
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Power reduction of a CMOS high-speed
interface using power gating

Luís Miguel Granja Gomes

FOR JURY EVALUATION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

FEUP Supervisor: Prof. João Canas Ferreira

Synopsys Supervisor: Engineer Hélder Araújo

June 25, 2013

c© Luís Gomes, 2013

Resumo

A indústria de circuitos VLSI sofreu uma série de revoluções na forma como os chips eletrónicos
são projetados. Começou com o uso de linguagens de descrição de hardware e de avançadas
ferramentas de trabalho, com o objetivo de diminuir os tempos de projeto e de produção, ao
mesmo tempo que circuitos mais rápidos e pequenos eram construídos. A produção de dispos-
itivos eletrónicos aumentou significativamente, de tal modo que, hoje, são usados biliões todos os
dias.

Atualmente, o maior desafio não é só projetar circuitos integrados mais pequenos e rápidos, mas
manter esses acréscimos de velocidade e diminuição de tamanho, reduzindo simultaneamente o
consumo de potência. Com a diminuição do tamanho da tecnologia e o uso de transístores com
tensões de threshold cada vez mais reduzidas, o consumo de potência dinâmica e estática atingiu
níveis insuportáveis. Chegou-se a um ponto em que, tanto económica como ambientalmente fa-
lando, é obrigatório projetar para reduzir a potência.

Synopsys, uma das maiores empresas desta indústria, apresentou um projeto com o objetivo de
implementar Power Gating numa das suas interfaces de alta velocidade, como técnica mais eficaz
na redução da potência estática.

Esta dissertação apresenta as adaptações necessárias para a implementação de Power Gating us-
ando ferramentas Synopsys, aplicando-as a um caso de estudo complexo. Os conceitos principais
e o fluxo normal de projeto são introduzidos. Depois, para cada etapa e respetiva ferramenta,
explicam-se a estratégia e metodologia utilizadas para implementar Power Gating na interface
alvo. Consideram-se ambas as etapas de implementação e verificação.

O uso do UPF (Unified Power Format) revela-se a melhor forma de descrever as características de
alimentação de um projeto de baixo consumo, e é descrito como este é interpretado pelas diversas
ferramentas EDA.

Nas etapas backend explica-se a utilização de células especiais para controlar a alimentação do
circuio e, assim, reduzir as correntes de fuga associadas ao consumo de potência estática. Na fase
de verificação mostra-se a utilização das complexas ferramentas na presença de Power Gating.
Consideram-se as principais métricas, restrições e implicações existentes numa implementação
desta técnica.

Os resultados finais são apresentados, tendo em conta o impacto na área, queda de tensão, desem-
penho, funcionalidade e consumo de potência. Como resultado final, atinge-se uma redução do
consumo estático de até 99.5%.

i

ii

Abstract

The VLSI industry has undergone a series of revolutions in the way chips are designed. It started
with the use of HDL languages and advanced tools to improve time-to-market and produce faster
and smaller chips. The production of those chips increased significantly to a point where billions
of electronic devices are used every day.

Now, the biggest challenge isn’t only designing faster and smaller chips, but to keep these im-
provements in speed and size while reducing power consumption. With technology scaling down
and smaller threshold voltages being used, switching and leakage power became unbearably high,
to a point where economically and environmentally speaking, it is mandatory to design for low
power.

Synopsys, one of the biggest companies in this industry, proposed a project with the objective of
implementing Power Gating, as one of the most effective leakage reduction techniques, in a state-
of-the-art high-speed interface.

This dissertation presents the adaptations required to implement power gating using Synopsys
tools and applies them to a complex case study. It starts with an introduction of the main concepts
involved, followed by the presentation of the standard design flow. Then, for each flow stage and
respective tool, the methodology used to power gate the target interface is depicted, respecting a
given strategy. Both, implementation and verification stages are addressed.

UPF (Unified Power Format) power intent specification is used to inform EDA tools, across the
entire flow, about the characteristics of a low power design.

In the backend stages, it is shown how to insert power switches and how to use them to reduce
leakage power. In the verification stages it is explained how to use the complex verification tools,
considering a power gated design. The main metrics and challenges are explained, as well as the
constraints and implications associated with the implementation of this low power technique.

The final results are presented showing the impact in area, IR-drop, performance, functionality
and power consumption. The outcome is a decrease of leakage power of up to 99.5%.

iii

iv

Acknowledgements

I would like to address my deepest gratitude...

To my supervisor João Canas Ferreira, for all his availability, suggestions and experience.

To my Synopsys supervisor Hélder Araújo for all his support, knowledge transfer and great lead-
ership.

To Sérgio Costa for all his patience, expertise and help in the developed work.

To Mara Carvalho and Luís Cruz for all the help and knowledge.

To Nelson Silva and Miguel Oliveira for all the discussions regarding this dissertation and for the
comradeship during its development.

To Synopsys for giving me the opportunity of developing this dissertation. To Synopsys team for
having received me as one of their own.

To my parents and sister, the persons that made all this academic path possible, made me who I
am and always have supported me. Without you, this moment would not be possible, thus this
dissertation is dedicated to you.

To the rest of my family, who didn’t let me stop working hard.

To Filipa for all the friendship, happiness, motivation, and especially for being my biggest support.

To BEST and all his members for such great moments and for having taught me so much. To Porto
Competitions Team, Ju, Ninja and Júlio.

To all my friends and comrades for all the incredible moments, knowledge sharing, motivation and
for making everything easier in the worst moments.

Finally, to FEUP and all my Professors.

Luís Gomes

v

vi

“if it wasn’t hard they wouldn’t call it hardware”

J.F. Wakerly

vii

viii

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivation and Goals . 2
1.3 Structure of the document . 3

2 Background 5
2.1 Energy vs Power . 5
2.2 Dynamic and Static Power . 6

2.2.1 Dynamic Power . 6
2.2.2 Static Power . 7

2.3 Power Gating Overview . 8
2.4 Power Gating Challenges . 10

2.4.1 Voltage Island identification . 11
2.4.2 Wake-Up Time, In-Rush Current and Power/Ground Bounce 11
2.4.3 Power Switching Fabric . 12
2.4.4 Retention Registers . 16
2.4.5 Isolation Cells . 17

3 Interface and Project Requirements 19
3.1 SNPS high-speed interface . 19

3.1.1 Physical and Power Consumption data 20
3.2 Project Requirements . 21

4 Standard design flow 23
4.1 Front End Flow . 23
4.2 Backend flow . 25

4.2.1 Synthesis . 26
4.2.2 Synthesis Verification . 26
4.2.3 Place&Route . 27
4.2.4 Parasitic extraction . 31
4.2.5 Static Timing Analysis (STA) . 31
4.2.6 Post-layout Analysis and Verification 31
4.2.7 Integration and DRC/LVS Verification 32

