Radiation Hard Set-up DC-DC Converter

Helena Isabel Pais Ferreira de Vargas

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Professor José Machado da Silva (PhD)
Second Supervisor: Paulo Moreira

July 6, 2012
Abstract

The present document is an introductory work containing research material about radiation hard
DC-DC converters. In the future it will be used as background research for a master’s academic
dissertation on the subject. First is presented the literature review. After a brief overview on
DC-DC converters, the basic operation principles of the step-up converter are described, the semi-
conductors currently used in this kind of application are analysed. A brief description of the basic
control method and a small introduction of the CMOS technology are made. Then, the state of the
art is presented. Some variations of the basic configuration of the step-up converter are shown as
well as the implementation of DC-DC converters with CMOS technology. Different control tech-
nique are introduced and radiation hardening methods described. Finally is presented the work
plan for the dissertation.

keywords: radiation hardening, step-up DC-DC converter, CMOS.
Contents

1 Introduction 1

2 Fundamental Concepts 3
 2.1 Step-up DC-DC converter 3
 2.1.1 Basic operation principles 3
 2.2 Control techniques 11
 2.2.1 Classic PWM control 11
 2.3 Semiconductor devices 12
 2.3.1 Diode 13
 2.3.2 MOSFET 16
 2.4 Snubber circuits 21
 2.5 CMOS technology 21

3 State of the Art 25
 3.1 Step-up DC-DC converter: More advanced solutions 25
 3.2 Design of integrated DC-DC converters with CMOS technology 26
 3.3 Existing control techniques 27
 3.3.1 PI and PID controllers 27
 3.3.2 Simple Adaptive Control 27
 3.3.3 Fuzzy Control 28
 3.3.4 Sliding Mode Control 28

4 Radiation hardening technology 31
 4.1 Design of power converters 31
 4.2 Ionizing Radiation Effects 31
 4.3 Alternatives to radiation hardening by design 32

5 Dissertation overview 33
 5.1 Project description 33
 5.2 Final remarks 33
 5.3 Work plan 35

References 37
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Basic DC-DC Step-up Converter</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Step-up Converter: (a) Switch on; (b) Switch off</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Continuous Conductions Mode: Inductor voltage</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Voltage conversion ratio of an ideal DC-DC step-up converter [4]</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>Continuous conduction mode: Inductor current waveform</td>
<td>6</td>
</tr>
<tr>
<td>2.6</td>
<td>Continuous conduction mode: Capacitor voltage waveform</td>
<td>6</td>
</tr>
<tr>
<td>2.7</td>
<td>Discontinuous conduction mode: Inductor voltage (a) and current (b) waveforms</td>
<td>7</td>
</tr>
<tr>
<td>2.8</td>
<td>Discontinuous conduction mode: Diode current waveform</td>
<td>8</td>
</tr>
<tr>
<td>2.9</td>
<td>Discontinuous conduction mode: Capacitor voltage (a) and current (b) waveforms</td>
<td>9</td>
</tr>
<tr>
<td>2.10</td>
<td>Boundary between operations modes and its dependence of D (adapted from [4])</td>
<td>10</td>
</tr>
<tr>
<td>2.11</td>
<td>Closed loop PWM control block diagram</td>
<td>11</td>
</tr>
<tr>
<td>2.12</td>
<td>PWM: Control signal waveform</td>
<td>12</td>
</tr>
<tr>
<td>2.13</td>
<td>Silicon single-crystal structure (based on [5]).</td>
<td>13</td>
</tr>
<tr>
<td>2.14</td>
<td>Silicon crystal structure: Intrinsic semiconductor(a), n-type semiconductor(b) and p-type semiconductor(c) [7].</td>
<td>14</td>
</tr>
<tr>
<td>2.15</td>
<td>Diode symbol</td>
<td>14</td>
</tr>
<tr>
<td>2.16</td>
<td>Diode i-v characteristic: Ideal diode (a) and Junction Diode (b)</td>
<td>14</td>
</tr>
<tr>
<td>2.17</td>
<td>pn junction diode in open-loop [7].</td>
<td>16</td>
</tr>
<tr>
<td>2.18</td>
<td>pn junction diode in close-loop: Forward biased(a) and reverse biased(b) (adapted from [7]).</td>
<td>17</td>
</tr>
<tr>
<td>2.19</td>
<td>NMOS transistor circuit symbols [7].</td>
<td>17</td>
</tr>
<tr>
<td>2.20</td>
<td>NMOS transistor analysis circuit [7].</td>
<td>17</td>
</tr>
<tr>
<td>2.21</td>
<td>NMOS transistor: the $i_D - v_{DS}$ characteristic (based on [7]).</td>
<td>18</td>
</tr>
<tr>
<td>2.22</td>
<td>PMOS transistor circuit symbols [7].</td>
<td>19</td>
</tr>
<tr>
<td>2.23</td>
<td>PMOS transistor analysis circuit [7].</td>
<td>19</td>
</tr>
<tr>
<td>2.24</td>
<td>Cross section view off the physical structure of an NMOS transistor [7].</td>
<td>20</td>
</tr>
<tr>
<td>2.25</td>
<td>Cross section view off the physical structure of a PMOS transistor during conduc- (adapted from [5]).</td>
<td>21</td>
</tr>
<tr>
<td>2.26</td>
<td>Examples of snubber circuits: diode snubber(a), transistor turn-on snubber(b) and transistor turn-off snubber(c) (adapted from [2]).</td>
<td>22</td>
</tr>
<tr>
<td>2.27</td>
<td>Basic CMOS inverter[9].</td>
<td>22</td>
</tr>
<tr>
<td>2.28</td>
<td>Basic CMOS inverter physical structure [7].</td>
<td>23</td>
</tr>
<tr>
<td>2.29</td>
<td>CMOS IC design process (based on [10]).</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>Step-up converter with multiple switches and inductors [13]</td>
<td>26</td>
</tr>
<tr>
<td>3.3</td>
<td>Diagram of SAC Using PFC and LTI Controller ([17] as cited in [16])</td>
<td>28</td>
</tr>
<tr>
<td>3.4</td>
<td>Block diagram of fuzzy control scheme of DC-DC converters [18].</td>
<td>29</td>
</tr>
</tbody>
</table>
3.5 Block diagram a sliding mode control scheme of a DC–DC converter [15]. . . . 29
5.1 Gantt chart of the work plan for the dissertation. 36
List of Tables

2.1 Summary of the step-up converter conduction modes characteristics. 11
Abbreviations and Symbols

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJT</td>
<td>Bipolar Junction Transistor</td>
</tr>
<tr>
<td>CCM</td>
<td>Continuous Conduction Mode</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary metal-oxide semiconductor</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCM</td>
<td>Discontinuous Conduction Mode</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processor</td>
</tr>
<tr>
<td>IC</td>
<td>Integrated Circuit</td>
</tr>
<tr>
<td>LSI</td>
<td>Large-scale integration</td>
</tr>
<tr>
<td>LHC</td>
<td>Large Hadron Collider</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal Oxide Semiconductor Field Effect Transistor</td>
</tr>
<tr>
<td>MSI</td>
<td>Medium-scale integration</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>RHBD</td>
<td>Radiation Hardening-By-Design</td>
</tr>
<tr>
<td>RHP</td>
<td>Right-Half Plane</td>
</tr>
<tr>
<td>SAC</td>
<td>Simple Adaptive Control</td>
</tr>
<tr>
<td>TID</td>
<td>Total Ionizing Dose</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very-large-scale integration</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Nowadays DC-DC converters play an important role in electronic systems. They serve as an interface between two DC power supplies, allowing the conversion of one voltage level to another, and control the power flow between them [1]. They are used in a large variety of applications such as CD players, cellphones, PC power supplies and hybrid or electric vehicles.

