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Abstract

In this project is presented a study of the applicability of machine learning and computer vision
techniques for reading and classifying gel card tests using supervised learning techniques, with
the purpose of helping laboratory technicians evaluate ABO typing tests.

The main objective of this project is to build an automated system that performs the ABO
typing test returning the result.

The used method consists in three different processes, one where image segmentation is used
to segment the blood test in a tube image and extract relevant features using ellipse fitting, and
other two who extract interest points from enhanced tube images and use the interest points posi-
tion for classification.

The test tube images were acquired using a digital camera and 21 different gel cards, with
3 additional images generated digitally, giving a total of 144 gel tube images. Using features
extracted from the fitted ellipse, a dataset was built with 144 instances and 6 ellipse attributes: the
ellipse centre coordinates, the ellipse semi-major and semi-minor axes, the ellipse area and the
ellipse orientation in radians. Another dataset was built using image interest points detected with
the FAST algorithm, resulting in a dataset with 829 instances and 2 attributes: the interest point
vertical and horizontal position. A final dataset was built using the centre position computed from
the detected interest points corresponding to 144 instances, each with two numeric attributes: the
vertical and horizontal position of the computed centre.

In the last Section, different classification algorithms were trained with the three built datasets.
From the resulting models were chosen three that returned better accuracy, being stored and used
in an application built to easily classify new gel cards.

The results show that the applied techniques correctly predicted new card tests for the two
majority classes. The three minority classes produced satisfactory results during the training step.
These three classes were not tested in the application due to the lack of real samples, only existing
digitally created samples.
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Resumo

Neste projeto € estudada a aplicabilidade de técnicas de aprendizagem computacional supervi-
sionada e de processamento de imagem na leitura e classificagdo de cartdes de gel usados para
determinagdo do grupo sanguineo por aglutinacao.

O principal objetivo do projeto é construir um sistema auténomo que realize o teste ao grupo
sanguineo retornando o resultado.

O método usado consiste em trés diferentes processos, um onde é usada segmentacdo de im-
agem para isolar o contorno da amostra de sangue presente em cada imagem de tubo, extraindo
caracteristicas relevantes para classificagdo através da aproximacdo do contorno segmentado a
uma elipse. Nos dois outros processos, pontos de interesse sdo extraidos das imagens de tubos e a
sua posicao é usada para classificacao.

As imagens dos tubos de teste foram capturadas usando uma camara digital e 21 cartdes de
gel, com 3 imagens adicionais geradas digitalmente, resultando num total de 144 imagens de
tubos de gel. Usando as caracteristicas extraidas dos parametros da elipse, foi construido um
conjunto de dados com 144 instincias e 6 atributos: as coordenadas do centro da elipse, o semi-
eixo maior e o semi-eixo menor da elipse, a drea da elipse e a orientacdo da elipse em radianos.
Um outro conjunto de dados foi construido usando a posi¢do dos pontos de interesse detetados
pelo algoritmo FAST, resultando em 829 instincias e 2 atributos: a posi¢do vertical e horizontal
do ponto de interesse na imagem. O ultimo conjunto de dados foi construido usando a posi¢do
central do conjunto de pontos de interesse detetados em cada tubo, resultando em 144 instincias,
cada uma tendo dois atributos numéricos: o valor vertical e horizontal da posicao central de pontos.

Na ultima parte, diferentes algoritmos de classificagdo foram treinados com os trés conjuntos
de dados criados. Dos modelos resultantes, foram escolhidos para analise trés modelos com mel-
hor precisdo, sendo estes guardados e aplicados numa aplicagd@o criada para a fécil classificacio
novos cartoes.

Os resultados obtidos, mostraram que as técnicas aplicadas conseguiram corretamente avaliar
novos cartdes de teste para as duas classes maioritdrias. Apesar das trés classes minoritarias nao
terem sido testadas na aplicacdo, devido a inexisténcia de amostras reais, estas obtiveram resulta-
dos satisfatérios no treino dos trés diferentes processos.
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“There are naive questions, tedious questions, ill-phrased questions, questions put after
inadequate self-criticism.

But every question is a cry to understand the world.

There is no such thing as a dumb question.”

Carl Sagan, The Demon-Haunted World: Science as a Candle in the Dark
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Chapter 1

Introduction

This chapter presents the project context, motivation, objectives and structure.

1.1 Context and Motivation

This project is developed in the context of the MSc Dissertation in Electrical and Computers
Engineering.

In the Human body, the blood is one of the most important elements to sustain Human life,
serving as the delivery process for important substances like nutrients, oxygen, metabolic waste,
body regulation functions and system protection. As an essential element for the well being of the
Human body, it is important to understand how it behaves, if differences exists between Humans
and if they do, how can they be differentiated.

In 1900, the Austrian scientist Karl Landsteiner identified three different blood types, O, A
and B, through the existence of two antigens, A and B. Later in 1902, Alfred von Decastello and
Adriano Sturli discovered the fourth type, AB, which had both the A and the B antigen. Over
the years multiple blood group systems were developed, and as of October 2012, the International
Society of Blood Transfusion (ISBT) officially recognizes thirty-three different blood group sys-
tems [6]. A blood group system is defined by the ISBT as the system where "one or more antigens
controlled at a single gene locus or by two or more very closely linked homologous genes with
little or no observable recombination between them" [7].

In clinical laboratories, the gel test is a used method for ABO and Rhesus (Rh) typing. ABO
and Rh are blood type systems for blood classification based on the existence or lack of certain
Red Blood Cell (RBC) antigen . In the gel card test, after a centrifugation step the test result is
determined by a visual inspection of the card to determine how the blood samples reacted to the
different antigens. Some systems have been built for automatic determining the gel card test result
[8, 9] as well as some alternative systems using the same agglutination concept [10, 11].

This project aims to study the applicability of machine learning and computer vision tech-

niques for reading and classifying gel card tests using supervised learning techniques.



2 Introduction

1.2 Objectives

The objective of this project is to build an automated system for ABO typing using machine
learning and computer vision techniques. The process should be automated and learn from past

misclassification results.

1.3 Report Structure

This report is divided in five chapters. The current chapter contains the project context, motivation
and objectives. In the chapter 2 the literature review is presented along some related work. In
the chapter 3 the practical problem is presented, framed in the computer vision context and the
adopted methodology is detailed. Finally, obtained results are presented in chapter 4 followed by

a brief conclusion and future work in chapter 5 .



Chapter 2

Literature Review

A problem of computer vision applied to the analysis of static images is, as described by Trier et
al. [12], usually divided in well defined processing steps. Starting with the digital acquisition of
the image and its subsequent preprocessing, existing noise is reduced and the image is segmented
to isolate its individual characteristics. The next step is to extract and store relevant and descriptive
information from the segmented image, and then analyse this information with classification tech-
niques. The process ends with a possible validation of the obtained results, so that wrong outcomes
can be corrected. This chapter focuses in the segmentation, feature extraction and classification
steps of the problem of computer vision applied to the analysis of static images, providing some

used known techniques.

2.1 Image Segmentation

Image segmentation is the process of grouping image pixels with similar characteristics into ho-

mogeneous regions. Formally, image segmentation can be defined by [13, 14]:

n
USi=F with $inS;=0, i#j. (2.1
i=1

Being F, in the Equation 2.1, the set of all pixels of an image and a function P() the uniformity
predicate defined on groups of neighbour pixels, then segmentation is the partitioning of the initial
set F into smaller connected subset or regions (S1, Sz, ..., S,). The uniformity predicate is P(S;) =
true for all regions (S;) and P(S; U S;) = true, when S; is adjacent to S ;.

In computer vision, a good segmentation is essential to ensure good results in the recogni-
tion and analysis steps, as such different problems may require different segmentation methods
or a combination of multiple methods. The various methods can be broken into measurement-
space-based algorithms (e.g. level thresholding of histograms), pixel-similarity-based algorithms
(e.g. region growing), pixel-difference-based algorithms (e.g. edge detection), and physics-based

schemes [15].
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2.1.1 Thresholding

In image segmentation, thresholding is one of the most simple methods to isolate image regions,
specially when there is a distinct intensity difference between the object to extract and the image
background. In the literature there is a vast number of implementations of thresholding, catego-
rized by Sezgin and Sankur [16] in six groups, according to the kind of information each one

uses:

o Histogram shape-based methods — Image segmentation is achieved based on histogram
properties, like analysing concavities [17], peak [18] and valley analysis [19] and shape-
modelling thresholding [20];

e Clustering-based methods — The optimal threshold value is obtained using clustering
techniques, for example by iteratively determining the cluster mean [21] or minimizing the
weighted sum of within-class variance [22]. Fuzzy clustering techniques have also been

used in thresholding segmentation [23];

e Entropy-based methods — These methods rely on image entropy operations to determine
the optimal threshold. These methods are divided by [16] into entropic thresholding [24],
cross-entropic thresholding [25] and fuzzy entropic thresholding [26];

e Object attribute-based methods — The threshold selection is based in measures of sim-
ilarity between the original image and its binary version, like image moments [27], edge

fields [28] or shape compactness [29];

e Spatial methods — These class of algorithms utilizes grey value distribution but also de-

pendency of pixels in a neighbourhood;

e Local methods — In these techniques the threshold is estimated for each pixel according

to local image characteristics, like contrast [30] or mean and standard deviation [31, 32],

2.1.2 Edge Detection

Edge detection methods can be used as a segmentation tool to highlight image feature boundaries.
These methods are usually divided in the literature in sequential and parallel techniques [13].
While in sequential techniques the decision that determines if a pixel represents an edge of a
region is dependent in past decisions, in parallel techniques this decision is made based on the
pixel in analysis and some of its neighbours. In theory, parallel techniques can be applied to
every pixel in the image simultaneously. On the other hand, sequential approaches are dependent
on the choice of a good initial seed and how previous decisions will influence the next pixel
decision. Parallel approaches use contours detectors for image segmentation with no guarantee
that the method result will be a closed region. There are multiple approaches to this problem and
it has been shown that regions can be recovered from a contour detector [33, 34]. Early parallel

approaches of edge detection respond to local changes in grey level or average grey level of the
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image. Roberts, Sobel and Prewitt gradient operators, called first difference operators, and the
Laplacian operator, a second difference operator, detect edges by convolving a grey-scale image
with local derivative filters. Marr and Hildreth proposed the use of the zero-crossing segments of
the Laplacian of Gaussian operator (LOG) for contour detection, or replacing the previous LOG
operator by the Difference of Gaussians (DOG) operator for a fast approximation [35].