4.3 Summary . 32

5 Low Power Design Flow 33
5.1 Power Intent Specification using UPF . 33

5.1.1 UPF Concepts . 33

ix

x CONTENTS

5.2 Low Power Flow Using Synopsys Tools . 34
5.3 Summary . 35

6 Power Gating Implementation 37
6.1 Power Gating Strategy . 37
6.2 Frontend stage . 37
6.3 Describing the power intent using UPF . 38
6.4 Synthesis using Design Compiler . 42
6.5 Formal Verification using Formality . 42
6.6 Floorplan Modification using Custom Designer 43
6.7 Library Data Preparation . 43

6.7.1 Libraries . 45
6.7.2 Libraries creation . 46

6.8 Technology File and Metal Layers . 46
6.9 Adding supply (PG) pins around rxlanedig . 47
6.10 Place&Route using IC Compiler . 48
6.11 STA with PrimeTime . 57
6.12 Rail Analysis with Prime Rail and ICC . 59
6.13 Power Analysis with PrimeTime PX . 61
6.14 Integration and LVS/DRC checking . 62

7 Results 65
7.1 IR Drop Analysis . 65

7.1.1 Comparative Analysis . 65
7.1.2 Final Results . 67

7.2 In-Rush Current and Wake-Up Time . 70
7.3 Area overhead . 72
7.4 Functionality and Performance Impact . 72

7.4.1 Post-layout simulation . 72
7.4.2 STA with IR-drop induced delay . 73
7.4.3 Co-simulation . 75

7.5 Power Consumption . 75

8 Conclusion 81
8.1 Final Conclusions . 81
8.2 Future Work . 83

A UPF specification for the FC 85

B STA Reports for FC 89
B.1 STA report discarding IR-Drop . 89
B.2 STA report considering IR-Drop . 91

C STA Reports for SC 95
C.1 STA report discarding IR-Drop . 95
C.2 STA report considering IR-Drop . 98

References 103

List of Figures

1.1 Leakage Power increase as predicted by ITRS [1] 3

2.1 Switching Power sources. Source: [2] . 6
2.2 Short Power sources. Source: [2] . 7
2.3 Leakage Power sources. Source: [2] . 8
2.4 Power gating concept. Source: [3] . 9
2.5 Logic blocks controlled by power switches. Source: [4] 10
2.6 Elements in a power gating implementation. Source: [3] 11
2.7 Fine grained implementation of an AND gate. Source: [3] 13
2.8 Coarse grained implementation. Source: [5] 14
2.9 Header (left) and Footer (right) power switches. Source: [3] 15
2.10 Ring implementation. Source: [3] . 16
2.11 Array implementation. Source: [3] . 17
2.12 Retention register. Source: [3] . 18

3.1 PHYGNRX blocks diagram . 21
3.2 PHYGNRX supply connections . 22

4.1 Frontend design flow. 24
4.2 Backend design flow and related Synopsys tools. 25
4.3 Synthesis as done by DC. 27

5.1 Low power design flow using Synopsys tools. Adapted from: [2] 35

6.1 Blocks diagram of the modified design. 38
6.2 UPF diagram. 39
6.3 Original floorplan. 43
6.4 Modified floorplan. 44
6.5 Added pins on the floorplan boundary . 44
6.6 Library Preparation flow . 47
6.7 Added PG pins . 48
6.8 ICC Flow for a Power Gating Implementation. Main stages highlighted in purple 49
6.9 Ring with 260 power switches . 54
6.10 Power switches connected in a daisy-chain fashion 55
6.11 Metal 7 power straps placed on top of the power switches 56
6.12 Final layout in ICC . 57
6.13 In Design Rail Analysis Flow . 60
6.14 Final layout integrated using Custom Designer 63

xi

xii LIST OF FIGURES

7.1 IR-drop over net VP considering 260 power switching cells 66
7.2 IR-drop imposed by the 260 power switching cells 67
7.3 IR-drop over net VP considering 518 power switching cells 68
7.4 IR-drop over net VPS_DIG considering 518 power switching cells 69
7.5 IR-drop imposed by the 518 power switching cells 70
7.6 In-Rush Current and Wake-Up Time for a FC analysis 73
7.7 In-Rush Current versus the sum of all current sources 74
7.8 Post-layout simulation waveforms . 74
7.9 Co-simulation for power gating validation . 76
7.10 Co-simulation and wake-up time . 77
7.11 Co-simulation for the FC . 78
7.12 Co-simulation for the SC . 79

List of Tables

3.1 Maximum clock frequency of each operating mode 20
3.2 Supply Voltages . 20
3.3 Physical data . 22
3.4 Power consumption fot the FC . 22
3.5 Power consumption fot the TYPC . 22
3.6 Power consumption for the SC . 22

6.1 Metal layers routing directions . 47
6.2 Power switching cells characteristics . 51
6.3 Multiplexer delays for the three corners . 59

7.1 IR-drop values with 260 power switching cells (FC) 65
7.2 IR-drop and rise values with 518 power switching cells (FC) 67
7.3 IR-drop and rise values with 518 power switching cells (TYP) 70
7.4 IR-drop and rise values with 518 power switching cells (SC) 71
7.5 IR-drop across the power switching cells . 71
7.6 In-Rush Current and Wake-Up Time . 72
7.7 Area and cell number results . 72
7.8 IR-drop induced delay for a timing path (setup analysis) 75
7.9 Leakage Power Consumption and savings . 76
7.10 Leakage Power by elements . 78
7.11 Power Impact in HS-mode . 79
7.12 Power Impact in LS-mode . 80

xiii

xiv LIST OF TABLES

Abreviations

AFE Analogue Front End
ALU Arithmetic Logic Unit
BVP Blockage Via Pin
CCS Composite Current Source
CDL Circuit Description Language
CMOS Complementary Metal–Oxide–Semiconductor
CTS Clock Tree Synthesis
DC Design Compiler
DRC Design Rules Check
DUT Device Under Test
EDA Electronic Design Automation
EM Electromigration
FC Fast Corner
FEUP Faculdade de Engenharia da Universidade do Porto
FSM Finite State Machine
GDSII Graphic Database System II
GTECH General Technology
GUI Graphical User Interface
HDL Hardware Description Languages
HS High-speed
IC Integrated Circuit
ICC IC Compiler
IEEE Institute of Electrical and Electronics Engineers
IO Input and Output
IP Intellectual Property
LEF Library Exchange Format
LS Low-speed
LVS Layout versus Schematic
NMOS N-type metal-oxide-semiconductor
PG Power and Ground
PMOS p-type metal-oxide-semiconductor
PNS Power Network Synthesis
PST Power State Table
PVT Process, Voltage and Temperature
RC Resistance and Capacitance
RTL Register Transfer Level
RX Receiver
SAIF Switching Activity Interchange Format

xv

xvi LIST OF TABLES

SBPF Synopsys Binary Parasitic Format
SC Slow Corner
SDF Standard Delay Format
SPEF Standard Parasitic Exchange Format
SoC System-On-A-Chip
SPEF Standard Parasitic Exchange Format
STA Static Timing Analysis
TYPC Typical Corner
TX Transmitter
UPF Unified Power Format
VCD Value Change Dump
VLSI Very Large Scale Integration