The basic components present in a DC-DC converter are mainly switches, inductors and capacitors. Inductors are responsible for the energy storage. With the proper command, switches are turned on and off in order to charge or discharge the inductor, allowing the stepping up or down of the output voltage. The capacitor is placed in parallel with the output to ensure a constant output voltage.

There are different topologies available, but only two basic topologies: the step-up and the step-down converter, where the output voltage or current (relatively to the DC input) is stepped up or down respectively. All other topologies result from the combination of these two basic topologies, such as the buck-boost and Čuk converters [2].

According to the application and the magnitude of the step between the input and the output, it may be necessary to electrically isolate the converter. These kind of converters use a transformer to achieve the desired isolation. Unlike the non-isolated converters, there is no need to include an inductor to store energy in the circuit, since this task is held by the transformer windings. Among the most commonly isolated topologies used are the flyback and forward converters.

Design specifications strongly depend on the application. Not all converters are designed to withstand harsh conditions, specially environments with high radiation. In these situations is imperative to use special technologies, called radiation hardening, that will improve the radiation tolerance of the converters. These converters find applications in space technology, like satellites and space stations, nuclear reactors or even in the Large Hadron Collider (LHC) [3].

The main goal of this document is the study of radiation hard DC-DC step-up converters. All the other converter topologies are out of the scope of this document.

The theoretical study was divided in two chapters: the literature review and the state of the art of radiation hard DC-DC step-up converters. In the literature review are described the basic operation principles of the step-up converter, the semiconductors currently used in this kind of
application are analysed. A brief description of the basic control method and a small introduction of the CMOS technology are made. In the state of the art some variations of the basic configuration of the step-up converter are presented as well as the implementation of DC-DC converters with CMOS technology. Different control techniques are introduced and radiation hardening methods described.

The final chapter is dedicated to the detailed characterization of the project goals and is displayed the work plan for the dissertation.
Chapter 2

Fundamental Concepts

2.1 Step-up DC-DC converter

The step-up converter, also known as the boost converter, is one of the basic topologies of the DC-DC converters. As the name implies, the converter produces an output voltage higher than the input voltage. Since the input voltage required for the project is stepped up by a ratio of approximately 2:1 there is no need for electrical isolation, because the step ratio is small. Hence, the theoretical study will only fall upon non-isolated converters.

2.1.1 Basic operation principles

The basic step-up converter is shown in the image below:

![Basic DC-DC Step-up Converter](image)

Figure 2.1: Basic DC-DC Step-up Converter

For now, the unideal characteristics of the circuit elements will be set aside and will be mentioned later.

When the switch is on, the diode is reversed biased and the current only flows through the inductor, charging it with electromagnetic energy. The capacitor insures, for a certain amount of time, that the load voltage remains the same, while it is cut off from the input. On the other hand, when the switch is off, the current flows throughout all the circuit and the load is supplied with energy from both the input and the inductor.
The process described above represents the basic principle of operation of the step-up converter. However, to obtain the desired voltage level at the output is necessary to properly control the switching frequency of the converter. Hence, the output voltage will depend on the duty cycle of the switch. The duty cycle also defines the conduction mode of the converter.

2.1.1.1 Continuous Conduction Mode

In this mode of conduction, the current flows continuously never reaching zero. When the switch is on the inductor voltage is given by

$$v_L = V_i$$ \hspace{1cm} (2.1)

and when the switch is off is given by

$$v_L = V_i - V_o$$ \hspace{1cm} (2.2)

With this information it is possible to draw the inductor voltage waveform.

In steady state, the time integral of the inductor voltage over one switching period must be zero \cite{1}. So, considering the results provided by equations 2.1 and 2.2 yields

$$\int_0^{T_s} v_L dt = 0$$
2.1 Step-up DC-DC converter

\[V_i T_s D + (V_i - V_o) T_s (1 - D) = 0 \quad (2.3) \]

where \(T_s = t_{on} + t_{off} \) is the switching period and D is the duty cycle of the switch. The rearrangement of equation 2.3 will result in the following

\[\frac{V_o}{V_i} = \frac{1}{1 - D} = M(D) \quad (2.4) \]

where \(M(D) \) is the voltage conversion ratio of the converter. The plot of equation 2.4 is shown in the following image:

![Figure 2.4: Voltage conversion ratio of an ideal DC-DC step-up converter [4].](image)

Analysing figure 2.4 it is possible to see that the output voltage decreases with the increase of D. So, ideally, the output voltage tends to infinity when D approaches 1. This means that the ideal boost converter can produce any output voltage greater than the input voltage. However, due to the non-ideal characteristics of real converters there is a limit to the output voltage [4].

Since no power losses are considered in the present analysis, the relation between the input and output DC currents can be found.

\[P_i = P_o \iff V_i I_i = V_o I_o \]

\[\frac{I_o}{I_i} = 1 - D = \frac{1}{M(D)} \quad (2.5) \]

When the duty-cycle approaches 1, the output current tends to zero. This behaviour is expected, since an output voltage increase leads to a current decrease in order to conserve the input power.

Equations 2.4 and 2.5 shows that, in this operation mode, the load has no influence on the output current and voltage. They are only a function of the duty-cycle.

Now, lets analyse the ripple in the inductor current. Considering equations 2.1 and 2.2 it is possible to calculate the slope of the current, which is \(\frac{V_i}{L} \) and \(\frac{V_o - V_i}{L} \) during \(t_{on} \) and \(t_{off} \) respectively. The current waveform is shown in figure 2.5.

According to figure 2.5, the ripple of the current can be given by

\[2 \Delta i_L(t) = \frac{V_i}{L} t_{on} = \frac{V_o}{L} DT_s \]
Fundamental Concepts

\[\Delta i_L(t) = \frac{V_i}{2L} DT_s \]

(2.6)

With the previous equation it is possible to select the value \(L \) of the inductor according to the desired current ripple.

A similar process is used to determine the capacitor voltage ripple. The capacitor current expressions are the following

\[i_c(t) = -I_o \]

(2.7)

\[i_c(t) = I_i - I_o \]

(2.8)

during \(t_{on} \) and \(t_{off} \) respectively.

