 

transient stability problems during network disturbances. An 

SMES unit based on a self-commutated inverter using 

insulated-gate-bipolar-transistor (IGBT) or gate-turn off (GTO) 

thyristor is capable of controlling both the active and reactive 

powers simultaneously. Therefore, it can act as a good tool to 

stabilize the wind generator system considerably [112], [117]. 

 

19) Minimization of power and voltage fluctuations of 

wind generator - Due to random variations of wind speed, 

output power and voltage of wind generator fluctuate 

randomly. These fluctuations pose serious problems on the 

system, for example, lamp flicker and inaccuracy in the timing 

devices. Since an SMES unit is capable of controlling both the 

active and reactive powers simultaneously, it can act as a good 

tool to decrease voltage and power fluctuations of the wind 

generator system considerably [102], [114], [118], [133]. 

 

In addition to direct applications and benefits from the 

SMES technology, the following are additional secondary 

benefits that could be derived [123]: 

1) Lower use of oil and gas - An SMES unit can be 

charged by the more efficient units in a system, thereby 

lessening the need for the lower efficiency units to operate 

during peak periods. 

 

2) Increased efficiency and reduced maintenance of 

generating units - Because an SMES unit can absorb the 

fluctuations in demand and ramp at extremely rapid rates, 

generating units can be operated and maintained at their most 

efficient set points, thereby increasing efficiency, reducing 

maintenance, and extending operability. 

 

3) Deferral of new conventional capacity - An SMES 

unit has the ability to receive credit that would otherwise go to 

additional intermediate load and peak load generating units. It 

may also serve to reduce the calculated avoided cost. 

 

4) Deferral of new transmission capacity - An SMES 

unit, if strategically placed, can defer the need for new 

transmission to high load centers by loading existing 

transmission systems during off-peak periods. 

 

5) Increased availability of generating units - An SMES 

unit provides for the back-up of additional generating units 

which were previously needed only during peak periods, thus 

increasing the overall capacity of the system. 

 

6) Environmentally sound - The clean and efficient 

storage of electricity by SMES from conventional units 

operating more efficiently at their set points will displace 

inefficient fossil-fueled units, conserve premium fuels, and 

reduce air pollutants. SMES may provide for some emissions 

credit. SMES has no emissions and its electromagnetic field is 

confined to an area comparable to generating technologies. 

IV.  COST-EFFECTIVENESS OF SMES 

The cost of an SMES system can be separated into two 

independent components where one is the cost of the energy 

storage capacity and the other one is the cost of the power 

handling capability [129], [134-143]. Storage related cost 

includes the capital and construction costs of conductor, coil 

structure components, cryogenic vessel, refrigeration, 

protection, and control equipment. Power related cost has the 

capital and construction costs of the power conditioning 

system. According to [56], the cost of storage system is within 

the range of $ 85-125K per MJ, while the cost of the power 

conversion system is in the range of $150 to $250 per kW. The 

reason for the wide variation in the cost of the power 

conversion system is its dependence on the configuration of 

the system. For example, if an SMES is connected to an ac 

system, a dc-dc chopper and a voltage source converter or a 

current source converter is needed, but if the SMES is 

connected to an existing FACTS device with a dc bus, only the 

dc-dc chopper is required. 

However, although it appears that SMES systems are costly 

[144-152], due to its salient properties such as very fast 

response, high efficiency, capability of control of real power 

and reactive power, etc., SMES system is getting increasing 

interest in the field of power and energy systems. It is hoped 

that its potential advantages and environmental benefits will 

make SMES units a viable alternative for energy storage and 

management devices in the future [84], [123]. 

Some recommendations on how the cost of SMES might be 

reduced are as follows. 

a) Using high-temperature superconducting coil, the SMES 

cost might be reduced. 

b) Reduction of costs on conductor material and 

refrigeration system might reduce the SMES energy storage 

cost. 

c) Reducing the cost on the power conditioning unit might 

also considerably reduce the overall SMES cost. 

d) Continued research and development is likely to bring 

the price down and make the technology appear even more 

attractive. 

V.  CONCLUSION 

This paper provides an overview and potential applications 

of the SMES technology in electrical power and energy 

systems. An extensive bibliography is presented on the 

applications of thyristor based, VSC based and CSC based 

SMES. Also, a comparison is made among these three types of 

SMES. Since the up-to-date SMES references and 

applications are provided in this article, this would serve as a 

basic guideline to investigate further technological 

development and new applications of SMES, and thus benefits 
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the readers, researchers, engineers, and academicians who deal 

with the research works in the area of SMES.  
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