Canny defined an optimal edge detector method as an algorithm with the three main charac-
teristics [36]:

1. Good detection — There should be a low probability of failing to mark real edge points,

and low probability of falsely marking non-edge points;

2. Good localization — Points marked as edges by the operator should be as close as possible
to the centre of the true edge;

3. Single edge response — The detector should only produce a single output in response to a
single edge.

With these performance criteria Canny proposed a optimal edge detector by convolving the
image with an optimal filter, that can be approximated by the first derivative of the Gaussian, and
selecting the output maxima as the edges. For the two-dimensional scheme, the image is convo-
luted with the first order derivatives of the two-dimensional Gaussian. Computing the gradient of
the smoothed image, the edges are then located at the maxima of the gradient modulus taken in
the direction of the gradient.

Detection of lines, which correspond to local extrema of the grey level image, can also give
valuable information in the position of image edges. Haralick [38] proposed an algorithm where
lines occur at pixels having zero-crossings of the first direction derivative taken in the direction that
maximizes de second directional derivative. Giraudan [39] proposed similar algorithm detecting
a line at a negative local maximum of the second derivative of the image. In an analogous way,
junctions can identify image corners and the orientations of the edges forming it. Rangarajan et
al. [40] derive an optimal detector using Canny’s criteria, that locates junctions formed by two
linear symmetric edges. The junctions are then located at the local maxima output of the image
convolution with twelve different masks that differ in orientation and angle. Elias and Laganiere
[41] propose an junction detection operator based on circumferential anchors (JUDOCA), that can

be split into two main phases, an edge detection phase and a junction detection phase.

2.1.3 Region Operations

Region based approaches attempt to group pixels into homogeneous regions, clustering images
features such as brightness, colour or texture. Region growing and splitting are two basic region
operators. While the first starts from a initial point as the seed region and then expands to its
homogeneous neighbours, the splitting approach uses the whole images as the initial region seed

and then keeps splitting the region until it is homogeneous. Region merging is usually used after
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these operators to join similar regions. One major drawback is the inherent sequential nature of
these techniques.

Arbeldez et al. [34] identify three widely used algorithms of region segmentation: a graph-
based region merging algorithm proposed by Felzenszwalb and Huttenlocher [42] which produces
segmentations that are not too coarse and not too fine, despite making simple greedy decisions;
the mean shift segmentation algorithm by Comaniciu and Meer [43] where regions are formed by
grouping pixels whose convergence points are closer than a threshold 4, in the spatial domain and
h, in the range domain; the spectral graph theoretic framework of normalized cuts who partitions

the image into regions of coherent texture and brightness [44, 45].

2.1.4 Level Set Segmentation

The level set method, initially introduced for capturing moving fronts [46], is applied to seg-
mentation by trying to represent a contour C in the image plane Q C R? as the zero-level of an
embedding function ¢ : Q — R: C = {x € Q| ¢(x) = 0} [47]. There are two different approaches
for evolving the zero-level set [48], a global approach that updates the level set function globally
(e.g. Simplified Mumford-Shah Model [49]) and an approach that focuses on the local evolution
of the curve provided at initiation, only solving the level set equation around a narrow band in the
neighbourhood of the zero level set.

Level set methods have been used in the medical field, e.g. Angelini et al. [50] review the
use of level set methods in segmentation of medical images, and Jiang and Nie [51] use a level set

based on the Mumford-Shah Model in a problem of urine sediment image segmentation.

2.2 Feature Extraction

Feature extraction in image analysis is the process of translating image features to easily process-
able digital information. Some known techniques are based on shape attributes, contour, texture
or local image descriptors. From the past discussed methods for image segmentation some can
also be used as image descriptors, such as the image histogram, image edges or image blobs. Lo-
cal descriptors can be considered a robust method for image representation that allows to identify
objects or scenes even without previous image segmentation [52, 53]. These features do not need

to translate directly into a object propriety, since the goal is to analyse their statistics.

2.2.1 Region Descriptors

Region descriptors are features extracted from segmented image regions. These features can be
simple descriptors as region area and perimeter, shape circularity measurements [54], mean and
median values of region pixels, shape eccentricity and elongatedness ratios or region moments.
Gianfranco and Yi [55] proposed the use of region moments as invariant region descriptors.
Region moments were presented as descriptors based on an extension of the image moments con-

cept. Region moments represent a statistical description of the region data which is a projection
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onto the space of polynomials with two variables. In [55] the authors present three scale and ro-
tation invariant region moments descriptors: the first computes the central moments of the image
features of a region; the second one is the set of the Hu’s invariants [56] computed over every

image feature; and the third computes the radial moments of the image features.

2.2.2 Boundary Descriptors

A region boundary can also be a useful descriptor. Fourier descriptors stand out for being able
to approximate a region contour with only a few descriptors by encoding a rough boundary curve
in the initials Fourier descriptors, giving each new descriptor a more accurate contour recovered

from the inverse Fourier transform [57, 58].

2.2.3 Region Covariance

Tuzel et al. [59] proposed the use of the covariance of multiple region statistics as the region
descriptor. The result is a low-dimensional covariance matrix that fuse multiple region features

which might be correlated.

1
n—1

Cr=—=Y (a—)(—p' 22)
k=1

The covariance matrix of a region R is then given by Cg, in the Equation 2.2, where {zx},_; ,
are the feature points inside R and u the mean of the points. In the paper, the authors also propose

an alternative nearest neighbour search algorithm adapted to the covariance features.

2.2.4 Local Feature Detectors

Lowe presented the scale invariant feature transform algorithm (SIFT) as a procedure of trans-
forming image data into scale-invariant coordinates relative to local features [60]. The process is

divided in four major steps:

1. Scale-space extrema detection — a DOG function is used to identify potential interest points

that are invariant to scale and orientation;

2. Key point localization — At each candidate location, a model is fit to determine location

and scale. Key points are then selected based on measures of their stability;

3. Orientation assignment — One or more orientations are assigned to each key point lo-
cation based on local image gradient directions. All future operations are performed on
image data that has been transformed relative to the assigned orientation, scale, and loca-
tion for each feature, thereby providing invariance to these transformations the features are
invariant to image scaling and rotation, and partially invariant to change in illumination and

3-Dimensional (3D) camera viewpoint;
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4. Key point descriptor — The local image gradients are measured at the selected scale in the
region around each key point. These are transformed into a representation that allows for

significant levels of local shape distortion and change in illumination

Despite generating big descriptor sets, the cost of extracting these features is minimized by
taking a cascade filtering approach, in which the more expensive operations are applied only at
locations that pass an initial test.

The gradient location and orientation histogram (GLOH), by Mikolajczyk and Schmid [61] is
proposed as an extension to the SIFT descriptor. The GLOH was designed to increase robustness
and distinctiveness of the SIFT, also applying principal component analysis to reduce the big
descriptors size, as suggested by Ke and Sukthankar [62].

Speeded up robust features (SURF) is a fast scale and rotation invariant feature detector and
descriptor presented by Bay et al. [63] based on the Hessian-matrix and sums of 2-Dimensional
(2D) Haar wavelet being the later obtained with the aid of the integral image.

Features from accelerated segment test (FAST) is a corner detection method developed by
Rosten and Drummond [64, 65] that uses the Iterative Dichotomiser 3 (ID3) algorithm for corner
pixel selection. A more detailed analysis of this algorithm is present in the fourth chapter of this

report.

2.3 Features Classification

One of the last steps in a computer vision problem, is interpreting the extracted representative
features. In this project problem, ABO typing, the classification step serves as a prediction process
for determining the outcome the ABO test result.

Classification is a supervised learning process which is divided in two main steps, an initial
learning step where a classification model is built from a set of previously classified training data,
and a test step that uses the obtained model and tests its accuracy. This two step process requires
the division of the problem data in two sets of randomly selected tuples, a training set for the
initial learning step and a test set for the test step. If the accuracy of the model in the second step

is considered acceptable, the obtained model can be used to classify future data tuples.

2.3.1 K-Nearest Neighbour

The k-Nearest Neighbour (k-NN) is simple a non-parametric classification algorithm where un-
classified samples are, according to a specified distance measurement, assigned to the class of the
nearest K neighbours in the training set. This training set samples exist in a n-dimensional space,
where n represents the number of numeric attributes of each sample. To classify a unknown sam-
ple, a classifier searches for the K nearest training samples in the n-dimensional space, and assigns

it the most common class. This measurement of distance can be, for instance, defined in terms



2.3 Features Classification 9

Classification
algorithm
e
—
Training data / rules \
e o

Classification

rules
B 5 ) Test data
name age income credxl_mtmg

Sandy Jones <=30 low fair

Bill Lee <=30 low excellent - = = (John Henri, 31...40, high)
Courtney Fox | 31...40 high excellent If age =“31...40” name age income | credit_rating Credit rating?
Susan Lake >40 med fair and income = high Frank Jones | >40 high fair

Claire Phips | >40 med fair then SylviaCrest | <=30 | low fair l

Andre Beau | 31..40 high excellent credit_rating = excellent Anne Yee 31..40 | high excellent excellent

Figure 2.1: The data classification process
In the first step rules are obtained by applying a classification algorithm to the training data, and
then the accuracy of those rules are benchmarked in test data. If the accuracy is acceptable, the
model can be used in new data tuples [1].

of Euclidean distance, where the Euclidean distance between two points, X = (x,x2,...,x,) and

Y = (ylayla‘”ayn) is

(2.3)

Nancy and Asoke [66], use a k-NN classifier to segment retinal blood vessels in digital colour
fundus images. The authors use the green channel intensity, the local maxima of the gradient
magnitude, and the local maxima of the largest eigenvalue to classify the pixels in colour retinal
images into vessel and non-vessel pixels. A post-processing step is used to remove small segments
through a iterative thresholding strategy. The authors conclude that the selected three features
significantly reduce the processing time when comparing with a competing method that uses thirty-

one features, while maintaining comparable sensitivity on pixel classification.

2.3.2 Decision Trees

Decision trees are described by Han et al. [1] as a flow-like tree structure, where each internal
node denotes a test on a attribute, each tree branch represents an outcome of the test and each
terminal node (leaf node) holds a class label. For a classification problem, having a sample with
an unknown class label, the attribute values of the sample are tested against the decision tree,
tracing a path from the root to the leaf node, which holds the class prediction for that sample.