So, the voltage slope during \(t_{on} \) is \(\frac{-I_o}{C} \) and during \(t_{off} \) is \(\frac{L-I_i}{C} \). With that information is now possible to sketch the voltage waveform

\[-2\Delta v_c(t) = -\frac{I_o}{C} t_{on} = -\frac{I_o}{C} DT_s \]

From figure 2.6 the voltage ripple can be given by
Since we are dealing with voltage conversions, it is more appropriate to define voltage ripple as a function of the output voltage

\[-2\Delta v_c(t) = -\frac{V_o}{RC} DT_s \]

\[\Delta v_c(t) = -\frac{V_o}{2RC} DT_s \]

(2.9)

Although the output voltage is not load dependent, it can be seen from the previous equations that the voltage ripple is. Using these equations it is possible to choose the C value of the capacitor. Usually large capacitors are chosen in order to minimize the output ripple [4].

2.1.1.2 Discontinuous Conduction Mode

This conduction mode frequently occurs in converters operating at light load or with no load at all. The analysis of this conduction mode is important because the properties of the converter suffer considerable changes. For instance, the voltage conversion ratio becomes load dependent and therefore the output voltage ceases to be only a function of the duty-cycle and the input voltage.

In the discontinuous conduction mode the inductor current reaches zero at the end of each switching cycle \((i_L(t) \geq 0)\), as well as the inductor voltage. The equations of the inductor for this conduction mode are the same as the equations described in section 2.1.1.1, but since the inductor is allowed to fully discharge, the waveforms are slightly different.

![Discontinuous conduction mode: Inductor voltage (a) and current (b) waveforms.](a) (b)

Figure 2.7: Discontinuous conduction mode: Inductor voltage (a) and current (b) waveforms.

According to the inductor voltage waveform the voltage conversion ratio is given by

\[DV_i + \Delta t_1 (V_i - V_o) + \Delta t_2 (0) = 0 \]

\[\frac{V_o}{V_i} = \frac{D + \Delta t_1}{\Delta t_1} \]

(2.10)

Since \(\Delta t_1\) is unknown and the voltage should be represented only as a function of D, it is necessary to calculate the value of \(\Delta t_1\).
The diode current is identical to the inductor current during t_{off}. Hence, the peak current of the diode is the same as the inductor and is given by

$$i_{pk} = \frac{V_i}{L} DT_s$$

(2.11)

The DC component of the diode current is

$$\frac{1}{T_s} \int_0^{T_s} i_D(t) dt$$

which is the same as the area of figure 2.8 divided by T_s

$$I_D = DT_s(0) + \frac{\Delta t_1 i_{pk}}{2} + \Delta t_2(0) = \Delta t_1 i_{pk}$$

$$I_D = \frac{V_i}{2L} D \Delta t_1 T_s$$

(2.12)

Substituting I_D by the load current I_o yields

$$\frac{V_i}{2L} D \Delta t_1 T_s = \frac{V_o}{R}$$

(2.13)

$$\frac{V_o}{V_i} = \frac{RD \Delta t_1 T_s}{2L}$$

Replacing $\frac{V_o}{V_i}$ by equation 2.10

$$\frac{RD \Delta t_1 T_s}{2L} = \frac{D + \Delta t_1}{\Delta t_1}$$

$$\Delta t_1 = D \frac{V_i}{V_o - V_i}$$

(2.14)
2.1 Step-up DC-DC converter

Replacing this result in equation 2.13 yields

\[V_o^2 - V_o V_i - \frac{V_i^2 D^2}{K} = 0 \]

where

\[K = \frac{2L}{RT_s} \]

(2.15)

Solving the quadratic equation it is possible to determine the voltage conversion ratio

\[\frac{V_o}{V_i} = 1 + \sqrt{1 + \frac{4D^2}{K}} = M(D, K) \]

(2.16)

This equation is valid for \(K < K_{crit} \) [4]. \(K_{crit} \) represents the boundary between the continuous and discontinuous conduction mode and will be determined in the next section.

Now let’s analyse the inductor current ripple and the capacitor voltage ripple in the discontinuous conduction mode. According to figure 2.7, the inductor current ripple is given by

\[2\Delta i_L(t) = \frac{V_i}{L} t_{on} = \frac{V_i}{L} DT_s \]

\[\Delta i_L(t) = \frac{V_i}{2L} DT_s \]

(2.17)

The capacitor waveforms are shown in figure 2.9

Figure 2.9: Discontinuous conduction mode: Capacitor voltage(a) and current(b) waveforms.

2.1.1.3 Boundary between the continuous and discontinuous conduction mode

From the previous sections was shown that

\[I_L > \Delta i_L \text{ for CCM} \]

(2.18)
\[I_L < \Delta i_L \text{ for DCM} \] (2.19)

Considering that
\[I_i = \frac{I_o}{1-D} = \frac{V_o}{R(1-D)} = \frac{V_i}{R(1-D)^2} \]

Joining equation 2.6 with the previous result, equation 2.18 is the same as
\[\frac{V_i}{(1-D)^2 R} > \frac{D T_i V_i}{2L} \iff \frac{2L}{R T_s} > D(1-D)^2 \]

since \(K > \frac{2L}{R T_s} \) (eq. 2.15) then
\[K_{crit} = D(1-D)^2 \] (2.20)

Therefore
\[K > K_{crit}(D) \text{ for CCM} \] (2.21)
\[K < K_{crit}(D) \text{ for DCM} \] (2.22)

[4]

2.1.1.4 Summary of all conduction modes

The following figure shows when the boost converter operates on the continuous or discontinuous conduction modes:

Figure 2.10: Boundary between operations modes and its dependence of D (adapted from [4])

All the important equations deduced so far are summarized in the following table:
Table 2.1: Summary of the step-up converter conduction modes characteristics.

<table>
<thead>
<tr>
<th>Conduction Mode</th>
<th>M condition</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>$\frac{1}{1-D}$</td>
<td>$K > K_{crit}$</td>
</tr>
<tr>
<td>Discontinuous</td>
<td>$1 + \sqrt{1 + \frac{4D^2}{K^2}}$</td>
<td>$K < K_{crit}$</td>
</tr>
</tbody>
</table>

With $K > \frac{2L}{RT_S}$ and $K_{crit} = D(1-D)^2$

2.2 Control techniques

2.2.1 Classic PWM control

This is a closed loop method which controls the output voltage by employing a constant switching frequency, varying only the duty-cycle. There are other methods that use variable switching frequency, but becomes difficult to filter the ripple of the converter waveforms. The basic block diagram of the converter and the controller is shown in the figure below.

![Closed loop PWM control block diagram](image)

The control signal is generated by comparing the control voltage ($v_{control}$) with the sawtooth wave. Since the rate of change of $v_{control}$ is very large compared with the frequency of the sawtooth wave, locally it can be considered constant.