Chapter 1

Introduction

In modern life, we are facing an evergrowing expansion of electronic devices. A normal day of

an ordinary person is strongly associated with the use of equipments that makes life easier. For

instance, it is possible to carry around and watch films in a small and high resolution tablet, which

has a battery life of several hours. It is undeniable that electronic equipments have a strong impact

in many distinct areas, such as medicine or entertainment.

This expansion was possible due to a series of revolutions in the way electronic companies

produce VLSI circuits. To address the growth in chip density, HDL languages started to be used.

More recently, for big designs, writing the full RTL description is no longer feasible or profitable,

as it represents huge design teams or/and a longer time-to-market. This way, design reuse and IP

emerged as a new design trend and as a new revolution. More importantly, the use of EDA tools

enhanced the automation of design and production of chips.

As a result chips are becoming smaller and faster and now what is possible to achieve with

electronic devices is, undoubtedly, incredible. However, as technology scaled down into the sub-

micron era and higher levels of integration are used, a new problem arise. The power consumption

of a digital chip increased to a level where its reduction has become one of the biggest challenges

of digital design.

In the sub-micron technologies, from 90nm and below, leakage current, that once was ne-

glected, is becoming a big slice of the total power consumption. Designers are adopting several

techniques to reduce both dynamic and leakeage power consumption. Among the most used, it is

possible to distinguish Clock Gating, Power Gating, Multi VDD or Multi Vt.

In this dissertation Power Gating is applied to a Synopsys high-speed interface in order to

mitigate its leakage current. The entire design flow is covered from backend to a low power

physical implementation. It is also, presented the modifications that need to be made to a standard

design flow.

The target audience of this document are persons already familiarized with VLSI design that

are interested in a real implementation of power gating using Synopsys tools.

1

2 Introduction

1.1 Context

This MSc Dissertation was developed as part of the Master in Electrical and Computers Engi-

neering of the Faculty of Engineering of the University of Porto (FEUP). It was proposed by and

developed on SNPS Portugal Lda.

It emerged from the need of reducing the power consumption of a state-of-the-art Synopsys Inc

high-speed interface, while, at the same time, studying the more efficient way of using Synopsys

EDA tools in order to implement power gating.

SNPS Portugal Lda office is located at Maia (Portugal) and it is one of the ofices of Synopsys

Inc. Synopsys Inc (Nasdaq:SNPS) is a world leader in electronic design automation and semicon-

ductor intellectual property. The company is headquartered in Mountain View, California, and has

approximately 80 offices located throughout North America, Europe, Japan, Asia and India.

1.2 Motivation and Goals

The main concerns of CMOS VLSI design were timing and area. Power was not much of a concern

since CMOS was considered a low power technology.

The already mentioned technology scaling and the consequent growth in chip integration and

clock speeds led to a significant increase in power and temperature density. A point was reached

were designing for low power was a must. Portable devices run on battery, which makes every

power saving vital. On the other hand, circuits noise immunity decrease and cooling and packaging

costs increase. For instance, and as refered by [6], in 2006, the United States of America server

farms consumed about 61TWh, wich represented a cost of 4.5 billion dollars on cooling systems.

The sheer cost of the electrical energy is, itself an motivation for low power designs. Reducing the

power consumption of a small, but with a large scale utilization, IP block can result in cost savings

and even reduce the environmental footprint.

In the beginning of the low power design revolution, the main concern was on controlling the

dynamic power. The more efficient strategy was to decrease the supply voltage, which, in turn, has

a quadratic impact in the dynamic power, as latter shown in Chapter 2. However, to compensate

the loss in performance, driven by lower supply voltages, transistors with lower threshold voltages

started to be used. This, of course led to higher leakage current and, consequently, higher leakage

power consumption. This fact turned impossible to continue dropping the supply voltage, which

is now halted at around 1V [3]. It is, then, important to also control leakage. ITRS predicted

that leakage current would increase 8 times from 2007 to 2015 (Figure 1.1) [1]. On the other

hand, the evolution and the increasing utilization of high-speed interfaces, such as the one that is

the subject on this dissertation, made leakage power a bigger part of the total power consumption

of a digital circuit. Their operation tend to be bursty, which means that there are short periods of

switching activity, interleaved with long periods of idle state, where leakage is dominant.

Power Gating is an aggressive and the most effective leakage power reduction technique. It is

simple to understand that, the more time the circuit is powered off, the less energy it consumes.

1.3 Structure of the document 3

Figure 1.1: Leakage Power increase as predicted by ITRS [1]

As important as understanding the need to reduce the power consumption and, in particular,

the leakage power, is to know how to instruct EDA tools on how to do so and follow a design flow

that allows the best results.

As so, this dissertation has the following particular goals:

• Reduce the power consumption of a Synopsys high speed interface;

• Preserve the interface functionality;

• Understand how to use Synopsys EDA tools to implement Power Gating using the best

design flow

1.3 Structure of the document

The structure of the document is as follows. Chapter 2 presents the background concepts regarding

a power gating implementation, which is the result of a literature review. Chapter 3 presents the

target high-speed interface. Chapter 4 depicts the the standard design flow, which needs to be

adapted for power gating. The adapted low power flow is presented in a high-level perspective in

Chapter 5. Chapter 6 describes the implementation itself, while explaining the low-level power

gating methodology for each flow stage and tool. The conducted analyses and verifications, as

well as the results are shown in Chapter 7. Finally, 8 presents the final conclusions and future

work suggestion.

4 Introduction

Chapter 2

Background

This chapter summarizes a literature review on the main concepts involved in a low power design,

in particular a power gating implementation. First, the concepts regarding power consumption

and the different types of power dissipation are addressed. Then, the power gating concept is

explained, along with the main challenges of its implementation.

2.1 Energy vs Power

Regarding a project which goal is to reduce the power consumption of a system, it is important to

distinguish these two concepts, many times confused.