In a study to classify a lung cancer dataset, Islam et al.[67] adapted ID3 recursive partition-
ing as the decision tree algorithm, incorporating entropy into the process. Rajendran and Mad-
heswaran [68] developed a hybrid technique using association rules with decision trees for brain

tumour classification.

2.3.3 Naive Bayesian Classification

The naive Bayesian classification technique is a statistical classifier based on the Bayes’ theorem,

that can predict class membership probability, assuming that all class attributes are independent of
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credit_rating?

fair

Figure 2.2: Decision tree for classification
Example of a decision tree for classification problem: Does the client buy a computer? [1]

each other. The Bayes’ theorem provides a way of calculating the posterior probability, P (H|X),
from P(H), P(X) and P (X|H) (Equation 2.4).

P(XH)P(H)

P(HIX) = =5

(2.4)

Deepa and Mymoon Zuviriya [69] benchmarked a Naive Bayes classifier, a Support Vector
Machine (SVM) classifier and a k-NN classifier with digital retinal images for blood vessel detec-
tion. The authors achieved a better result with the SVM classifier than with the Naive Bayes and
the k-NN classifiers.

Schmitt and McCoy [70], in object classification and localization using SURF descriptors,
use a Naive Bayes and a multiclass SVM algorithms to classify images using Bags of Visual
Words composed of histogram vectors. The authors achieved better results with the Naive Bayes
classifier, achieving 80% accuracy with a training set of 100 instances and close to 88% accuracy

with 100 instances.

2.3.4 Artificial Neural Networks

A neural network is defined by Han et al. [1] as a set of connected layers of input/output units
where each connection has a weight associated with it. This weights are adjusted in the learning
phase until the network is able to predict the correct class label of the input training set. While
having a hight tolerance to noisy data, neural networks also require long training times and usually
big training sets.

In feed-forward neural networks, each unit can only output to units in the succeeding layer.

The backpropagation algorithm can be used to train the neural network, by iteratively process-
ing the network’s prediction for the training set, adjusting the weights, and trying to minimize the
mean squared error between the prediction and the actual class value. This is done from the output
layer, through each hidden layer down to the first hidden layer.

Antonie et al. [71] applied neural networks using backpropagation for tumour classification
in mammograms. The authors use an existing dataset containing type of tissue and position of

the breast, and enhance it with new four statistical parameters extracted from the medical images:
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Figure 2.3: A feed-forward neural network with two layers [1].

mean, variance, skewness and kurtosis. This enhanced dataset is then used to build and test two
classification models, one using neural networks and other using association rule mining. The
first model proved to be less sensitive to database imbalance than the second model built with
association rule mining, at the cost of having high training times.

Veluchamy et al. [72] use artificial neural networks to classify blood cells into normal and
abnormal. The authors extracted twenty seven features from each cell image from which four
were geometrical features, sixteen statistical features and seven moment invariant features. These
features were classified with a back propagation neural network with twenty-seven neurons in the
input layer, twenty-two in the hidden layer and one in the output layer. The authors achieved a

classification efficiency of 80% for normal cells and 66.6% for abnormal cells.

2.3.5 Support Vector Machines

Support Vector Machines (SVM) are supervised learning methods that given a two-class, separa-
ble, data set, try to find an optimal hyperplane which separates the two classes.

The optimal hyperplane is the one that maximizes the margin between classes’ support vectors
dividing the input space, geometrically, into two half spaces. The decision hyperplane can be a
linear separator on a two or higher dimensional space, or a non linear separator by relying on a
continuous kernel function to divide classes. As noted by Chapelle et al., while SVM are designed
for binary classification, they can be adapted to support a multi-class dataset, either by directly
modifying its design [73], or by combining multiple binary classifiers in a one-against-one [74] or
one-against-all [75] disposition.

Mohapatra et al. [76], use SVM to classify shape and texture features of blood cells for
automated leukaemia detection. The authors developed a two step segmentation stage for white
blood cells nucleus extraction from microscopic images of blood, first using Gustafson Kessel

clustering and followed by nearest neighbour classification in the L*a*b* colour space. From
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Figure 2.4: Hyperplane separating the two classes of the dataset. [1].

the segmented images, the authors extract shape features using Hausdorff dimension and contour
signature, along with colour and texture features. Training the SVM classifier with the selected
features, the authors achieve a 93% accuracy in captured images.

Tai et al. [77], propose a hierarchical blood cell image identification and classification method
based on a one-against-one multi-class SVM. The authors use Otsu’s adaptive threshold algorithm
and morphology operations to build a binary image of blood cells, separating touching cells with
watershed segmentation. From the segmented image, histogram, area, circularity, cytoplasm ratio

and colour were extracted from each cell and applied to the SVM classifier.

2.4 Related Work

Currently, thirty-three different blood group systems are recognized by the ISBT [6]. In 1999,
Kane et al. [78] divided the different kinds of blood groups into five types:

1. Blood group antigens including ABO typing, detected by agglutination through an antigen-
antibody reaction;

2. Erythrocyte enzyme types;
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3. Serum types, differentiated by a polymorphisms of factors that are detected in serum pro-

teins, immunoglobulins and complements;

4. Human leukocyte antigen system, a histocompatibility antigen;

5. Deoxyribonucleic acid (DNA) typing based on length and sequence polymorphisms, that

greatly improves individual discrimination.

In the literature sevevral authors have addressed the ABO typing problem. Kobayashi and
Akane [79] applied the inverse polymerase chain reaction (PCR) method for simultaneous nu-
cleotides identification. In the inverse PCR method, two distinct regions are inter-ligated for de-
termining three major alleles (A(1), B and O(1)) of the ABO blood group.

Doi et al. [80] developed a ABO genotyping method using a multiplex single-base primer
extension reaction, that allows simultaneous detection of six single nucleotide polymorphisms
sites in the ABO gene and detection of ABO genotypes from their combinations. The authors
achieved good results, correctly identifying all samples of peripheral blood DNA extracted from
103 Japanese individuals.

Srivastava et al. [81], developed a microfluidic platform for quantifying the dependence of
RBC responses by ABO-Rh blood type via direct current insulator dielectrophoresis. Video was
captured and processed, analysing intensities from five interrogation windows to calculate the
fraction of cells in each outlet channel as a function of time. SVM algorithms were used for
classification and logit transformation for multivariate hypothesis testing. The authors concluded
that a direct current insulator dielectrophoresis device could sort RBC by blood type due to its
membrane antigens influence the RBC polarizability in direct current insulator dielectrophoresis
field.

Houngkamhang et al. [82] studied readily available antibodies used in standard agglutination
tests for their use in ABO blood typing by a surface plasmon resonance imaging technique. The
authors used five groups of antibodies to construct detection arrays using a multichannel flow cell,
obtaining consistent results with those using standard agglutination technique.

Ferraz et al. [10] presented a blood phenotype system based on the agglutination technique
using image processing. The authors developed a portable device for ABO-Rh blood typing and
blood phenotype that automates the analysis procedure, including centrifugation, reading and in-
terpretation of results. For interpreting the results, after centrifugation an image of six containers
is captured, containing the centrifuged mixture of blood and (specific antigen) reagent. Using
image segmentation techniques the authors extract five image features from each container: area,
mean value, standard deviation, minimal value, and maximal value, using the standard deviation

value for reagent tests classification.
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Chapter 3
Methodological Approach

In clinical laboratories the gel test is a used method for ABO and Rh typing. ABO and Rh are
blood type systems for blood classification based on the existence or lack of certain Red Blood Cell
(RBC) antigens. The proposed gel test by Lapierre et al. [83] uses micro-tubes filled with a mixture
of gel, buffer, and reagents that are centrifuged with a suspension of RBCs. After centrifugation
in negative reagent reactions the RBCs pass through the gel and collect at the bottom of the micro-
tube, whereas in positive reagent reactions they are dispersed throughout the length of the gel.
This project aims to develop a prototype capable of automatically reading and determining a gel
card test, storing the yielded results. In this system, the captured card’s image and serial number

should be stored in the system for later evaluation.

This chapter presents an overview of the gel card test with a description of the project tools

and the program methodology.

3.1 Gel Card

The gel cards studied in this project are developed by Bio-Rad Laboratories. The gel cards are
designed for ABO forward test and the determination of RH1 (D) antigens. Each card has six
gel micro-tubes where five of them are impregnated with a reagent specific to the erythrocyte
antigen to be determined. The remaining micro-tube is used as control signal for test validity.
After centrifugation, non-agglutinated RBCs are collected at the bottom of the micro-tube while
agglutinated RBCs are dispersed throughout the length of the gel being their position in the gel
the intensity indicator of the reaction (Figure 3.2).

The first three micro-tubes of the card, ABO1(A), ABO2(B) and ABO3(AB) as seen in the
Figure 3.1, are specific to the ABO grouping which requires two complementary tests for com-
plete validation. The forward test conducted with anti-ABO1(A), anti-ABO2(B) reagents and if
necessary anti-ABO3(AB) reagent need to concord with the reverse test conducted with the A1, B
reagent RBC and if necessary A2 and O reagent RBC. If this is not verifiable, and a discrepancy
exists between the two tests, complimentary tests should be conducted before any ABO result.

15
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Figure 3.1: Gel card
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Figure 3.2: Test results for different strengths of reaction [2]

A positive result in the forth card microtube, RH1(D), indicates the presence of antigen RH1(D)
on the surface of RBC. This gel card does not allow the detection of all D weak antigens neither
the detection of the phenotype RH1 partial category VI (DVI). For these cases, it is recommended
an additional complementary test [2]. A positive result in the fifth microtube RH1, 2, 3 (DCE)
indicates the presence of antigen RH1 (D) and/or antigen RH2 (C) and/or antigen RH3(E) on the

surface of the RBC. The Table 3.1 can be used for easier interpretation of these results.
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Groups ABO Forward Test ABO Reverse Test
Anti-ABO1 (A) Anti-ABO2 (B) Anti-ABO3(AB) Al A2 B O
A + - + - -+ -
B - + + + + - -
AB + + + - - - -
0] - - - + + + -

Table 3.1: Reagent result interpretation

3.2 Software Tools

On this project an application was built, capable of reading and classifying test results of gel
card micro-tubes. This application was developed in Java using the JavaFX™ library for the user
interface, this ensures better code compatibility between platforms. The BoofCV library was used
for image segmentation and feature extraction, the Waikato Environment for Knowledge Analysis
(WEKA) software workbench for the data classification problem, the H2 Database Engine as local
data storage and the ZXing ("Zebra Crossing") library was used for detecting and reading the
gel card identification barcode. A preference was given to this three libraries since they are all
open source, written entirely in Java code and can be easily embedded in the main application
package, do not requiring platform specific configuration. Later in the project development the
Open Source Computer Vision (OpenCV) library with desktop Java bindings was included in two

different procedures for image feature extraction.