The basic operation principle is very simple: when the control voltage is greater than the sawtooth waveform, the control signal becomes high, making the switch turn on. On the other hand, when the control voltage is smaller than the sawtooth waveform, the switch is turned off. The switching frequency and the duty-cycle are given by
Fundamental Concepts

Figure 2.12: PWM: Control signal waveform.

\[
f_s = \frac{1}{T_s} \tag{2.23}
\]

\[
D = \frac{t_{on}}{T_s} = \frac{V_{control}}{V_{st}} \tag{2.24}
\]

where \(V_{st} \) is the peak voltage of the sawtooth waveform.

As indicated in figure 2.12 the switching frequency is imposed by the frequency of the saw-tooth waveform. Since DC-DC converters have two conduction modes, as covered in sections 2.1.1.1 and 2.1.1.2, the control and the converter itself should by design considering those modes of operation [2].

2.3 Semiconductor devices

The controlled flow of charged particles is fundamental to the operation of all electronic devices. The material used in these devices must be capable of providing a source of mobile charges and the processes which govern the flow of charges must be amenable to control. Germanium and gallium are widely used semiconductors, however silicon is the most predominant.

The crystal structure of silicon consists of a regular repetition in three dimensions of a unit cell having the form of a tetrahedron with an atom at each vertex like the one shown on figure 2.13. But, for simplicity, the unit cell is often represented in 2D, as shown in figure 2.14(a). Silicon has a total of 14 electrons in its atomic structure, 4 of which are valence electrons. The inert ionic core has a charge of +4. The valence electrons serve to bind one atom to the next.

At certain temperatures the covalent bonds are broken and the electrons are free to wander randomly throughout the crystal. The absence of the electron in the covalent bond is called a hole. When a hole exists it is relatively easy for a valence electron in a neighbouring atom to leave its covalent bond to fill this hole. An electron moving from a bond to fill a hole leaves another hole in its initial position. This hole may now be filled by an electron from another covalent bond, and
2.3 Semiconductor devices

Figure 2.13: Silicon single-crystal structure (based on [5]).

the hole will correspondingly "move" one more step in the opposite direction to the motion of the electron. When an electromagnetic field is applied, the electron motion is no longer random and becomes organized.

If the crystal structure is a pure sample of silicon and has no foreign atoms, such pure crystal is called an intrinsic semiconductor. Consequently, the hole concentration p and the electron concentration n must be equal and the intrinsic concentration n_i, which is temperature-dependent, is given by $n_i = p = n$.

When the crystal has impurities in its structure, the semiconductor is called extrinsic or doped. The addition of impurities is a common expedient used to increase the number of carriers. A small, carefully controlled, impurity content is introduced in an intrinsic semiconductor. Each type of impurity establishes a semiconductor which as a predominance of one kind of carrier. The usual level of doping is in the range of 1 impurity atom for 10^6 to 10^8 silicon atoms. So, most physical and chemical properties are essentially those of silicon and only the electrical properties change.

When an intrinsic semiconductor is doped with pentavalent impurities (called donors), such as antimony, phosphorus or arsenic, the number of electrons increases and the number of holes decreases. Consequently, the dominant carriers are the negative electrons which results in an n-type semiconductor (figure 2.14(b)). On the other hand, when an intrinsic semiconductor is doped with trivalent impurities (called acceptors), such as boron, gallium or indium, the electrons only fill three covalent bonds. The void that exists in the fourth bond constitutes a hole. Thus, the dominant carriers are the holes and this type of crystal is called p-type semiconductor (figure 2.14(c)) [6].

Semiconductor devices are electrical devices constituted with semiconductor material. Each device type has different combinations of n and p layers that provide unique electrical characteristics. Examples of commonly used semiconductor devices are the diode, transistor or the thyristor.

2.3.1 Diode

The diode is a non linear element since there is no direct relation between the current and the voltage applied to its terminals. The diode symbol is shown in figure 2.15.

The positive and negative terminals are called anode (A) and cathode (C) respectively. Ideally, the diode behaviour is very simple. When a positive voltage is applied the diode becomes directly
Figure 2.14: Silicon crystal structure: Intrinsic semiconductor(a), \(n \)-type semiconductor(b) and \(p \)-type semiconductor(c) [7].

Figure 2.15: Diode symbol.

biased and acts as a short circuit. When a negative voltage is applied the diode becomes reversed biased and acts as an open circuit. The \(i-v \) characteristic of an ideal diode is shown in figure 2.16(a).

Figure 2.16: Diode \(i-v \) characteristic: Ideal diode (a) and Junction Diode (b).

2.3.1.1 Electrical characteristics

The silicon junction diode has a different \(i-v \) characteristic curve. Unlike the ideal diode which operates in two different regions (the forward and reverse regions), the silicon junction diode, in addition to the previous regions, also operates in the breakdown region.
The forward region of operation occurs when $v > 0$. The i-v curve can be approximated by the following expression

$$i = I_S(e^{\frac{v}{kT}} - 1)$$ \hspace{1cm} (2.25)

where I_s is the saturation current and n is a constant value between 1 and 2, according to the material and physical structure of the diode. V_T is the thermal voltage which is given by

$$V_T = \frac{kT}{q}$$ \hspace{1cm} (2.26)

where k is the Boltzmann’s constant, q the magnitude of the electric charge and T is the absolute temperature.

If $i >> I_S$, i can be approximated by

$$i \approx I_S e^{\frac{v}{kT}}$$ \hspace{1cm} (2.27)

Analysing the forward region in figure 2.16 (b), for $v < 0.5V$ the current is very close to zero. When the diode is fully conducting, the voltage drop is approximately between 0.6 and 0.8 V. Hence, usually is assumed that the voltage drop of a fully conducting diode is 0.7 V.

The reverse region of operation occurs when $v < 0$, and the diode current is given by

$$i \approx -I_S$$ \hspace{1cm} (2.28)

Ideally, the diode in this region should have $i = 0$. However, due to leakage effects, a reverse current flows through the diode. Both I_S and the reverse current are proportional to the junction area, but I_S doubles with every 5°C rise and the reverse current doubles with every 10°C rise.

The reverse region of operation occurs when the breakdown voltage, V_{ZK}, of the diode is exceeded

2.3.1.2 Physical operation

The pn junction is the basic block on which the operation of all semiconductor devices depends. If two metal terminals are added, the pn junction is itself a semiconductor device - the junction diode.

A pn junction is formed when a single crystal of semiconductor is doped with acceptors on one side and donors on the other as shown in figure 2.17. It is assumed that the junction has reached equilibrium conditions and that the semiconductor has uniform cross section. Initially, a concentration gradient exists across the junction, causing holes to diffuse to the right and electrons to the left. Near the junction there are neutralized ions. Since this region depletes of mobile charges it is called depletion region.