When referring to power, we are considering the instantaneous power present in the circuit. It

is defined as the product of the current that flows through its terminals by the voltage at the same

terminals, as shown by Equation 2.1.

P(t) =V (t)× I(t) (2.1)

In turn, the energy consumed by the circuit over a certain interval of time is defined as the

integral of the power. In other words it is the area under the power curve, as shown by Equation

2.2.

E =
∫ T

0
P(t)dt. (2.2)

Finally the expression of the average power over a time interval is represented in Equation

2.3.

Pavg =
E
T

=
1
T

∫ T

0
P(t)dt. (2.3)

5

6 Background

Figure 2.1: Switching Power sources. Source: [2]

The operating state of an electronic device has direct reflexes in the instantaneous power. If we

consider a mobile phone, receiving a call implies more power than the standby mode. This way,

the bigger the instantaneous power, the bigger the energy consumed and, therefore, the battery life

decreases.

2.2 Dynamic and Static Power

In the power gating context, it is the static (or leakage) power that deserves more attention. How-

ever, it is interesting to understand from where does the total power consumption of a circuit comes

from. According to Equation 2.4, it is the sum of two components, dynamic and static power, are

depicted in the following sections.

Ptot = Pdin +Pstat (2.4)

2.2.1 Dynamic Power

Dynamic power is the result of the circuit switching activity (reflected in the charge and discharge

of the capacities that compose the circuit) and the short-circuit current that arises when both PMOS

and NMOS network are conducting, as illustrated in Figure 2.1.

Pdyn = Pswitch +Pshort (2.5)

Supposing that the circuit has an effective capacitance of all the nodes CL, is powered with a

supply voltage VDD and is operating with a clock frequency of fclk, Pswitch can be defined as

Pswitch =V 2
DD ∗CL ∗ fclk ∗α (2.6)

where α represents an activity factor, which is the transition from 0 to 1 probability.

2.2 Dynamic and Static Power 7

Figure 2.2: Short Power sources. Source: [2]

Pshort is the result of short periods of time (T) when both PMOS and NMOS networks are

conducting, leading to the creation of a crowbar current (Ishort), as illustrated in Figure 2.2.

Pshort =VDD ∗ Ishort ∗T ∗ fclk (2.7)

In this context, as long as the transition time isn’t to long, Pshort remains small compared with

Pswitch.

2.2.2 Static Power

Static Power is present even when the switching activity is zero and it is not dependent on the

clock frequency. It is associated with leakage currents that exist since the circuit is powered on.

As so, it is many times referred as Leakage Power. Until the 90nm node technology, leakage

power was almost neglected compared with dynamic power. However, as introduced in Chapter

1, with technology scaling down, as we began using processes with low threshold voltages and

thin gate oxides, leakage became a big part of the total power consumption [7]. Leakage currents

have different sources, as shown in Figure 2.3. [6] explains each one as follows:

• Sub-threshold leakage: Isub is the current that flows from the drain to the source of the

transistor when it is in the weak inversion region, which means that Vgs <Vt . Using common

words, it is the current that flows through the transistor when it was supposed to be off;

• Gate leakage - Once it is isolated by a dielectric, the current through a MOS transistor gate

is, ideally zero. However, there is a current Igate that flows directly from the gate to the body,

8 Background

Figure 2.3: Leakage Power sources. Source: [2]

through the dielectric material, when a voltage is applied across the gate. Gate leakage is

strongly dependent on the oxide thickness and the gate voltage.

• P-N junction leakage - I jun is the leakage current that flows from the n-type drain of the

NMOS transistor to the the grounded p-type substrate, and from the n-well of the PMOS

transistor to the p-type drain, through the reversed-bias diodes.

From this three components, p-n junction leakage has a negligible contribution. The sub-

threshold leakage has been always dominant and increases exponentially with Vt . However, gate

oxides are becoming thinner, which has enlarged the gate leakage contribution which can reach
1
3 Pstat for 90nm technologies and overcome Isub for smaller technologies.

2.3 Power Gating Overview

The best way to control leakage power is by shutting down the power supply to blocks that are not

being used. This technique is known as power gating.

A digital design is formed by several blocks, each one serving a different purpose. These

blocks can operate in two distinct modes:

• Active Mode - When they are executing their function and, so, their gates are switching.

• Standby Mode - When the block functionality is not required and its signals don’t change

state.

In active mode the circuit is dissipating power by all forms discussed above. In turn, when

in sleep mode, the block in question is, normally, clock gated [8]. This means that the dynamic

power is eliminated. However, static power remains as long as the circuit is powered on.

2.3 Power Gating Overview 9

Figure 2.4: Power gating concept. Source: [3]

Power gating consists on switching off the power supply from blocks that are in standby mode

and switching the power back on when their functionality is required.

Figure 2.4 illustrates the power gating concept. The SLEEP event triggers power gating,

switching power off, while the WAKE event switches power back on. At this time, it is possible

to say that the Standby Mode has became a Sleep Mode, where leakage is reduced.

In order to switch power off, high Vt transistors are are used as switches and placed between the

block PG (power and ground) pins and the PG rails, as illustrated in Figure 2.5. These transistors

can be called Power Switches and two types are considered:

• Header Switch - PMOS transistor placed between the power pins and the power rails;

• Footer switch - NMOS transistor placed between the ground pins and the ground rails;

This way the controlled block, is no longer powered by the main power rails (always-on rails),

but by a switched/virtual power rail. The control of the power switches is achieved through an

enable or sleep signal. For an header switch, the enable signal takes the logic value 1 in order to

switch power off. In the footer switch case, the opposite happens. This signal can be produced by

a power gating controller FSM or it can, simply, be an input port of the design.

As important as the power switches themselves is to distribute and deliver power in the best

way possible across the whole design. The power network should be designed to minimize the

voltage drop and to correctly power all blocks and standard cells in the design.

Additionally, a state retention strategy can be implemented. Depending on the application, it

can be necessary to save the state of the block. This way, when power is switched back on, the

block can return to the exact same functioning state. This is achieved by using state retention

registers. It may be also important to isolate the powered-off block output signals. These signals,

if floating, can induce a crow-bar current in an adjacent block, to which represent input signals.

With this objective, isolation cells can be used.

As described above, a power gating implementation contains the following elements:

10 Background

Figure 2.5: Logic blocks controlled by power switches. Source: [4]

• Power switching fabric

• Control Signal or Power Gating Controller FSM

• Power network

• Retention registers (additionally)

• Isolation cells (additionally)

Figure 2.6 shows the power gating elements and their connections.