3.3 Methodology

This project is divided in two main steps. First the study and development of the main structure re-
garding the image segmentation, feature extraction and classification problem in order to identify
the six micro-tubes in a gel card photography, extract meaningful and representative information
and achieve a test result by means of data classification. In the second step an automated pro-
cedure was built from drawn classification results that classifies card images and saves acquired
information in a local database. This process should be completely autonomous only requiring
human intervention for test validation.

In the first, step three procedures were studied. While the first one extracts predefined region
features from segmented image tubes, the other two use the Features from Accelerated Segment

Test (FAST) algorithm for corner detection, using detected interest points for extracting features.
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Figure 3.3: Main project structure

3.3.1 Image Acquisition

For the image acquisition process a digital camera (Microsoft® LifeCam Studio™) was used,

capable of acquiring images at a resolution of 1920 per 1080 pixels at a focal length starting in 10

centimetres up to infinity. The digital camera has a height of 54 mm, 29 mm in width and 60 mm

in length, being small enough for a image acquisition prototype and maintaining a good image

resolution.
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Figure 3.4: Image acquisition system

A physical prototype composed of a base, card stand, white background and a light stand was

assembled using steel spring wire, paper and glue. The card stand has a height of 56 mm, 78 mm

in width and 5 mm in length, positioned at 105 mm of the digital camera. The white background

has a height of 175 mm and 298 mm in width, positioned at 80 mm of the card stand, filling the

digital camera’s angle of view. As a illumination system, a 23 Watt (168 mA) light source was

positioned approximately 190 mm above the card stand using a metal stool as support.
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Figure 3.5: Image acquisition prototype

Using this prototype, images of twenty-three different gel cards were captured and saved to the
file system of the development platform. Of these images, two were initially kept back for testing
later the application. In the supplied gel cards only negative (-) and strong positive (++++) reagent
reactions were present, not existing any instances of the other three positive reagent reactions (+,
++ and +++). To try to compensate for this imbalance, three gel card sample images were digitally
created from a captured image mimicking the expected results using a sample card template as

source.

3.3.2 Image Pre-processing

In this project, all image operations are applied to the green channel of the card image. The green
channel was chosen because it exhibited less noise than the other two channels, which could be
the result of the Bayer filter mosaic present in the CMOS sensor. The green channel consequently
increased the contrast between the blood sample and the gel present in the first two micro-tubes,

who have a blue and a yellow coloured gels, respectively.

For extracting the six individual micro-tubes, first the card barcode is read using the ZXing li-
brary, storing the card identification number. Next, a template matcher is created using the BoofCV
library. The matcher works by moving the template (Figure 3.6) across the card image and for each

pixel determining how similar that region is to template using the sum of the difference squared
2
- Z (I(X,y) —T(x—o,y—u)) .
o,u
Before running the pattern matcher routine, to enhance the pattern present in the gel card, a

linear histogram expansion is applied to the card image. Image pixels with a value equal or lower

than 50 are set to 0 and pixels with a value equal or higher than 100 are set to 255.
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Knowing the gel card dimensions, the barcode width and the top-left coordinate of the pattern
in the gel card, the six gel tubes are extracted from the card using the barcode width as a scale

factor and the calibration pattern position for card alignment.

250
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50 b
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Pixel value

Pixel value after transformation

Figure 3.6: Alignment pattern Figure 3.7: Histogram expansion diagram

Figure 3.8: Card image calibration and gel tube extraction

In the two procedures that rely on the FAST algorithm for detecting points of interest, to each
individual tube is applied a threshold 5% higher than the tube mean value, removing bright image
spots (e.g. light reflections). After, for noise removal, a median filter with a kernel size of 3 is
applied to the tube image, followed by an unsharp masking method for increasing the chances of

corner detection by the FAST algorithm.

3.3.2.1 Bilateral Filter

The bilateral filter is a non-linear filtering technique which replaces each pixel value with a

weighted average of its neighbourhood while preserving sharp edges [84]. The weighted aver-
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age is given by the sum of each image pixel existing in a k by / window multiplied by a weighted
coefficient w (i, j,k,1), and later divided by the sum of the weighted coefficient w (i, j,k,!) (Equa-
tion 3.1). This coefficient depends on its own of two smoothing parameters, the domain or spatial

parameter oy and the range parameter ¢, (Equation 3.2).

o Zk,lf(k7l)w(i7j7kal)

i, j) = 3.1
g(l’J) Zk,lw(i7j7k7l) ( )

D — (=K +(G=0" ) —f kDI
W(l,],k,l) =exp <_ 26d2 - 2(7,,2 (32)

3.3.2.2 Unsharp Masking

The unsharp masking is a image sharpening technique that enhances image edges by building an
edge image and adding it back into the original [3]. This edge image is built by subtracting a

smoothed version of the image from the initial image.

+
fx,¥) - — B(X,¥] -
Smooth -‘% +® fshar];‘ﬂ‘"]

Figure 3.9: Unsharp masking technique [3]

The unsharp masking technique pre-dates digital photography, and was usually used to sharpen

images in the darkroom:

“In fact, before the advent of digital photography, this [unsharp masking] was the
standard way to sharpen images in the darkroom: create a blurred (“positive”’) nega-
tive from the original negative by misfocusing, then overlay the two negatives before

printing the final image” [84, chap. 3.2 - Linear filterin]

3.3.3 Image Segmentation

In the first tested procedure, image segmentation is applied to each image tube to extract a binary
image of the blood test after centrifugation. First, the greyscale tube image is reduced to a binary
image using a threshold computed using Otsu’s method, followed by a morphological opening.
Next, contour information is extracted from each connected cluster of pixels, using the contour to
compute the best fit ellipse based on minimizing Euclidean distance. To remove detection errors,

from the extracted ellipses is selected the one with the bigger area.

3.3.3.1 Otsu’s Method

Otsu thresholding technique is a global thresholding method introduced by Otsu [22] as a non-

parametric and unsupervised method of automatic threshold selection for picture segmentation.
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Figure 3.10: Image segmentation steps

This technique iterates through all possible thresholds and evaluates its "goodness", selecting the
threshold that better separates image pixels into two classes, foreground and background, i.e. the

threshold that minimizes within-class variance.

Using the histogram of a greyscale image with L grey levels, dichotomizing the image pixels

into two classes Cy and C; with a threshold &, the probabilities of class occurrence are given by

k
w = Pr(Co) =) pi =0 (k) (3.3)
i=1
o, = Pr(C) Z pi=1—-ok) (3.4)
i=k+1
the class mean levels by
k ko
. ipi  u(k)
Uo=y iPr(ilCo)=) —="—= (3.5)
i; So (k)

L Loipi  pr—p (k)
w= Y iPr(ilcy) =Y =t 20 (3.6)

i:kz+l o 1-o(k)

and the class variance

a 2 a 2 Di
of = Y (i— o) Pr(ilCo) = ) (i— o) £ 3.7)

i=1 i=1 o

L L ) Di
Z i—w)’Prilc) =Y (i—m) £ (3.8)
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Minimizing within-class variance 63 is the equivalent of maximizing between-class variance

03, reducing the process to an optimization problem:

2 o (k) —u k)
0= @ o) 69
being the optimal threshold k*
o3 (k") = max oj (k). (3.10)

1<k<L
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Figure 3.11: Tube segmentation process
(a) Original tube image (sample 1); (b) Binary image using threshold selected with Otsu’s
Method (sample 1); (c) Binary image after morphological opening (sample 1); (d) Detected
ellipse over binary image (sample 1); (e) Detected ellipse over original image (sample 1);
(f) Original tube image (sample 2); (g) Binary image using threshold selected with Otsu’s
Method (sample 2); (h) Binary image after morphological opening (sample 2); (i) Detected
ellipse over binary image (sample 2); (j) Detected ellipse over original image (sample 2).

3.3.3.2 Morphological Opening

Opening is a mathematical morphology operator, used to move small pixels from the foreground
of an image into the background. The operator works by first running a erosion (&) followed by a

dilation (&), both also morphological operators, using the same structuring element.

AoB=(ASB)®B @3.11)

3.3.3.3 Contour Extraction

In this project a method proposed by Chang et al. [85] is used for labelling connected components
and theirs contours in binary images. This method is a linear-time component-labelling algorithm
that uses a contour tracing technique to detect the contour of each image component, while iden-
tifying and labelling the interior area of each component.

The algorithm scans the image from top to bottom and from left to right per each line. When
a contour is encountered, a contour-tracing procedure is used to complete the contour and assign
a label to all pixels on the contour (Figure 3.12). After finishing the contour, the initial scanning
continues and every time an already labelled pixel is revisited, all foreground pixels surrounding

it are assigned the same label.

3.3.3.4 Ellipse Fitting

Ellipse fitting is the process of approximating an ellipse model to image data, reducing and sim-
plifying the available data into fewer variables. Halif and Flusser [86] propose a non-iterative
algorithm, used in this project, for fitting an ellipse to a set of data points. The authors start by
analysing a direct least squares based ellipse-specific method by Fitzgibbon et al [87], proposing
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Figure 3.12: Contour-tracing procedure with connectivity 8, starting in P. Contour sequence:
7,0,0,1,3,3,4,5,6

a modified algorithm with the aim of improving numerical stability. The result is an ellipse de-
scribed using six coefficients (Equation 3.12), where a b c d e f are coefficients of the ellipse and

(x,y) are coordinates of points lying on it.
F (x,y) = ax® + 2bxy+cy* + 2dx+2ey+ f =0 and b* —4ac <0 (3.12)

3.3.4 Feature Extraction

In this project three different feature extraction procedures were studied. In the first one (Method
1), from the determined ellipse in the segmentation step six features were extracted: the ellipse
centre coordinates (xo, o), the semi-major and semi-minor axes (a and b respectively), the ellipse

area and its orientation in radians (¢).