In figure 2.18(a) the V_D voltage is applied to the junction with the positive terminal connected to the p side and the negative terminal to the n side. Assuming that there is no voltage drop on the metal terminals and outside the depletion region, the applied voltage V_D reduces the barrier
potential of the junction. The result of decreasing the junction potential is to permit holes to
diffuse from the \(p \) side to the \(n \) side of the junction and electrons from the \(n \) side to the \(p \) side.
Holes travelling to the right and electrons to the left constitute a current in the same direction.
Hence, the resultant current \(I_D \) crossing the junction is the sum of hole and electron currents. In
this situation the junction, and consequently the diode, is forward biased.

Reversing the polarity of the voltage applied, as shown in figure 2.18(b), the barrier potential
will increase and consequently the flow of majority carriers (holes in \(p \)-type and electrons in \(n \)
type) will decrease. However, minority carriers will not be affected by the increase in the barrier
potential. The polarity of \(V_D \) is such that it causes both holes in the \(p \)-type and electrons in the
\(n \)-type to move away from the junction. Since there are only a few majority carriers around the
barrier, the current \(I_S \) is virtually zero.

The initial equilibrium conditions are, nevertheless, perturbed and a small current exists from
\(n \) to \(p \) across the junction. This current, designated by \(I_S \) and called the reverse saturation current,
is very small. It results from thermally generated electron-hole pairs. Holes formed in the \(n \)-type
silicon and electrons formed in the \(p \)-type silicon are pulled across the junction by an electric field
producing a small reverse current. In this situation the junction, and consequently the diode, is
reverse biased [6].

2.3.2 MOSFET

The MOSFET is a semiconductor device extensively used in digital and analog circuits. The
MOSFET has some interesting features: it is simpler to fabricate than a BJT, occupies less space
on a chip, can be connected as resistors and capacitors which makes possible the design of systems
consisting exclusively of MOSFETs and no other components. The exploitation of these features
makes the MOSFET the dominant device in very-large-scale integration (VLSI) [6].
2.3 Semiconductor devices

2.3.2.1 Electric Characteristics

There are two types of MOSFET: The n-channel MOSFET or NMOS transistor and the p-channel MOSFET or the PMOS transistor. They operation is very similar, but there are some structural (further exploited in section 2.3.2.2) and electrical differences which will be described in the next section.

The NMOS transistor Figure 2.19 shows two circuit symbols for the NMOS transistor. The arrow represents the polarity of the transistor.

![NMOS transistor circuit symbols](image)

Figure 2.19: NMOS transistor circuit symbols [7].

Figure 2.20 shows a conceptual circuit that can be used to determine the $i_D - v_{DS}$ characteristics, which are a family of curves, each measured at a constant v_{GS}.

![NMOS transistor analysis circuit](image)

Figure 2.20: NMOS transistor analysis circuit [7].
The characteristic curves shown in figure 2.21 indicate that there are three distinct regions of operation: the cutoff, the triode and the saturation region. The saturation region is used if the MOSFET is to operate as an amplifier. For operation as a switch, the cutoff and triode regions are utilized [7].

Figure 2.21: NMOS transistor: the $i_D - v_{DS}$ characteristic (based on [7]).

Cutoff region The device is cut off when $v_{GS} < V_t$, where V_t is the threshold voltage of the MOSFET. In this case, V_t is a positive voltage. [7].

Triode region To operate the MOSFET in the triode region first is necessary to induce a channel $v_{GS} \leq V_t$ and the keep v_{DS} small enough so that the channel remains continuous. This is achieved by ensuring that $v_{GS} - v_{DS} > V_t$.

In the triode region, the $i_D - v_{DS}$ characteristic can be described by the following relationship:

$$i_D = K_n [(v_{GS} - v_{DS})v_{DS} - \frac{1}{2}v_{DS}^2]$$ \hspace{1cm} (2.29)

Where K_n is a value determined by the fabrication technology [7].

Saturation region To operate the MOSFET in the saturation region, a channel must be induced by making $v_{GS} \geq V_t$ and pinched off at the drain end by raising v_{DS} to a value that results in $v_{DS} \geq v_{GS} - V_t$.

The boundary between the triode region and the saturation region is characterized by $v_{DS} = v_{GS} - V_t$. Substituting the value of v_{DS} into equation 2.29 results in the saturation value of the current i_D.
Thus, in saturation, the MOSFET provides a drain current whose value is independent of the
drain voltage v_{DS} and is determined by the gate voltage [7].

The PMOS transistor Figure 2.22 shows two circuit symbols for the PMOS transistor. Once
again, the arrow represents the polarity of the transistor. For the p-channel device, the threshold
voltage V_t is negative.

![PMOS transistor circuit symbols](image)

Figure 2.22: PMOS transistor circuit symbols [7].

Figure 2.23 shows a conceptual circuit that can be used to determine the $i_D - v_{DS}$ characteristics.

![PMOS transistor analysis circuit](image)

Figure 2.23: PMOS transistor analysis circuit [7].

Triode region To induce a channel it is necessary to make $v_{GS} \geq |V_t|$ and apply a drain
voltage $v_{DS} \geq v_{GS} - V_t$. The i_D current is given by [7]:

$$i_D = K_p[(v_{GS} - v_{DS})v_{DS} - \frac{1}{2}v_{DS}^2]$$ \hspace{1cm} (2.31)

Saturation region To operate the MOSFET in the saturation region, v_{DS} must satisfy the
relationship $v_{DS} \leq v_{GS} - V_t$. The current is given by

$$i_D = \frac{1}{2}K_p(v_{GS} - V_t)^2$$ \hspace{1cm} (2.32)

Where K_p is a value determined by the fabrication technology [7].
2.3.2.2 Physical operation

The NMOS transistor The transistor is fabricated on a p type substrate, which is a single crystal silicon wafer that provides physical support for the device and for the entire circuit in the case of an integrated circuit. Two heavily doped n-type regions, indicated in figure 2.24 as the n^+ source and the n^+ drain regions, are created in the substrate (also known as body). A thin layer of electrical insulator (oxide layer) is grown on the surface of the body covering the area between the source and the drain regions. Metal is deposited on top of the oxid layer, as well as on top of the body, drain and source regions forming the device metal contacts.

![Cross section view of the physical structure of an NMOS transistor](image)

Figure 2.24: Cross section view off the physical structure of an NMOS transistor [7].

The body forms pn junctions with the source and the drain regions. Since the drain will be at a positive voltage relative to the source, the two pn junctions can be effectively cut off by connecting the body terminal to the source terminal. This way, the MOSFET is treated as three terminal device and the current flow between the source and the drain will depend only on the applied voltage to the gate terminal. This way, the current will flow in the longitudinal direction from drain to source in the channel region.

The positive voltage on the gate causes the free holes to be repelled from the channel region. These holes are pushed downward to the body leaving behind a depletion region. At the same time, the positive gate voltage attracts electrons from the n^+ source and drain regions to the channel region. If a voltage is applied between drain and source, current flows through the channel which is temporal an induced n region. That is why this configuration is called an n-channel MOSFET or an NMOS transistor [7].