2.4 Power Gating Challenges

The elements described in Section 2.3 are the backbone of a power gating implementation. Along

with its design, there are several issues that need to be taken into account [3]

• Voltage areas identification;

• IR drop imposed by the power switches and by the power network;

• In-Rush current through the power switches generated when the circuit is powered on and

consequent power dissipation;

• The wake-up time;

• The amount of leakage introduced by the power switches and other power gating related

cells;

• Performing state-dependent and power transition verification.

2.4 Power Gating Challenges 11

Figure 2.6: Elements in a power gating implementation. Source: [3]

2.4.1 Voltage Island identification

The concept of voltage islands is introduced by [9]. The authors address it as power islands and

introduces a high level methodology, where parts of the system with similar operating characteris-

tics are grouped together to form a power island or voltage area. Then, each one of these physical

regions can be individually power gated. The idea is to analyse the system functionalities and RTL

code to identify blocks with the biggest overlapping operating time and to create voltage areas that

can be switched off how many clock cycles possible.

2.4.2 Wake-Up Time, In-Rush Current and Power/Ground Bounce

A very important aspect of every power gating implementation is the time to restore power to

the virtual power rail. This interval of time, comprised between the power gating enable signal

transition and the instant for which the switched rail reaches a stable voltage is called wake-up

time. It is in the best interest to keep it small because the faster the power is restored, more time

the circuit can remain in sleep mode and, therefore, save more power. Additionally, an excessive

wake-up time can compromise the system functionality.

However, this interval of time has effects on the In-Rush (Irush) current that is generated when

the power is reconnected. This current that is abruptly flowing throughout the power switches can

cause an excessive IR drop, an increase in power consumption and a voltage fluctuation in the

power network, thus corrupting the always-on blocks functionality. This way, there is a tradeoff

between how fast it is possible to wake-up a power gated block without generating an excessive

Irush. Some studies were developed with the objective of reducing the wake-up time, while generat-

ing a reasonable Irush. It is worth to notice [10] that, with a 180nm technology, achieved a 10.23%

reduction of the wake-up time, keeping the same Irush and power/ground bounce (0.083V). This

12 Background

outcome is a result of activating the circuit in phases. Two enable/sleep signals are generated for

two power switches. One of the signals behaves the same way as a regular one, while the second

signal, which is applied to a smaller power switch, changes from 1 to 0 in two steps, splitting the

activation period into 4 phases. Thus Irush is smaller, allowing a small wake-up time.

2.4.3 Power Switching Fabric

In what concerns to the design of the power switching fabric, choices should be made.

2.4.3.1 Fine Grain vs Coarse Grain

There are tow approaches to switch power: Fine Grain and Coarse grain. In a fine grained imple-

mentation, the power switch is located inside each standard cell, as it happens in the AND gate

illustrated in Figure 2.7. A fine grained implementation has the following advantages:

• The normal design flow can be followed because every issue imposed by the power switch

is already characterized. The timing and IR drop effects imposed by the switch are already

accounted for in the library characteristics.

• Irush and wake-up time are smaller since the virtual rail is smaller and has less capacitance.

• The cell may contemplate a built in isolation strategy.

The fine grain approach disadvantages are:

• The power switch has to be quite big, once it has to supply the current needed for the

standard cell to work. The area can be up to four times bigger.

• A special standard cells library is needed.

• Routing the enable/sleep signal can be tricky and excessively buffered since they have to

reach every standard cell.

In a coarse grained implementation, each standard cell or block receives its power through a set

of specific power gating cells, that must exist in the standard cells libraries. Figure 2.8 illustrates

a coarse grained implementation. The advantages of a coarse grained implementation are:

• The area overhead is smaller.

• Only special cells as power switches and/or isolation cells and retention registers need to be

added to the library.

• The power switches are less sensitive to PVT (process, voltage, temperature) variations.

However, a coarse grained implementation has the following disadvantages:

• This approach demands for changes in the regular design flow, thus it takes a bigger design

effort.

2.4 Power Gating Challenges 13

Figure 2.7: Fine grained implementation of an AND gate. Source: [3]

• The power network synthesis is much more complicated as it requires a permanent power

net, power switches and a virtual power network.

• IR drop needs to be carefully analysed.

• The wake-up time and Irush have bigger values.

When it gets to choosing the proper implementation, designers find out that the area overhead

of a fine grained approach is not worth the savings in design effort. Thus, the coarse grain approach

is widely used in power gating implementations.

2.4.3.2 Header vs Footer

In Section 2.3 the header and footer concepts were introduced. One of the most important de-

cisions is to choose whether to switch power (header switch) or switch ground (footer switch).

Actually, both could be used. However, it would generate a big IR drop, which, in turn, could

cause large standard cells delays. Header switches use high Vt pMOS transistors to control power,

while footer switches use high Vt nMOS to control ground (see Figure 2.9). When gets to choose

between one of these two switching strategies, area, efficiency, IR drop and design architectural

issues are the key metrics.

Actually, both could be used. However, it would generate a big IR drop, which, in turn, could

cause large standard cells delays.

From an electric perspective, using footers is better. A power switch efficiency is the ratio

between the drain on and off state currents (Ion/Io f f), which represents the ability to cut off power.

For the same drive current nMOS switches have a higher efficiency and less IR drop. Thus, to

achieve the same drive strength and IR drop, a design with footers would require less switches

than a design with headers. This would, obviously, have less area penalty [3].

14 Background

Figure 2.8: Coarse grained implementation. Source: [5]

Despite the obvious advantages of the footer switch, headers are widely used in power gating

designs. From a system and IP integration perspective, headers have the following advantages:

• Multivoltage designs demands for level shifters on signals between blocks with different

supply voltages. These elements have a common ground and two power supplies. In this

case, footers should not be used.

• It is easier and more common to think that an active state is represented by the logic value

1. This way switching power is more intuitive.

• The use of active-high protocols to communicate between blocks is a common approach. In

this case the logic value 0 is represented by a common ground

• When isolation strategies are used, switching power allows the use of a simple pull-down

transistor to clamp signal to 0.

Regardless of the issues presented above, the choice of using headers or footers is highly de-

pendent on the available technology. The power gating cells featured in the standard cells libraries

should be carefully studied in order to choose the best approach for each design.

2.4.3.3 Ring vs Array

In a coarse grained implementation two topologies for the power switches placement can be used.

They can be placed around the power gated block (ring) or within it (array). The advantages and

disadvantages of each one are presented below.

Figure 2.10 illustrates a ring implementation, where the power switches are placed around the

block. The always-on power supply can, likewise, form a ring or a power mesh. Another ring can

be created for the virtual power net, which, in turn, supplies the power gated block power mesh.