((x—x0)cos (9) + (v — yo)sin (¢))° o (x=x0)sin(¢) — (y —yo) cos (9))*

- 2 =1 (3.13)

Figure 3.13: Ellipse equation

In this equation, (xo,yo) is the ellipse centre, a and b the semi-major and the semi-minor axes and

¢ the counter clockwise angle of rotation from x-axis to the major axis [—5; %]

For the two other procedures (Method 2 and 3), the Features from Accelerated Segment Test
(FAST) algorithm is used for detecting interest points in the original, non-segmented tube image.
In the second method, the position of all detected points is recorded and used for classification,
and in the third method the centre of gravity is used to compute the centre position of all points,
recording this value and using it for the classification step. This method is better explained in
the section 3.3.4.3 of this report. An explanation for use of the FAST algorithm can be found in
the following sections with a brief description of the FAST algorithm process for detecting image

corners.
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The concept behind methods of local image feature detection and description is to first try to
identify interesting image points and then for each point extract invariant descriptors, enabling
image matching between similar images. This allows to build systems that can efficiently track
position, scale or perspective changes between images of the same scene, or find images that are
from similar contexts (e.g. pictures of cars).

In this project, the pictures in study are images of gel card tubes. Between them, the only
significant change is the position or scale of the tested blood sample, i.e. the blood sample vertical
position and its spread across the tube. Using feature descriptors for finding matches between
images would not yield good test classification results. Instead, only the initial feature detection is

used to find interesting image points and then their position is used for classification.

3.34.1 OpenCV Algorithms Benchmarks

The OpenCV software library implements multiple interest point algorithms. A simple routine was
implemented that read an existing tube image, applied a bilateral filter followed by an unsharp
masking technique, and then detected interest points using the seven different algorithms. The
SIFT and SURF algorithms were not studied in this project since both are patented in the US
patent office [88, 89].
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Figure 3.14: Benchmark of feature detection algorithms
(a and h) BRISK algorithm [90]; (b and i) FAST algorithm [64, 91]; (c and j) Harris detector; (d
and k) Modified Harris detector by Shi and Tomasi [92]; (e and 1) Maximally Stable Extremal
Regions (MSER) extraction algorithm [93]; (f and m) Oriented BRIEF (ORB) keypoint detector
[94]; (g and n) Star feature detector. [95]

From the seven tested algorithms, only three consistently detected more than three interest
points (Figure 3.14): the FAST algorithm, the Harris detector and the modified Harris detector
proposed by Shi and Tomasi. While all three detected relevant interest points, both the FAST and

the Shi-Tomasi detectors yielded equivalent results.
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When Rosten and Drummond [64] proposed the FAST feature detector, the authors compared
its execution time with the SUSAN detector and the Harris detector which was optimized to use
Streaming SIMD Extensions vectorising instructions. The FAST detector revealed to be approx-
imately 4.5 times faster than the SUSAN detector and 16.9 times faster than the Harris detector.
To confirm this claims a small test was conducted in the development platform, using the three
previously identified algorithms (FAST, Harries and Shi-Tomasi). The execution time of each al-
gorithm was recorded over 10000 iterations and the mean execution time was computed (Table
3.2). From the drawn results, the FAST feature detector was chosen for the detection step, since
it proved to be most time efficient while detecting relevant image features around the blood test

sample.

Detector ‘ FAST ‘ Harris ‘ Shi-Tomasi
Time (microseconds) | 18.49 s | 251.58 ps | 261.27 s

Table 3.2: Algorithms execution time

3.3.4.2 FAST Feature Detector

The Features from Accelerated Segment Test (FAST) is a feature detector algorithm proposed
by Rosten and Drummond [64, 91] for real-time corner detection. In the FAST algorithm, to
determine if a pixel candidate p with an intensity I, is a corner, a circle of sixteen pixels (a
Bresenham circle of radius 3) is considered around the candidate (Figure 3.15).

The pixel p is a corner if there exists a set of n = 12 contiguous pixels in the circle which are
all brighter that 7, +¢ or all darker than I, —t, being ¢ a threshold. To speed up the process on false
candidates, the algorithm first tests, in pairs, if the four pixels corresponding to the cardinal points
(at 1, 5,9 and 13) are brighter than I, +¢ or darker than I, —¢, first 1 and 9 and then 5 and 13. For
p to be a corner then at least three of these must all be brighter than I, +¢ or darker than I, — 1.
The complete segment test criterion can then be applied to the remaining candidates by examining
all pixels in the circle.

Despite its speed, the authors identify four main weaknesses in the detector:
1. The high-speed test does not generalise well for n < 12;

2. The choice and ordering of the fast test pixels contains implicit assumptions about the dis-

tribution of feature appearance;
3. Knowledge from the first 4 tests is discarded;
4. Multiple features are detected adjacent to one another.

To address them, the authors propose a machine learning approach for the first three, and the

use of non-maximal suppression for the last one.
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Figure 3.15: FAST Feature detection in an image patch
The highlighted squares are the pixels used in the detection (Bresenham circle of radius 3)
[64,91].

The machine learning process operates in two stages, first by detecting corners from a set of
images (preferably from the target application domain) with a slow algorithm which tests all 16
locations around each pixel. Each of the all 16 surrounding pixels x € {1..16} can have one of the

three states:

d I <I,—t (darker)
Spsx=14q s I, —t <I, ,, <I,+t (similar) (3.14)
b I+t <1, . (brighter)

Each x pixel is then assigned into one of three P subsets, P;, Py, Py, according to its state. In
the second stage the same algorithm used in ID3 begins by selecting the x which yields the most
information about whether the candidate pixel is a corner measured by the entropy of K, being
K, aboolean variable which is true if p is a corner and false otherwise. This process is recursively
applied to all the P subsets until its entropy is zero, resulting then in a decision tree which can
correctly classify all corners seen in the training set and approximate the rules of the chosen FAST

corner detector.

To solve the problem of multiple features detected adjacent to one another, the authors suggest
a score function V that is computed for each detected feature point, and non-maximal suppression
is applied to remove corners which have an adjacent corner with higher V. The score function V is
given by the sum of the absolute difference between the pixels in the contiguous arc and the centre

pixel.

Vzmax( Y =L -1, ) \I,,—Ip_>x\—t> (3.15)

XESpright XESdark
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3.3.4.3 Centre of Gravity Method

The centre of gravity method is an algorithm used to determine the optimal centre location of
a group points that minimizes a cost function. This method is usually applied to problems of
distribution costs minimization, and is derived from the expression of the centre of mass of a
particle system.

Being N the number of detected points, P, the x coordinate of the detected point and P, the y

coordinate of the detected point, the optimal centre location (Cy,Cy) is given by

N
ARY R
=S (3.16)
Yo Wi
N
~ P.W;
=11t
=— (3.17)
XL W
where W; is the weight associated with the point i, given by
1
W; (3.18)

P -Gl IP -G
In this project, the weight parameter associated with each point is given by its distance to

current centre position. This calculus is iterated until the optimal centre coordinates do not change

between two consecutive iterations.

o
- - R 2. £

(a) (b) (© (d (e)

Figure 3.16: Centre of gravity method over five iterations.

3.3.5 Classification

As mentioned in the section 2.3 of this report, the classification step serves as a prediction process
for determining the outcome the ABO test result. Before doing so, first a classification model as
to be built so it could be used to classify future gel card tests.

Using the WEKA software workbench, a routine was built to train multiple supervised classi-
fication algorithms present in the library. Three different datasets were built, each using one of the
previously developed feature extraction processes: ellipse features, position of detected interest
points and centre position of detected interest points.

To each dataset was then applied the process detailed in the Figure 3.17:



3.3 Methodology 29

1. The dataset is split into a training set and a test set using stratified sampling, % of the dataset
used for testing and the remaining % for training. Stratified sampling ensures that original

class proportion is maintained in the two new sets;
2. Using the training set, the algorithms are trained with leave-one-out cross validation;

3. After the cross validation process, the average accuracy of each model is computed, deter-

mining the three models with better average accuracy;

4. The three resulting models are then tested with the initial test set and the results are recorded

for study;

5. The process is repeated using 10-fold cross validation.

Classified Dataset

Stratified Sampling
2/3 1/3
Training Test
Dataset Dataset
Training Step
10-Fold Leave-One-Out

Cross-Vflidation

Train Classification
Models

A

Compute Average
Model Accuracy

Cross-Vflidation

Train Classification
Models

Compute Average
Model Accuracy

A

Select 3 Models With
Better Accuracy

Select 3 Models With
Better Accuracy

<

Y

Test Selected
Models

<

Y

Test Selected
Models

Test Step

Results

Figure 3.17: Data classification process
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The WEKA library divides classification algorithms into eight groups: Bayes, Functions,
Trees, Lazy, Rules, Meta, Multi-instance and Miscellaneous. In this project, fifteen of the available

algorithms were tested using default parameters:

e J48 - WEKA implementation of the C4.5 pruned decision tree classifier by Quinlan [96],
extended from the ID3 algorithm;

e Random Forest - Algorithm introduced by Breiman [97], and defined by the author as a
combination of tree predictors in a way that each tree depends on the values of a random

vector sampled independently and with the same distribution for all trees in the forest;

e Random Tree - Builds a unpruned decision tree considering a set of randomly selected K

attributes at each tree node;
e REP Tree - Builds a pruned decision tree using reduced-error pruning (with backfitting);

e Logistic - WEKA process that builds a multinomial logistic regression model with a ridge
estimator. The implementation of the algorithm in the WEKA library differs from the pro-
posed method by Le Cessie and Van Houwelingen [98], so the algorithm can handle instance

weights;

e Simple Logistic - Builds a linear logistic regression model using the boosting algorithm

LogitBoost, with simple regression functions as base learners, for fitting the model;

e Multilayer Perceptron - Feedforward artificial neural network classifier that uses back-
propagation, where all non-numeric nodes in the network are all sigmoid. The network can

be monitored and modified during training time;

e SMO - Implementation of the Sequential Minimal Optimization (SMO) algorithm by Platt
[99] for training a support vector classifier;

e IBk - K-NN classifier. The implementation is capable to selecting the appropriate value of

k through cross-validation;

e KStar - Instance-based learner that uses entropy as a distance measure by Cleary and Trigg
[100];

e Decision Table - WEKA interface for building a simple decision table majority classifier
[101];

e PART - Builds a decision list using separate-and-conquer. In each iteration, a partial C4.5

decision tree is built and the best leaf becomes a rule [102];

¢ JRip - Propositional rule learner, Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), proposed by Cohen [103];

e OneR - Implementation of the 1R classifier. First a rule is generated for each dataset at-

tribute, and then the rule with the smallest total error is defined as the classification rule;
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3.3.5.1 Cross Validation

Cross validation is a model evaluation method to measure its predictive performance, where the
dataset is initially split into k stratified subsets, maintaining class proportion. Then the model is
trained using one of the k subsets as a test set and the remaining sets as the training set. This is
repeated k times, choosing each time a different subset as the test set. The average error across all

k trials is computed, giving a more accurate prediction of the model performance.