The PMOS transistor A PMOS transistor is fabricated on an n-type body with p^+ regions for the drain and source and has holes as charge carriers. The device operates in the same manner as the NMOS except that both the voltage drop between the gate and the source and the voltage drop between the drain and the source will be negative. Also, the current enters the source terminal and leaves throughout the drain terminal [7].
2.4 **Snubber circuits**

The function of a snubber circuit is to reduce the electrical stress placed on a device during switching. It reduces the switching stresses to safe levels by limiting voltages of the device during turn-off and the currents during turn-on transients; limiting the voltage and current gradients during turn-off and turn-on respectively or during reapplied forward blocking voltages and shaping the switch trajectory of the device as it turns on and off.

There are three broad classes of snubber circuits:

1. **Unpolarized series RC snubbers**: used to protect diodes and thyristors by limiting the maximum voltage gradient at reverse recovery;

2. **Polarized RC snubbers**: used to shape the turn-off portion of the switching trajectory of controllable switches, to clamp voltages applied to the devices to safe levels, or limit the voltage gradient during device turn-off;

3. **Polarized LR snubbers**: used to shape the turn-on switching trajectory of controllable switches and/or to limit the current gradient during turn-on.

Figure 2.26 shows an example of each class of snubber circuits.

Snubbers are not a fundamental part of a power electronic converter circuit. The snubber circuit is added to reduce stresses mainly on switching devices. Snubbers may be used singly or in combination depending on the requirements. The additional complexity and cost added to the converter circuit by the presence of the snubber must be balanced against the benefits of limiting the electrical stresses on critical circuit components. [2]

2.5 **CMOS technology**

Only MOSFETs are employed in MOS logic circuits. The MOS logic families are PMOS, NMOS and CMOS. While in PMOS only p-channel MOSFETs are used and in NMOS only n-channel MOSFETs are used, in CMOS both p- and n-channel MOSFETs are used.
Figure 2.26: Examples of snubber circuits: diode snubber(a), transistor turn-on snubber(b) and transistor turn-off snubber(c) (adapted from [2])

MOSFETs are used, in CMOS, both p and n-channel MOSFETs are employed and are fabricated on the same silicon chip. The power dissipation is extremely small for CMOS and hence CMOS logic has become very popular.

A complementary MOSFET is obtained by connecting a p-channel and an n-channel MOSFET in series, with drains tied together and the output is taken at the common drain. Input is applied at the common gate formed by connecting the two gates together (see figure 2.27). In a CMOS, p-channel and n-channel enhancement MOS devices are fabricated on the same chip, which makes its fabrication more complicated and reduces the packing density. But because of negligibly small power consumption, CMOS is ideally suited for battery operated systems. CMOS has become the most popular in MSI (medium-scale integration) and LSI (large-scale integration) areas and is the only possible logic for the fabrication of VLSI (Very-large-scale integration) devices [8].

Figure 2.27: Basic CMOS inverter[9].

Figure 2.28 shows a cross section of a CMOS chip illustrating how de PMOS and NMOS transistors are fabricated. While the NMOS transistor is implemented directly in the p-type substrate, the PMOS transistor is fabricated in a specially created n region, known as an n well. The two devices are isolated from each other by a thick region of oxide that functions as an insulator [7].
2.5 CMOS technology

Figure 2.28: Basic CMOS inverter physical structure [7].

The CMOS integrated circuit (IC) design is a very thorough and systematic process. It begins with the definition of the circuit specifications. Then is necessary to make the necessary calculations to determine the building components’ and other important circuit parameters. After the layout of the circuits schematics, the next step is the simulation of the system. If the results are not the ones expected, then the process is restarted. If all initial specifications are validated, the design of the layout is made. Then, the system is simulated again, this time with the inclusion of parasitic elements. If the simulation results are not the ones expected, then the layout design is rectified. If all initial specifications are validated, the prototype goes to fabrication. After the fabrication is complete, testing and evaluation of the device take place. If fabrication errors occur, the fabrication process is repeated. If the testing results are not the ones expected, the design process starts all over again. If all initial specifications are validated, then the prototype goes to production. A schematic representation of the CMOS circuit design is defined on figure 2.29.

The circuit specifications are rarely set in concrete. They can change as the project matures. However, in almost all cases, major changes after the chip has gone to production are not possible. It is very important to understand the parasitics involved in the layout. Parasitics are the stray capacitances, inductances and bipolar transistors. A fundamental understanding of these problems is important in precision/high-speed design [10].
Define circuit inputs and outputs (circuit specifications)

Calculations and schematics

Circuit simulations

Does the circuit Meet specs?

Yes

Layout

Re-simulate with parasitics

No

Does the circuit meet specs?

Yes

Prototype fabrication

Testing and evaluation

No, fabrication problem

No, specs problem

Does the circuit meet specs?

Yes

Production

Figure 2.29: CMOS IC design process (based on [10]).
Chapter 3

State of the Art

3.1 Step-up DC-DC converter: More advanced solutions

The DC-DC step-up converter described in chapter 2 represents the classical configuration of the topology. Despite of the fact that this configuration is sufficient for a wide number of applications, there are other configurations more efficient or that overcome some of the faults of the classical configuration and, therefore, are more suitable for high performance applications.

For instance, the transfer function of the classic configuration of the DC-DC step-up converter has a zero on the right-half plane (RHP) of the s plane Thus it is a non-minimum phase system, which means that it has a larger phase component leading to a slower dynamic response. To overcome this problem, it can be designed a tri-state step-up converter as shown in figure 3.1. The elimination of the RHP zero is accomplished by incorporating an additional degree of control-freedom in the form of the boost inductor-free-wheeling interval [11].

![Figure 3.1: Tri-state step-up converter [11]](image)

The performance of the step-up converter can be improved by implementing multiple switches and/or multiple boost inductors (figure 3.2)[12]. With this arrangement, it offers efficient processing of built-in redundancy and ensures the supply of high output currents [13].
3.2 Design of integrated DC-DC converters with CMOS technology

Since the diode, resistors and capacitances can be accomplished by MOSFETs, the converter can be mostly implemented on chip, except for the inductor which has to be connected externally. Inductors can actually be implemented on chip, but that is not feasible for the inductance values required in these applications. However, there are other advantages that result from the implementation of DC-DC converters with CMOS technology.

Two important characteristics of the CMOS technology are high noise immunity and low static power consumption. Significant power is only drawn when the transistors are switching between on and off states. Consequently, MOS circuitry dissipates less power and is denser than other implementations having the same functionality. Since low voltage power MOSFETs implemented in a deep submicron CMOS process exhibit much shorter switching delays than those in conventional power MOSFETs, this allows the CMOS devices to operate in the MHz range for high-efficient mobile applications. As the switching frequency of power converters continues to increase, both switching and gate-drive power losses start to limit the efficiency of output power stage. Particularly, conventional vertical power MOSFETs have relatively large gate to drain overlap area. This introduces a significant switching delay since a large input capacitance requires more charging and discharging time for each turn on and off transition of a power MOSFET. On the other hand, CMOS-based power MOSFETs have much smaller input gate capacitance due to smaller gate-drain/source overlap capacitance, gate oxide capacitance and parasitic fringing capacitance.