The advantages of a ring implementation are:

2.4 Power Gating Challenges 15

Figure 2.9: Header (left) and Footer (right) power switches. Source: [3]

• The power distribution is simpler because the power switches are confined to a specific area

and not mixed with the block logic;

• There is always a separation between the always-on power supply and the switched/virtual

power supply. For this reason, it provides two distinct power islands, one for each power

supply, making place-and-route simpler;

• It is the only possible approach when power gating an already existing hard IP that doesn’t

allow physical changes.

The disadvantages of a ring implementation are:

• Always-on cells like retention registers cannot be used;

• Implies bigger area overhead;

• Requires a larger number of power switches, since they are farther away to the block, thus

having to drive bigger power nets. For the same reason the IR drop impact is significantly

bigger and can be difficult to manage.

In an array topology the power switches are placed across the power gated block logic. They

form a grid that connects the always-on power supply to the virtual power supply, as illustrated in

Figure 2.11.

The disadvantages of the ring implementation are the advantages of the array topology and

vice-versa.

The advantages of an array topology are:

• The power gated block has access to both permanent and virtual power supplies, allowing

the use of always-on cells such as retention registers;

• The power switches don’t have to drive long power nets because they are closer to the block

logic. This allows for smaller IR drop and less power switches;

• It has smaller area impact, since empty spaces among the logic can be used for power

switches placement.

16 Background

Figure 2.10: Ring implementation. Source: [3]

In turn, the disadvantages of an array topology are:

• Cannot be used in hard IP blocks;

• Implies a complexer power network;

• Makes place-and-route more difficult.

The choice between a ring or array implementation is strongly dependent on the design spec-

ifications and requirements and on the standard cells libraries. An array implementation will pro-

vide for less area penalty and IR drop. But for designs that does not require retention cells, a ring

approach can be used, as it is simpler in what concerns to the power network synthesis and place-

and-route. Additionally, a ring implementation is the only possible approach to power gate a hard

IP block. In a hierarchical system perspective it is a good idea to use an hybrid implementation.

2.4.4 Retention Registers

When a block is reactivated, it is important that it powers on in the same state that it was prior to

the shut-down or, at least, in a known state. A reset signal can, simply be used to activate internal

mechanisms that places the block in a known state. The other option is to save the state in an

external memory. However the retention resisters can speed up the process of saving and restoring

state.

2.4 Power Gating Challenges 17

Figure 2.11: Array implementation. Source: [3]

A retention register, actually, contains two registers. One is the main register that serves the

normal operation of the block. The other one is an auxiliary register, less leaky, that is used to save

the main register state during a shut-down operation. Then, during power on, the auxiliary register

content is loaded into the main register.

As illustrated in Figure 2.12, the auxiliary register RET is powered by the always on supply

V DD. The main register Master/SlaveLatches which generates the output Q gets its power from

the virtual supply V DDSW .

These registers, at RTL level, can be treated as normal registers, which facilitates its inte-

gration. However they can have a big impact on area and require a special attention in order to

generate the proper SAV E and RESTORE signal.

2.4.5 Isolation Cells

As mentioned in Section 2.3, the power gated block outputs can remain floating and disturb the

operation of always-on blocks. In this context it may be necessary the introduction of isolation

cells. These cells, when active, clamp the output signals to 0 1 or to the last known state. In what

concerns to the implementation an AND gate can be used to clamp a signal to 0, while an OR

gate is able to clamp to 1. The decision of which value to clamp an output signal depends on

the nature of the design. The best way is to clamp the signals to a neutral value in order not to

induce inappropriate behaviours in the always-on blocks. Most of the times this means clamping

to 0. Another reason for clamping outputs to 0 is that when two consecutive power gated and

18 Background

Figure 2.12: Retention register. Source: [3]

deactivated blocks exist, if the sink block is implemented with header switches and the outputs

are clamped to 1, a leaky path is established between the outputs and ground. This way, signals

should be clamped to 0 [3].

Chapter 3

Interface and Project Requirements

This chapter presents the existing Synopsys interface and the project requirements as established

by Synopsys design team. Due to confidentiality matters, the details given about the interface

will be limited to the strictly necessary for understanding this power gating implementation. First,

some information about the interface functionality is shown as well as data concerning area, gate

count and power consumption. Then, the problem is enunciated, also giving the reader the planned

course of action taken to fulfil the objectives.

3.1 SNPS high-speed interface

The high-speed interface that is the object of this dissertation is the digital RX (receiver) of an RX

lane, which can be called PHYGNRX. Each lane is composed by the stated digital block, hence

called rxlanedig and an AFE (analogue front end) denominated PHYGNRXAFE. Data bursts are

received through the AFE by a differential line.

It is a state of the art Synopsys interface widely used in mobile applications and is still a young

interface in its first stages of development, having much space for expansion. Its functionality

makes it a perfect power gating target. It has short periods of activity, followed by long periods of

inactivity.

In what concerns to the functionality, this interface presents two main operating modes: HS-

mode (high-speed) and LS-mode(low-speed), each one with different scenarios that are not rel-

evant for this implementation. These modes represent the bursty activity, thus the dissipation of

dynamic power. Additionally, the interface features a low power mode called Hibernate. While

in this operating mode the interface operation is halted and the line is at DIF-Z (both lines have

the same voltage). In this state all the clocks are gated through the low power technique Clock

Gating [8], thus the only source of power dissipation is leakage currents. Table 3.1 presents the

maximum clock frequency of each mode.

The interface between the rxlanedig and PHYGNRXAFE contains a set of signals that con-

trols the entry and exit of the low power Hibernate state. The change from HS-mode/LS-mode

to Hibernate is achieved through the control of an internal configuration register which can be

19

20 Interface and Project Requirements

Table 3.1: Maximum clock frequency of each operating mode

Operating Mode Max. Frequency
LS-mode 9 MHz
HS-mode 600 MHz
Hibernate Clock Gated

accessed though a design input port. The opposite operation is controlled by a block located in

the AFE. This block monitors the state of the line and detects a transition from DIF-Z to DIF-N,

which means the end of the Hibernate state. This block, hence called SQUELCH has the following

signals interfacing with rxlanedig:

• rx_sq_en: SQUELCH input that enables the block operation;

• rx_sq_on: SQUELCH input that activates the block operation when entering Hibernate;

• rx_sq_out: SQUELCH output that signals when a transition from DIF-Z to DIF-N is de-

tected, triggering the Hibernate state exit.

Figure 3.1 illustrates the PHYGNRX architecture considering the DIGITAL/ANALOGUE

interface signals.

Regarding the power supplies, rxlanedig block is powered by the PHYGNRXAFE. Table 3.2

presents a summary of the existing power supplies. Figure 3.2 illustrates the supplies connections.