While a big number of folds (k) improves the accuracy of the computed average error, the
computation time also increases. The number of ten folds (k = 10) is commonly used across the

literature and it is used also in this project.

Leave-one-out cross validation is a particular case of k-fold cross validation where the number
of folds is equal to the number of instances in the dataset. Each dataset instance is then individually
used as the test set, using the rest of the dataset for training. This yields the best approximation of

the model accuracy, but the computation time is increased to its maximum.

In this project leave-one-out cross validation was also used, since the size of the dataset is

relatively small, not having a big impact the computation time.

Data Set

/ \

Training Training Training Training
Testing Testing
Average ‘_/

Figure 3.18: Cross validation process [4].
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3.3.5.2 Evaluation

For model evaluation a confusion matrix can be used to display prediction accuracy using the
number of True Positives (TP), False Negatives (FN), False Positives (FP) and True Negatives
(TN) classified instances. The confusion matrix enables a simple visualization of performance

metrics of a classification algorithm.

PREDICTED CLASS
YES NO
TOTAL
YES TP FN ACTUAL
YES (M1)
ﬁig% TOTAL
NO FP TN ACTUAL
NO (M0)
TOTAL TOTAL
PREDICTED | PREDICTED
YES (N1) NO (NO)

Table 3.3: Confusion matrix.

From the confusion matrix, using the equation 3.19 the model accuracy can be determined
by dividing the number of correct predictions with the total number of predictions, effectively
representing the percentage of correct predictions.

TP+TN

Accuracy = (3.19)
TP+TN+FP+FN

The kappa coefficient is a useful statistic to determine the precision of a model. Vieira and

Garrett [5] define the kappa coefficient as an indicative "measure of the magnitude of agreement
between observers". The coefficient can also be determined using the confusion matrix, and is
given by

P() e
K =— 3.20
appa = <. (3.20)

where P, is the previously determined accuracy (Equation 3.19), and P, is

N M, No Mo
p_ (N M No Mo 321
e (N*N>+<N*N> (3.21)

The authors also provide a interpretation table for the value of kappa, where a kappa of 0.0
indicates that the is a low chance of agreement between observers (in this case the model and the
true values), and a kappa of 1.0 a almost perfect agreement.

Precision, recall and F-measure are three cost-sensitive measures that can be computed for
each class as a performance measurement of the model. In this context, while precision for a
specific class represents percentage of correct predictions for said class, recall is the percentage

of correctly predicted class instances. Precision is determined dividing the number of instances
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Poor Slight Fair Moderate Substantial ~Almost perfect

Kappa 0.0 .20 40 .60 .80 1.0
Kappa Agreement
<0 Less than chance agreement

0.01-0.20  Slight agreement
0.21-0.40  Fair agreement

0.41-0.60  Moderate agreement
0.61-0.80  Substantial agreement
0.81-0.99  Almost perfect agreement

Figure 3.19: Interpretation of Kappa [5].

correctly predicted for a class by the total instances classified as the class (Equation 3.22). Recall
is determined dividing the number of instances correctly predicted for a class by the actual number

of instances in that class (Equation 3.23).

.. tp
Precision = ——— (3.22)
tp+fp
tp
Recall = 3.23
tp+ fn ( )

F-measure (also F; score) is a score ranging from 0 to 1, given by weighted average between

precision and recall of a class, having its worst value at 0 and best at 1.

precision - recall
F-measure =2 -

3.24
precision + recall (3-24)

In this project, the classification problem in study is not binomial, as seen in the Table 3.3.
Instead it is a multinomial classification problem, with five distinct classes (+, ++, +++, ++++ and
-). The confusion matrix can still be used to display classification results for each class, having
each column representing the number of instances in a predicted class, and each row the actual
number of instances of the class.

The model accuracy can still be determined by dividing the number of correct predictions with

the total number of predictions, and is given by:

AA+BB+CC+DD+EE
TOTAL

Accuracy = (3.25)
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PREDICTED CLASS

A B C D E

+ ++ +++ ++++ -
TOTAL
A+ AA AB AC AD AE PREDICTED
+(A)
TOTAL
B ++ BA BB BC BD BE PREDICTED
++ (B)
TOTAL
C +++ CA CB CC CD CE PREDICTED
ACTUAL +++ (C)
CLASS TOTAL
D ++++ DA DB DC DD DE PREDICTED
++++ (D)
TOTAL
E - EA EB EC ED EE PREDICTED
-(E)

TOTAL TOTAL TOTAL TOTAL TOTAL
PREDICTED | PREDICTED | PREDICTED | PREDICTED | PREDICTED | TOTAL

+(A) ++ (B) +++ (C) ++++ (D) -(E)

Table 3.4: Confusion matrix for multinomial problem.

3.4 Software Application

The software application was developed in Java using the JavaFX™library for the user interface.
For storing program data, the H2 Database Engine was used to save extracted image features and
gel card information (Figure 3.20) while tube and gel card images were saved to the file system.
In the feature extraction and classification process four additional libraries were used, the ZXing
library for detecting and reading the gel card identification barcode, the BoofCV library for image
segmentation and feature extraction, the OpenCV library for image feature extraction and the

WEKA library for the data classification problem.

GEL_CARD 19 GEL _TUBE
*id  BIGINT *id  BIGINT
°card_id VARCHAR (255) °tube nr  INT
°result VARCHAR(10) °tube_hash VARCHAR(255)
°image hash VARCHAR(255) °card_id VARCHAR (255)
Presult ARCHAR (10)
1
1 b 1n
FEATURES ELLIPSE_MODEL FEATURES_CENTRE_MODEL FEATURES_POINTS MODEL
*id  BIGINT *id  BIGINT *id  BIGINT
°tube_hash VARCHAR (255) °tube_hash VARCHAR(255) °tube_hash VARCHAR(255)
°result VARCHAR(10) °result VARCHAR(10) °result VARCHAR(10)
°center_x DOUBLE °centre_x DOUBLE °position_x DOUBLE
°center_y DOUBLE °centre y DOUBLE °position y DOUBLE

°ellipse area DOUBLE
°ellipse_a DOUBLE
°ellipse_b DOUBLE
°ellipse phi DOUBLE

Figure 3.20: Database design.
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Two different user interfaces were developed in this project. In the first one the user can easily
import gel card images and use them for building the different datasets and train classification

models. In the other interface the user can read and classify new gel cards, storing the test result

in the database.

User Interface

Load Card Image [

Load Card Image

Database and Storage

H2 Local
Database

Image Process

Classification

Features
Extraction

Image Interest Points

Pre-processing

A 4

Centre
Position

Ellipse

Process

Build Models I_'::

m if do not exist
if exist

Load Models |41+

\ 4

Local
Storage

Figure 3.21: Application architecture.

In the first application interface (Figure 3.22), the user is firstly prompted to refer to a system
folder that has the gel card images to be interpreted. One by one, the card images are loaded and
image features are extracted from each tube, displaying the results in the interface for confirmation.

Then, user input is required for classifying each tube test result as one of five possible classes:

negative (-), positive (++++), positive (+++), positive (++), positive (+).

File

ABO1
(A)

-

(+)
(++)
(+++)

(++++)

Next Card |

Export Arff
ABO2 ABO3 RH1 RHL,2,3 Ctrl
(B) (AB) (D) {DCE)
-’ - *4 E
w52 05 -o7
(+) (+) (+) (+) (+)
(++) (++) (++) (++) (+4)
(+++) (+++) (+++) (+++) (+++)
(++++) (++++) (++++) (++++) (++++)
= | L
- -
o L -

Database Filler

Figure 3.22: Application interface for building training datasets and classification models.
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After classifying all tubes, to save the information the user has to request the next card present
in the folder. If there is no card images left to process a warning is displayed. In the interface
the user also has the possibility to export the current datasets into Attribute-Relation File Format
(ARFF), a file format developed by the Machine Learning Project at the Department of Computer

Science of The University of Waikato that describes a list of instances sharing a set of attributes.

. Gel Card Reader : 2 8
File Edit Capture new card
Result
] -
Tube Results
i | Segmentation [T—
ks - ™ — - RandomTree :: - 5
’ SimpleLogistic :: - o
RandomForest :: - i
£
=
£
Centre ~
)48 :: - -
RandomTree :: - 5
RandomForest :: - a
ABO1 ABO2 ABO3 RH1 RH1,23 Control =l
c
®) ®) (tE) ) () Interest Points &
- JRip :: - |
- = = ++++ ++++ REPTree :: - g
DecisionTable :: - |~
<

Figure 3.23: Main application interface.

The second interface (Figure 3.23) is the initial screen of the application. From here the user
can either analyse a new unclassified card, or open the previous interface for importing data.
Opening a new card image, the card is processed and classification results are displayed on the
interface. For each tube, the obtained result is displayed at the bottom of the screen with a chance
of fixing a classification error. If a test result is corrected by the user, after submitting the new
class value, it is added to the training dataset and the classifications models are rebuilt.

In a lateral panel, the card ABO test result is displayed with additional classification infor-
mation beneath in a tabbed panel. Here, the user can either confirm the test result, recording the
values in the database, or dismiss it by pressing the cancel button. In the classification information
panel, yielded classification results from the three different models are displayed for each tube.

In the processing phase, each tube outcome is determined using results from the three classifi-
cation models previously built. Joining the three decisions, the result (out of three) which occurs
more times is selected as the tube test result. In a draw condition, the result of the model with

better training accuracy is chosen.



Chapter 4

Results

This chapter presents the results obtained in the feature extraction step and in the classification step
for the three different feature extraction processes: ellipse features, position of detected interest
points and centre position of detected interest points. In each process, the presented results were
obtained when evaluating the three best algorithms with the test subset. For all randomization
procedures, the chosen random seed was the natural number 1.