Nevertheless, one of the drawbacks is that more advanced CMOS technology is accompanied with larger parasitic interconnect resistances and capacitances. Without any processing and device structural changes, performance improvement can be only gained by introducing a new layout structure. Some of the possible layout structures are: Multi-Finger and Regular Waffle layout [14].
3.3 Existing control techniques

Any DC to DC converter will be designed for specific input voltage and output conditions. In other words, the circuit will be operated at steady state condition only. But in practice this may not be possible and there is always a possibility of some disturbances which cause the circuit operation to deviate from the nominal values considerably. These disturbances may be due to the changes in the source, load, circuit parameters, and perturbation in switching time and events such as start up and shut down. This deviation of the circuit operation from the desired nominal behaviour is known as the dynamic behaviour of the circuit. If the above mentioned disturbances have negligible effect on the circuit operation, no action will be required by the designer to correct this situation. But in most cases the departure from nominal conditions will affect the circuit operations to large extent and therefore, the designers will be required to design a proper controller or compensator to overcome this situation of the circuit operation [15].

Since the step-up converter exhibits non-linear and non-minimum phase properties in the presence of uncertain loads, it is necessary to design a robust controller [16]. The control of the step-up converter is not easy and has been a serious concern for the control theorists over the years.

3.3.1 PI and PID controllers

For control over steady state and transient errors, the control signal of a PID controller is a linear combination of the error, the integral of the error, and the time rate of change of the error. The PID controller contains all the control components (proportional, derivative, and integral). In order to get acceptable performance the constants K_P, K_D and K_I can be adjusted. This adjustment process is called tuning the controller. Increasing K_P and K_I tend to reduce errors but may not be capable of producing adequate stability. The PID controller provides both an acceptable degree of error reduction and an acceptable stability and damping.

The integral term in a PI controller causes the steady-state error to reduce to zero, which is not the case for proportional-only control in general. The lack of derivative action may make the system more steady in the steady state in the case of noisy data. This is because derivative action is more sensitive to higher-frequency terms in the inputs. Without derivative action, a PI-controlled system is less responsive to real (non-noise) and relatively fast alterations in state and so the system will be slower to reach set-point and slower to respond to perturbations than a well-tuned PID system may be [15].

The drawback of this controllers is that they are nor capable of auto-adjust K_P, K_D or K_I in order to keep up with dynamic behaviour of the circuit. They are tuned during the design process of the circuit and stay with the same gain values, always.

3.3.2 Simple Adaptive Control

The simple adaptive control (SAC) is an algorithm for unmodeled dynamics since the order of reference model can be chosen almost freely regardless of that of the controlled system. In order
to apply the SAC approach the linearised model of the converter at the desired equilibrium point is considered.

![Figure 3.3: Diagram of SAC Using PFC and LTI Controller ([17] as cited in [16])](image)

The main goal of the algorithm is to find a control input u_p such that the plant output y_p asymptotically tracks the output of the model y_m. Since the step-up converter is a non-minimum phase system, the SAC cannot be directly applied to the system. A feedforward compensator has to be developed in order to transform the system into a minimum phase system [16].

3.3.3 Fuzzy Control

To apply the classic control the system has to be linear or be linearised around a certain point of operation and the exact model of the converter has to be known. Both the exact model and the operation point of the system are not static. They changes along the converter’s operation due to certain factors like temperature, external disturbances and load or source variations. Therefore, to apply this kind of control an excellent knowledge of the system and a very accurate tuning are needed.

A fuzzy controller can be designed without the knowledge of the converter model. Hence, it is insensitive to load and parametric variations but it needs a good knowledge of the system operation.

This controller relies on the human capability to understand the system’s behaviour and is based on qualitative control rules. It depends on the basic physical properties of the system, and it is able to extend control capability to operating conditions where linear control techniques fail.

Approaches which utilize only the output voltage and its rate of change show poor dynamic performances. In order to improve operation, additional information on the energy stored in the converter is necessary. So, an inductor current must be sensed. This approach allows substantial improvement of converter dynamic performances which can be similar to that obtained in analog current-controlled converters [18].

3.3.4 Sliding Mode Control

PWM DC-to-DC converters are very popular and widely used at all power levels. Since switching converters constitute a case of variable structure systems, the sliding mode control technique can
be a possible option to control this kind of circuits ([19] as cited in [15]). Sliding Mode controllers are well known for their robustness and stability. The nature of the controller is to ideally operate at an infinite switching frequency such that the controlled variables can track a certain reference path to achieve the desired dynamic response and steady-state operation ([20] as cited in [15]). This requirement for operation at infinite switching frequency, however, challenges the feasibility of applying SM controllers in power converters. This is because extreme high speed switching in power converters results in excessive switching and inductor losses as well as electromagnetic interference (EMI) noise issues [15].

The purpose of the switching control law is to drive the non-linear plant’s state trajectory onto a pre-specified surface in the state space and to maintain the plant’s state trajectory for the subsequent time. This surface is called the switching surface ([20] as cited in [15]). When the plant trajectory is above the surface a feedback path has one gain and a different gain if the trajectory drops below the surface. This surface defines the rule for proper switching and is called a sliding surface (sliding manifold). Ideally, once intercepted, the switched control maintains the plant’s state trajectory on the surface for all subsequent time and the plant’s state trajectory slides along this surface [15].
Chapter 4

Radiation hardening technology

In the late 1990s, a group of integrated circuit suppliers wanted to serve the satellite marketplace. Success in the marketplace hinged on the ability of these companies to radiation-harden ICs by design using the intrinsic hardness of leading-edge wafer fabrication process technology. Suppliers embracing the new business model adopted the title of Radiation Hardening-By-Design (RHBD) circuit suppliers. To the industry, RHBD promised space-ready leading-edge products, ending a decades-old trend of relying on ICs that were one or more generations behind the best-in-class devices [21].

4.1 Design of power converters

The design of electronic circuits becomes a real challenge when considering the issue of radiation. In power converters, parameters such as efficiency, converter output voltage, step response, loop gain frequency response or phase margin may be affected by radiation, depending on the converter topology [3]. Power converters may be very sensitive to radiation (total-dose, single event effects and displacement damage) given that their radiation response is also dependent on temperature, input bias conditions and load conditions ([22] cited in [3]).

4.2 Ionizing Radiation Effects

When ionization occurs over a short period of time, large photo-currents occur, resulting in upset and latch-up. As a result of these photocurrents, circuits may exhibit logic-state upset due to power supply droop sometimes called rail collapse. Photocurrent can also trigger destructive latch-up or metal burnout. These phenomena are referred to as Dose Rate Upset and Dose Rate Latch-Up respectively. RHBD suppliers mitigate the effects of large photo-currents by using special spatial layout rules and techniques to limit parasitic gains [21].