Table 3.2: Supply Voltages

Supply
Voltage

MIN TYP MAX
Analogue power VPH 1.8 1.8 1.98
Common ground GD 0 0 0
Top level digital power VP 0.81 0.9 0.99
rxlanedig power VDD (connected to VP) 0.81 0.9 0.99
rxlanedig ground VSS (connected to GD) 0 0 0

3.1.1 Physical and Power Consumption data

This section presents interesting data about rxlanedig, the target of this implementation. After

the power gating implementation these information will be compared to the final design data to

evaluate the losses and gains. Table 3.3 presents area related information.

In what concerns to corner dependent analyses, through this dissertation the following corners

will be considered (for an explanation of the corner concept see Sections 4.2.1 and 6.7.1):

• Fast Corner (FC) - fast process, 0.99V supply voltage, 125 ◦C;

• Slow Corner (SC) - slow process, 0.81 V supply voltage, -40 ◦C;

3.2 Project Requirements 21

Figure 3.1: PHYGNRX blocks diagram

• Typical Corner (TYPC) - typical corner, 0.9 V supply voltage, 25 ◦C.

FC and SC are the extreme corners in what concerns to timing, being the SC the slower. In a

IR drop point of view, the FC is the one for which this metric is worst. TYPC represents the most

likely operating conditions.

Finnaly, Tables 3.4, 3.6, 3.5 presents the rxlanedig power consumption for, respectively, FC,

TYPC and SC.

3.2 Project Requirements

As mentioned in Section 1.2 the main goal of this dissertation is the power reduction of the high-

speed interface rxlanedig. Giving the description of the interface, the reader is now in position to

understand the detailed project requirements as established by Synopsys design team:

1. Isolate the whole digital block rxlanedig in a power island;

2. Insert power switches in a way that enables shutting power off to rxlanedig when this is in

Hibernate mode;

3. The power switches enable signal should be a design input port in order to give this control

to the SoC where this IP could be integrated;

4. When in Hibernate mode the SQUELCH control should also be given to the SoC;

5. Adapt the standard design flow to allow the power gating implementation;

6. Complete the entire design flow.

22 Interface and Project Requirements

Figure 3.2: PHYGNRX supply connections

Table 3.3: Physical data

Characteristic Value
Number of cells 21019
Total cell area 22297.032258 µm2

Gate count (total_cell_area
area_nand1) 43464

Total floorplan area (including the AFE) 114300 µm2

Table 3.4: Power consumption fot the FC

Operating Mode Dinamic Power Leakage Power (Static) Total Power
HS-mode 5.64 mW 5.88 mW 11.52 mW
LS-mode 188.9 µW 5.8 mW 5.9889 mW
Hibernate 0 µW 5.77 mW 5.77 mW

Table 3.5: Power consumption fot the TYPC

Operating Mode Dynamic Power Leakage Power (static) Total Power
HS-mode 4.33 mW 32.0 µW 4.362 mW
LS-mode 144.7 µW 31.6 µW 176.3 µW
Hibernate 0 µW 31.4 µW 31.4 µW

Table 3.6: Power consumption for the SC

Operating Mode Dynamic Power Leakage Power (Static) Total Power
HS-mode 3.27 mW 1.25 µW 3.27125 mW
LS-mode 112.6 µW 1.25 µW 113.85 µW
Hibernate 0 µW 1.25 µW 1.25 µW

Chapter 4

Standard design flow

Having defined which goals to pursue, the first stage of this project is to study and understand the

standard design flow as used in Synopsys. Understanding it will allow to know what needs to be

changed and what is kept in order to implement power gating. The design flow can be divided into

two parts: Frontend design flow and Backend design flow. Both together, allow the creation of a

functional chip from scratch to production. The frontend flow will be briefly described, while the

backend flow is deeply analysed. It is also a concern of this chapter to associate each design flow

stage to the specific Synopsys tool used to perform it.

4.1 Front End Flow

The frontend flow is responsible to determine a solution for a given problem or opportunity and

transform it into a RTL circuit descpription. The stages of the frontend flow are identified in Figure

4.1 and described below.

1. Problem and Solution Specification

Every project starts with a problem to be solved, an opportunity to take advantage of or

something that needs to be improved. The designer needs to architect an abstract solution to

that problem that may or not, at this stage, be tied to any specific implementation technology.

One can say: "I’m going to design a circuit that receives a frame of pixels representing the

position of a target and it will track the position through the linear least squares method".

2. High-level architecture

The next step is to architect a system, diving it in high level blocks each one with a specific

functionality and determine the way they communicate. In the case of a microprocessor this

means splitting the design in the ALU, instructions decoder, registers, etc.

3. Low-level functional specification

23

24 Standard design flow

Figure 4.1: Frontend design flow.

At this stage, the designer needs to describe each block functionality and how it is imple-

mented. It may be helpful to describe the blocks using functional/behavioural descriptions

using Matlab scripts.

4. RTL Coding

Each block is described using an Hardware Description Language, like verilog. Each block

functionality is "converted" into synthesizable constructs specific to the language.

5. Integration and Functional verification

This is the stage where the functional characteristics of the design are simulated or verified,

at every level of abstraction. In order to test if the RTL code meets the functionality require-

ments, every block should be verified. Then, when every block meets its specifications, it

is time to integrate them in a top-level and verify the whole system functionality. For that

testbenches are used. A test bench generates the input test vectors to stimulate the block or

top-level functionality. Then the DUT (device under test) outputted wave forms are anal-

ysed. In complex designs the testbecnch itself checks the outputs by comparing them with

expected values.

4.2 Backend flow 25

4.2 Backend flow

The backend process is responsible for the physical implementation of a circuit. It transforms

the RTL circuit description into a GDSII layout file. The main phases of the backend process are

Synthesis and Place&Route. Figure 4.2 illustrates the backend flow and related Synopsys tools.

Figure 4.2: Backend design flow and related Synopsys tools.

26 Standard design flow

4.2.1 Synthesis

Synthesis is responsible for converting the RTL description into a structural gate level based netlist.

This netlist instantiates every element (standard cells and macros) that compose the circuit and its

connections in a way that allows meeting the design constraints regarding timing or area. Synthesis

can be described as follows: Synthesis = Translation + Optimization + Mapping.

Synopsys Design Compiler (DC) is the tool used to perform a logical synthesis. Its inputs are:

• The RTL description – Verilog or VHDL;

• The GTECH library – General technology library. Not tied to any specific technology (gates,

flip flops);

• DesignWare Library –Synthetic library (adders, multipliers, comparators, etc).

• The standard cell library – the specific target library;

• The defined constraints – synthesis goals regarding timing, area, capacitance, max transi-

tion, fanout.