Each dataset was built using images of 144 gel tubes, existing 76 (-) tubes, 56 (++++) tubes, 4
(+++) tubes, 4 (++) tubes and 4 (+) tubes. All gel tubes images of class (+++), (++) and (+) were

digitally created from a sample card.

4.1 Extracted Features Datasets

Three different datasets were built using the extracted image features in the three different meth-
ods.

In the first method, six numeric ellipse features were extracted from 144 tubes: the ellipse
centre coordinates (centre_x and centre_y), the ellipse semi-major and semi-minor axes (ellipse_a
and ellipse_b), the ellipse area (ellipse_area) and its orientation in radians (ellipse_phi). The result
was a dataset with 144 instances, with the following class distribution: 76 (-) instances, 56 (++++)

instances, 4 (+++) instances, 4 (++) instances and 4 (+) instances.

Attribute | Minimum | Maximum Average

centre_x 16.564 33.655 24.301+3.057

centre_y 41.522 118.621 85.999+32.229
ellipse_area | 43.022 730.013 | 148.922+153.818

ellipse_a 6.265 24.531 11.459+£3.405
ellipse_b 1.429 11.755 3.745£2.219
ellipse_phi -1.554 1.563 —0.003+0.455

Table 4.1: Segmentation dataset statistics.

From the extracted ellipse features two interesting patterns arise. In the Figure 4.2, the five

different classes are easily separated by the vertical position of ellipse centre. This is an expected

37
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outcome since the blood sample position after the centrifugation step is one of the two main factors
for test interpretation, as seen in the Figure 3.2. Still in the first class distribution graph, an outlier
exists belonging to the class label (++). Due to improper segmentation in the gel tube, the ellipse

fitting process detected an ellipse only on the top of the gel tube (Figure 4.1).

Figure 4.1: Tube image of the detected outlier.

Five different clusters exist in the Figure 4.3, each one corresponding to one of the five classes,
having big intervals dividing the classes. The vertical centre position of the ellipse divides the
strong positive class and negative class, analogous of what happens in the physical test tube. The
other dividing factor is the ellipse semi-major axis length, where strong test results have a smaller

value than weak positives. In this figure the dataset unbalance is highly noticeable.
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Figure 4.2: Class distribution: horizontal
centre position of the extracted ellipse over
its vertical centre position;

Figure 4.3: Class distribution: vertical cen-
tre position of the extracted ellipse over its
semi-major axis.

In the second method, the dataset was built using the centre position computed from detected
interest points (Section 3.3.4.3) corresponding to 144 instances, each with two numeric attributes:
the coordinates of the computed centre (centre_x and centre_y).

In this dataset, the averages of the computed centre positions approximates the averages centre
values obtained in the ellipse method, although the range of the vertical centre position was bigger

in this method. While the centre averages were similar, the classes are harder to divide in this case.
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Attribute | Minimum | Maximum Average
centre_x 11.680 33.000 24.178+4.077
centre_y 19.990 121.440 | 85.596+35.298

Table 4.2: Centre of detected interest points dataset statistics.

Still, most of the strong positive class and the negative class instances collect one at the bottom

and the other at the top of the graph (Figure 4.4), respectively.
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Figure 4.4: Class distribution: horizontal centre position over the vertical centre position.

In the third method, instead of determining the centre position of the detected interest points,

the dataset was built using the position of all detected interest points, classifying each point accord-

ing to the test value present in the image it was detected. From the tube images 829 interest points
were detected, with the following class distribution: 400 (-) instances, 280 (++++) instances, 29

(+++) instances, 82 (++) instances and 38 (+) instances.

Attribute | Minimum | Maximum Average
position_x 5.000 42.000 24.597+7.692
position_y 3.000 123.000 | 85.273434.837

Table 4.3: Position of detected interest points dataset statistics.

Again, the dataset unbalance is noticeable in the Figure 4.5, existing more instances for high

and low values of the vertical position. Since the coordinate (0,0) corresponds to the top left

pixel of the original tube image, is verified the expected outcome of having most of the negative

instances at the bottom of the tube, and most of the strong positive instances at the top of the tube.

Some outliers exist in the dataset due to improper detection of residual image reflections and tube

margins as image interest points.
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Figure 4.5: Class distribution: horizontal centre position over the vertical centre position.

4.2 Classification Results for Ellipse Features

In this first process, ellipse features extracted from 144 tubes were used to build the classifica-
tion models. From each tube were extracted six numeric features: the ellipse centre coordinates
(x0,¥0), the ellipse semi-major and semi-minor axes, the ellipse area and its orientation in radians.
The result was a dataset with 144 instances, keeping 48 separate for testing. The obtained results

are present in the Tables 4.4 and 4.5.
From the classification process, the three algorithms that yielded better accuracy after leave-

one-out cross validation were the Simple Logistic algorithm, the Random Forest algorithm and the

Random Tree algorithm.

Simple Logistic Random Forest Random Tree
Correctly
Classified Instances 41 48 41
Incorrectly 1 0 1
Classified Instances
Accuracy 0.9792 1.0 0.9792
Kappa statistic 0.9634 1.0 0.9634
Mean 0.009 0.0225 0.0083
absolute error
Class + ++ | A | A | - + | A+t | A | | - + ++ | At | | -
Precision 1 0.5 1 1 1 1 1 1 1 1 1 1 0.5 1 1
Recall 0.5 1 1 1 1 1] 1 1 1 1 0.5 1 1 1 1
F-Measure 0.667 | 0.667 1 1 1 1] 1 1 1 1 0.667 | 1 | 0.667 1 1
ROC Area 1 1 1 1 1 1|1 1 1 1 0.75 1 | 0.989 1 1
TP Rate 0.5 1 1 1 1 1 1 1 1 1 0.5 1 1 1 1
FP Rate 0 0.021 0 0 0 0] 0 0 0 0 0 0 | 0.021 0 0

Table 4.4: Ellipse features classification results for leave-one-out cross validation.

The impact of the small size of the dataset can be seen in the Table 4.4, where the Random
Forest algorithm built a perfect model, predicting correctly all instances of the test set. The other
two algorithms, Simple Logistic and Random Tree, also approached a perfect model, each only

misclassifying one instance.
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Analysing the Receiver Operating Characteristic (ROC) area, all three algorithms approach
the optimal value of 1 (100%), with the exception of two classes of the Random Tree algorithm.
This means that the Random Forest algorithm and the Simple Logistic algorithm both correctly
classified 100% of randomly drawn instances for test.

Comparing the Simple Logistic and the Random Tree algorithms, both correctly predicted all
strong positive (++++) and negative (-) instances, the two majority classes, but both struggled with
at least two of the minority classes.

To speed up the process, 10-fold cross validation was used to train again the classification
models. The yielded result statistics approximated the ones previously determined, having model
obtained using the Random Forest algorithm maintained a perfect score of the ROC area for all
classes, despite lowering its accuracy. The accuracy of the model built by the Random Tree algo-

rithm decreased, as well as the ROC area for the (++) class.

Simple Logistic Random Forest Random Tree
Correctly
Classified Instances 41 4 =
Incorrectly 1 1 3
Classified Instances N
Accuracy 0.9792 0.9792 0.9375
Kappa statistic 0.9634 0.9634 0.8908
Mean 0.0128 0.015 0.025
absolute error
Class + | | | - + ++ | | | - + ++ +++ | -
Precision 1 1 0.5 1 1 1 1 0.5 1 1 1 0 0.5 0.95 1
Recall 0.5 1 1 1 1 0.5 1 1 1 1 0.5 0 1 1 0.96
F-Measure 0.667 | 1 | 0.667 1 1 0.667 | 1 | 0.667 1 1 0.667 0 0.667 | 0.974 | 0.98
ROC Area 0.967 | 1 1 1 1 1 1 1 1 1 0.75 | 0.489 | 0.989 | 0.983 | 0.98
TP Rate 0.5 1 1 1 1 0.5 1 1 1 1 0.5 0 1 1 0.96
FP Rate 0 0 | 0.021 0 0 0 0 | 0.021 0 0 0 0.021 | 0.021 | 0.034 | 0

Table 4.5: Ellipse features classification results for 10-fold cross validation.

4.3 Classification Results for Centre Position of Interest Points

In the second process, the features dataset was built using the interest points detected in each tube
image, computing a global centre position as described in the Section 3.3.4.3 of this report.

The expected outcome would be the detection by the FAST algorithm of interest points around
the blood sample present in the gel tube, giving an approximate position of its centre. Due to the
detection of image reflections and tube margins as interest points, the centre of gravity method
was applied to reduce the influence of these outliers.

As seen previously in the Figure 3.16, iteratively the method approximates the global centre
to the neighbourhood of the clustered points. The result was a dataset with 144 instances, one for
each tube, with only two attributes: the centre x position and the centre y position. Of these 144

instances, 48 were kept separate for testing, yielding the results present in the Tables 4.6 and 4.7.
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Random Tree J48 Random Forest
Correctly
Classified Instances 40 = 4
Incorrectly
Classified Instances 8 3 7
Accuracy 0.8333 0.9375 0.8542
Kappa statistic 0.7191 0.8868 0.75
Mean 0.0667 0.0383 0.055
absolute error
Class + ++ +H+ | - + ++ +H+ | - + ++ +H+ | -
Precision 0 0.5 0 0.938 | 0.96 0 0.5 0 0.95 | 0.962 0 0.5 0 0.938 | 0.962
Recall 0 1 0 0.789 | 0.96 0 1 0 1 1 0 1 0 0.789 1
F-Measure 0 0.667 0 0.857 | 0.96 0 0.667 0 0.974 | 0.98 0 0.667 0 0.857 | 0.98
ROC Area 0.489 | 0.989 | 0.457 | 0.877 | 0.958 0.848 | 0.989 | 0.798 | 0.983 | 0.978 0.478 1 0.915 | 0.993 | 0.977
TP Rate 0 1 0 0.789 | 0.96 0 1 0 1 1 0 1 0 0.789 1
FP Rate 0.022 | 0.021 | 0.085 | 0.034 | 0.043 0 0.021 0 0.034 | 0.043 0 0.021 | 0.085 | 0.034 | 0.043

Table 4.6: Centre position classification results for leave-one-out cross validation.