Accumulated dose leads to threshold voltage shifts in CMOS devices due to trapped holes in the oxide and the formation of interface states. It has been shown that the dominant radiation
effects in MOS devices are due to total ionizing dose (TID) effects, and not due to displacement damage ([22] cited in [3]).

4.3 Alternatives to radiation hardening by design

One possible alternative is the use of redundancy in the storage element to mitigate particle strikes. In the case of redundancy, sensitive critical nodes within flip-flops and latches are made redundant and spaced apart to prevent a single ion from upsetting both critical nodes. The drive strengths of transistors controlling critical nodes are also sized to reduce the effect of charged particle strikes. Redundant circuits are larger than conventional commercial flip-flops or latches and burn more power than minimum configuration commercial flip-flops and latches. Redundant flip-flops and latches also pay a speed and power penalty due to the increased cell complexity and larger transistors on size controlling sensitive nodes.

Another proven technique in the mitigation of charge-particle-induced upset and transients is the use of multiple phases of the clock coupled to a majority vote circuit. Using small differences in clock phase to create N samples of the data presented to N sequential circuits and then voting the N outcomes effectively filters out both upsets and transient upsets in the sequential circuit. Temporal clocking circuits are also larger, slower, and burn more power than minimum size commercial flip-flops and latches [21].
Chapter 5

Dissertation overview

5.1 Project description

The aim of the dissertation is to design and implement a radiation hard DC-DC converter with an input of 1.2 V and an output of 2.5 V with a current drive capability of 100 mA. The converter will be designed on chip using CMOS technology. All components of the converter and the regulation block will be implemented on chip with the exception of the inductor, which will be connected externally. The converter has to be capable of withstanding harsh environmental conditions such as high radiation levels and therefore has to be designed with radiation hard features.

5.2 Final remarks

The step-up converter Since the main goal of the project is to rise the input voltage by a small ratio of approximately 2:1 there is no need for electrical isolation and therefore the step-up converter is the most suitable choice. Yet, this type of converter has many different configurations available, each one of them with its pros and cons. The basic configuration studied in chapter 2 is suitable for a variety of applications, but it has some drawbacks, which were previously addressed. The strategic addition of more components to the circuit such as more MOSFETs or diodes could enhance the system performance. But the excessive addition of components, instead of just solving the converter’s issues, it can also create further ones. Besides, since in this project the converter has to operate in radioactive environments there are other factors to take into account before choosing the configuration of the converter.

The converter controller Analog control of power converters is widely used and is a very common control approach to dc-dc converters. Nevertheless it has some disadvantages, such as lack of flexibility and ability to adapt to new situations, it has a very hard and time consuming tuning process and for more complex control configurations occupies a relatively large amount of space.
Digital control methods allow the implementation of non-linear, predictive and adaptive control. They are less susceptible to external and parametric variations. Are less sensitive to noise and changing the controller does not require hardware modifications.

The matter of choosing between analog and digital control is always a challenge. Yet, in a regular application, if efficiency and high performance are a priority and the application requires high control complexity, the digital control is often the first choice. Once again, due to the radiation hardening features required for the converter, there are other factors to take into account before choosing the control type.

Radiation considerations Digital controllers have to be implemented on a microprocessor or on a more advanced variant, like a digital signal processor (DSP). Thereby digital control is susceptible to radiation effects since the internal logic values can be inconveniently modified. A bit-flip can produce a temporary or more permanent damage that may require the reset of the system. For instance, a bit-flip could change critical data or disturb severely the operation of the processor, making it crash. Besides, memory units are the most sensitive components of this systems and are an important element, if not essential, in most digital controllers.

However, digital systems are not the only ones susceptible to radiation. Most electronic devices suffer long-term radiation effects due to the cumulated charge deposits. Because of these phenomenon, devices can suffer threshold shifts, leakage increase and power consumption. Overall, the performance of the device may be significantly affected with time due to its gradual physical degradation.

One solution is the device shielding, but an effective shielding depends on several factors such as the shield geometry and constructive material. Another is to reduce the area of the converter, since the probability of radiation effects rises with the size of the converter and its components. Adding redundant components is also a possibility. If one component fails, the others assure the proper operation of the device. Finally, designing the components with the radiation effects in mind provides additional tolerance to radiation.

The methods previously described, when applied alone may not provide the best protection against radiation. But when properly combined can produce good results. Still, the addition of too many components increases the area of the circuit, the system energy consumption and its economical cost. Therefore, a compromise between the combined application of hardening methods has to be found.

Final conclusions After the theoretical study, and some careful considerations, the type of controller chosen is an analog controller, because:

- The cost of CMOS technology is by itself high, and the addition of digital processing units would increase further the price of the prototype;
Despite of the fact that both technologies (digital and analog) are susceptible to the radiation effects, the consequences on digital systems are higher and some radiation hardening methods are more difficult to apply (like radiation by design, for instance) and others increase considerably the cost of the prototype (for example, redundancy of the digital processing units);

- With the analog control it is possible to employ radiation hardening by design, redundant and/or shielding techniques without excessively increasing the total cost of the prototype.

The selection of the converter is a more thorough task since there are many factors to take into account and many decisions to be made, such as:

- Which configuration of the converter best suits the project goals;
- How many power semiconductors will be used;
- Which radiation techniques to employ;
- Design one universal controller or several controllers, one for each controllable switch;
- Minimize the cost of the prototype, maximizing its efficiency and radiation robustness.

Therefore, the selection of the converter configuration will only be made in the beginning of the dissertation.

5.3 Work plan

1. **Selection of the converter and control configurations**: Analysis and selection of the most convenient solution for the converter+control pair, taking into account the factors described in section 5.2.

2. **Converter design**: Calculate the building components’ parameters in order to achieve the intended goals set for the converter.

3. **Definition of the radiation hard features**: Study and definition of the safe operating regions of the different building components to ensure a continuous operation of the converter, even when submitted to high levels of ionizing radiation.

4. **Simulation of the converter and the regulation block**: Based on the previous calculations, build a simulation model of the converter and the regulation block to study the converter behaviour during its normal operation. Then, simulate different scenarios with the purpose of testing the converter behaviour when submitted to abnormal conditions.

5. **Familiarization with the design environment and the CMOS technology**: Explore the tools provided by the design software and study the procedures necessary to design the converter using CMOS technology.
6. **Layout of the prototype:** Design the converter using the design environment, considering the radiation hard features, the calculations and simulations previously made and also considering the problems associated with CMOS technology.

7. **Validation of the prototype:** If the production of the prototype is feasible, run tests on the prototype to verify if the initial requirements of the converter where accomplished. If not, build a converter with components available on the market and then, make the necessary tests.

8. **Design of the website.**

9. **Writing of the dissertation.**

![Gantt chart of the work plan for the dissertation.](image)
References