In this process the three algorithms that produced a more accurate model after leave-one-
out cross validation were the Random Tree algorithm, the J48 algorithm (pruned decision tree
classifier) and the Random Forest algorithm. Despite having the same number of instances as the
ellipse features dataset, the obtained models yielded worst results. The effects of the small dataset
are also visible in Table 4.6, having low precision values for the three minority classes.

Using 10-fold cross validation, the trained model by the Random Tree algorithm maintained
its accuracy, correctly classifying 40 instances out of 48. While the Random Tree algorithm kept

its accuracy, the J48 algorithm and the Random Forest algorithm both achieved worst results.

Random Tree J48 Logistic
Correctly
Classified Instances 40 4 46
Incorrectly
Classified Instances 8 7 2
Accuracy 0.8333 0.8542 0.9583
Kappa statistic 0.7141 0.75 0.9242
Mean 0.0667 0.062 0.0368
absolute error
Class + ++ | | - + ++ +++ | - + 4 | | -
Precision 0 1 0 0.938 | 0.923 0 0.5 0 0.938 | 0.962 0 1 1 1 0.926
Recall 0 1 0 0.789 | 0.96 0 1 0 0.789 1 0 1 1 1 1
F-Measure 0 1 0 0.857 | 0.941 0 0.667 0 0.857 | 0.98 0 1 1 1 0.962
ROC Area 0489 | 1 | 0457 | 0.877 | 0.937 0.848 | 0.989 | 0.915 | 0.891 | 0.978 0.859 | 1 1 1 0.977
TP Rate 0 1 0 0.789 | 0.96 0 1 0 0.789 1 0 1 1 1 1
FP Rate 0.022 | 0 | 0.085 | 0.034 | 0.087 0 0.021 | 0.085 | 0.034 | 0.043 0 0 0 0 0.087

Table 4.7: Centre position classification results for 10-fold cross validation.

4.4 Classification Results for Position of Interest Points

For the third process, using the same detected interest points, the classification models were trained
with each individual point position. Since the number of interest points detected by the FAST
algorithm varied with each tube image, the resulting dataset was constituted by a bigger number
of instances.

Using the FAST algorithm for corner detection, from the original 144 tube images were ex-

tracted 829 interest points, corresponding to a dataset of 829 instances, with 553 instances for
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training and for 276 for testing. Of the 829 original instances 38 were extracted from tubes classi-
fied as (+), 82 from (++) tubes, 29 from (+++), 280 from (++++) and 400 from (-).

Decision Table JRip REP Tree
Correctly
Classified Instances 228 229 i
Incorrectly
Classified Instances 48 47 =
Accuracy 0.8261 0.8297 0.8369
Kappa statistic 0.7123 0.7258 0.7322
Mean 0.134 0.1086 0.0991
absolute error
Class + ++ | - + ++ | - + ++ +H+ | -
Precision 0417 1 0.6 | 0.823 | 0.869 0.8 | 0462 | 05 |0.845 | 0.899 0.571 | 0.6 0 0.809 | 0.899
Recall 0.417 | 0.036 | 0.333 | 0.989 | 0.947 0.333 | 0.429 | 0.222 | 0.926 | 0.932 0.333 | 0.321 0 0.989 | 0.94
F-Measure 0.417 | 0.069 | 0.429 | 0.899 | 0.906 0.471 | 0.444 | 0.308 | 0.883 | 0.915 0.421 | 0419 0 0.89 | 0.919
ROC Area 0.865 | 0.765 | 0.933 | 0.97 | 0.95 0.793 | 0.695 | 0.835 | 0.946 | 0.927 0.854 | 0.835 | 0.942 | 0.965 | 0.951
TP Rate 0.417 | 0.036 | 0.333 | 0.989 | 0.947 0.333 | 0.429 | 0.222 | 0.926 | 0.932 0.333 | 0.321 0 0.989 | 0.94
FP Rate 0.027 0 0.007 | 0.11 | 0.133 0.004 | 0.056 | 0.007 | 0.088 | 0.098 0.011 | 0.024 0 0.121 | 0.098

Table 4.8: Results of position of interest points used for classification.

After leave-one-out cross validation, the algorithms that produced a better model accuracy
were the Decision Table algorithm, the JRip algorithm (Repeated Incremental Pruning to Produce
Error Reduction) and the REP Tree algorithm (decision tree pruned using reduced-error). The
increased number of instances produced results statistically more significant. First, all three algo-
rithms produced similar high accuracy (over 80 %) and Kappa statistic values. Despite the increase
in the number of instances, the dataset is still highly imbalanced, due to existing more instances
for the strong positive (++++) and negative (-) classes. This leads to worst results on all models

for the three minority classes.

PART Decision Table JRip
Correctly
Classified Instances 234 228 233
Incorrectly
Classified Instances 42 48 =
Accuracy 0.8478 0.8261 0.8442
Kappa statistic 0.7504 0.7123 0.7478
Mean 0.0875 0.1365 0.1012
absolute error
Class + ++ | - + ++ | - + ++ +H+ | -
Precision 0.75 | 0.563 1 0.825 | 0.899 0.417 1 0.6 | 0.823 | 0.869 0.625 | 0.526 | 0.5 | 0.858 | 0.899
Recall 0.25 | 0.321 | 0.333 1 0.94 0.417 | 0.036 | 0.333 | 0.989 | 0.947 0.417 | 0.357 | 0.222 | 0.968 | 0.94
F-Measure 0.375 | 0409 | 0.5 |0.904 | 0919 0.417 | 0.069 | 0.429 | 0.899 | 0.906 0.5 | 0426 | 0308 | 091 | 0919
ROC Area 0.722 | 0.856 | 0.94 | 0.972 | 0.966 0.823 | 0.758 | 0.93 | 0.967 | 0.946 0.845 | 0.7 | 0.854 | 0956 | 0.93
TP Rate 0.25 | 0.321 | 0.333 1 0.94 0.417 | 0.036 | 0.333 | 0.989 | 0.947 0.417 | 0.357 | 0.222 | 0.968 | 0.94
FP Rate 0.004 | 0.028 0 0.11 | 0.098 0.027 0 0.007 | 0.11 | 0.133 0.011 | 0.036 | 0.007 | 0.082 | 0.098

Table 4.9: Results of position of interest points used for classification.

Similar accuracy results were yielded using 10-fold cross validation to train the models, but
now the PART algorithm produced a classification model with better results, replacing the REP
Tree algorithm in the top tree. The PART algorithm is described by its authors as a “method for
learning decision lists based on the repeated generation of partial decision trees in a separate-and-

conquer manner” [102].
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4.5 Application Tests

After the classification step, the application described in Section 3.4 of this report was then used
to analyse new and unclassified gel cards, employing the three best models trained in each process
with leave-one-out cross validation, i. e. ellipse features models, interest points models and centre
of interest points models. To determine the test outcome, for each tube, the application joins the
three classification decisions yielded by the three models, and chooses the result with the highest
occurrence rate (out of three). If all three models disagree, the classification result of the model
with better training accuracy is chosen.

The application was tested with the two gel cards initially separated from the group before

feature extraction and model training (Figure 4.6), correctly determining the test result for all gel
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Result Result
ez ]

—
- Lo -
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Figure 4.6: Main application interface.

4.6 Conclusions

Comparing the three different processes, it is evident the impact a small and unbalanced training
dataset can have in building classification models. While trained models yielded high accuracy
results for the two majority classes (- and ++++), the accuracy for the other three minority classes
was lower, with ROC areas lower than 0.5. This means that in those instances the models yielded
worst results than a pure random decision.

From the three different processes, models built using ellipse features yielded more accurate
classifiers. A possible explanation is the similarity between the fitted ellipse characteristics and
blood sample for determining the blood test result, since the two main factors for determining the
blood test result in the gel tube is the sample vertical position in the tube and its size, i. e. the
blood sample spread across the tube. This two attributes can be correlated to the ellipse vertical
centre position and the ellipse semi-major axis, who as previously verified in the Figure 4.3, easily
divide the five different class labels.



Chapter 5

Conclusions and Future Work

In this dissertation was explored the applicability of machine learning and computer vision tech-
niques for reading and classifying gel card tests used for blood typing. Using open-source libraries,
two computer applications were developed, one for reading images of gel cards, extracting image
features using three different methods. To each method were applied multiple classification al-
gorithms using leave-one-out cross validation and 10-fold cross validation, and the results were
studied for three of the best models.

The second application was developed to use the trained models for classification of new cards,
recording each new result and rebuilding the model each time the user fixes a classification mis-
take. This program also extracts features using the same three different methods, joining yielded
results from the three classification models from each method to classify extracted features, and
combining again the three tests methods to determine the final tube result.

The software was developed with Java using the JavaFX™ library for the user interface, the
BoofCV library for image segmentation and feature extraction, the WEKA software workbench
for the data classification problem, the ZXing library for detecting and reading the gel card identi-
fication barcode, the H2 database as a data storage for program and classifier data and the OpenCV
library with desktop Java bindings for local image feature extraction.

From the three different feature extraction processes, one used the BoofCV library for first
segmenting the tube image, isolating the blood sample in the tube, and then fitting an ellipse into
the segmented blood shape. From this ellipse were extracted six different features and saved in
a dataset: the ellipse centre coordinates, the ellipse semi-major and semi-minor axes, the ellipse
area and the ellipse orientation in radians.

The other two feature extraction processes used the OpenCV library for extracting interest
points using the FAST corner detection algorithm. For the second dataset each detected interest
point position on the tube image was recorded. The third dataset was built with the centre coordi-
nates computed using all the interest points detected in the tube image, as described in the Section
3.3.4.3 of this report.

Due to the small card sample, 24 gel cards, and class imbalance, 76 (-) tubes, 56 (++++) tubes,
4 (+++) tubes, 4 (++) tubes and 4 (+) tubes, the classification models built in the Chapter 4 yielded

45
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poor statistical results for minority classes. In the third dataset, were verified good results for the
two majority classes, indicating that the interest points position detected by the FAST algorithm
would successfully represent the information present in the test tube, although features extracted
from ellipse fitting would produce better results.

In future work, different dataset sampling process should be studied to try to oppose dataset
imbalance, like randomly discard majority class instances, duplicate minority class instances, or
both. Also, a bigger and balanced card sample should be used to verify classification accuracy
of interest points position as the tube descriptor. Finally, different feature extraction processes
should also be tested, to verify if points detected by the FAST algorithm correctly approximate

image interest points without compromising detection accuracy.
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