• Design Environment: The operating conditions (libraries corners), wire load models.

The targeted standard cells belong to a library that is provided by a foundry. Each logic

function is implemented in several gates to accommodate several drive strength capabilities and

different fan-outs. The gate library is characterized in a way the, for each gate, defines its function,

shape, area, pins, timing and power characteristics. A target library is characterized for different

operating conditions, the so called corners. Each corner represents a PVT (process, voltage, tem-

perature) condition. For instance a standard cell library can be characterized for a technology

process of 28nm, supply voltage of 0.99V and temperature of 125 ◦C. A cell belonging to a library

characterized for this corner have different characteristics that the logic equivalent cell of a library

characterized for a different one.

In what regards the synthesis itself as done by DC, the tool first reads the RTL description

to its memory and translates it into an unmapped GTECH netlist. Then, considering the design

constraints and design environment, DC compiles the GTECH netlist into the target library cells

and optimizations are made to meet the design constraints. For this phase, all clock, sets and

resets signals are marked as ideal, since synthesis is a process with limitations regarding physical

characteristics. Finally a set of reports are written and a gate level netlist is exported to be used by

the place and route tool. Figure 4.3 shows the functional flow of synthesis using Synopsys Design

Compiler.

4.2.2 Synthesis Verification

The first step is to verify a set of reports, which have information about timing, area, fanout and

shows the violations to the defined constraints. These reports must be interpreted to check if there

4.2 Backend flow 27

Figure 4.3: Synthesis as done by DC.

are violations (setup time, hold times, area, max transition, etc.). In case of violations DC can

try to fix them by running optimization algorithms. If DC cannot fix the violations, one must go

back to RTL coding. With these reports it is possible to check if the design is synthesizable and,

therefore, if it is possible to proceed. The final verification before proceeding to Place&Route is

to run Formality, which is a logical verification tool. It takes the final netlist generated by DC and

checks the logical equivalence with the RTL description.

4.2.3 Place&Route

Place&Route is the backend stage that converts the gate level netlist produced during synthe-

sis into a physical design. Although the name denotes for two phases, the Place&Route stage

can be divided in five steps: Design Planning, Placement, Clock Tree Synthesis (CTS), Routing

and Chip Finishing. Design Planning involves setting up the environment in the specific tool.

Placement involves placing all macros and cells into a certain and predefined space. It is done

in two phases. The first one, called Coarse Placement, places the standard cells in order to op-

timize timing and/or congestion but not taking in account overlapping prevention. The second

phase, which is named Legalize, eliminates overlap problems by placing the overlapping cells

in the closest available space. Clock tree synthesis is the creation of a balanced buffer tree in

all high fanout clock nets to avoid violations regarding clock skew, max transition time, capac-

itance and setup and hold times. Routing is responsible for designing all the wires needed to

connect all cells of the circuit, while following the rules of the manufacture process. The connec-

tions between cells are done using metal layers placed one over the other and connected through

vias. Routing has a negative impact on timing, transition and capacitance slacks. It introduces

RC parasitic effects that cause delay, signal noise and increase IR drop. To minimize the para-

sitic impact, clock signals should be routed first and in middle metal layers, away from the noisy

power supplies of the standard cells. Routing is done in three phases: Global Routing (design

routing nets), Track Assignment (assign nets to specific metal layers), and Search&Repair (fix vi-

olations). Chip finishing involves inserting a set of special cells called filler cells and performing

final verifications. Using Synopsys IC Compiler the design is, first, placed, followed by the clock

28 Standard design flow

tree synthesis (CTS) and, finally the routing of every cell and chip finishing. The result is a post-

layout netlist and a GDS II file. The steps taken to perform Place&Route using ICC are as follows:

Design planning

1. Create one empty Milkyway library.

The Milkyway library is the design database. It used for portability throughout all Synopsys

design environment. This library is linked to the standard cells library and to the technology

file. This file defines the physical rules and characteristics like the resistivity of each metal

layer (a deeper explanation of libraries and technology file is given in Sections 6.7.1 and

6.8).

create_mw_lib $design_lib -technology $tech_file

2. Load Synthesis netlist.

It is the netlist created by Design Compiler. It will be linked to the previously loaded phys-

ical and standard cells library.

read_verilog $verilog_file

3. Connect the standard cells power pins to the design power supplies.

derive_pg_connection $pwr_net $gnd_net $pwr_pin $gnd_pin

4. Load TLU+ files

TLU+ files are provided by the foundry and give important information about the parasitic

effects between cells and nets. This information will be used to correctly place and route all

cells.

load_tlup

5. Load the floorplan

The floorplan is the initial physical shape of the circuit. It has information about the cir-

cuit boundaries, the I/O pin location, the places where standard cells cannot be placed and

the upper metal power straps. These straps are done in upper metal in order to have less

resistance and smaller IR drop. The floorplan is previously done using Synopsys Custom

Designer that produces the TCL scripts to be loaded by ICC.

source boundary.tcl

source floorplan.tcl

source pins.tcl

4.2 Backend flow 29

6. Load the design constraints

Placement and routing are done in order not to violate these constraints. A TCL file is given

with tool specific commands that define the design constraints.

source design_constraints.tcl

7. Check for special design constraints.

Some standard cells libraries demand the use of special cells:

• Tap cells – Polarization cell that are added by rows;

• End cap cells and filler – Placed for nwell continuity. Added in several ways like the

beginning or end of each row or between standard cells.

Placement

8. Perform the coarse placement.

Place the cells inside the floorplan. They will be placed in order to meet timing but not

avoiding overlapping cells.

create_placement

9. Legalize the placement.

Legalize is the process of eliminating overlap problems by placing overlap cells in the clos-

est available space.

legalize_placement

10. Physically connect the placed cells to power and ground.

Connections are done by creating lower metal supply rails and connect them to the existing

upper metal straps using vias.

preroute_standard_cells

Clock Tree Synthesis

11. Compile clock tree

compile_clock_tree

12. Check the clock tree for errors.

Check if any cell has big transition times, capacitance, or high fanout. Weak cells with

high fanout produce huge transition times. In order to balance the clock tree it is possible

to replace the weak cell by a stronger and logical equivalent one. On the other hand cells

driving long nets can produce high transition times as well. One solution can be placing a

strong buffer in the output of the driver cell.

30 Standard design flow

13. Perform a IR drop analysis.

At this stage, before routing, it is important to check the IR drop over the circuit. ICC will

output a color map representing the IR drop from the power straps and across all the circuit.

The red spots on this map show high IR drops. It is also possible to have an idea of the

circuit power consumption.

dump_ir_drop

14. Run a Static Timing analysis from ICC.

Running a STA from ICC at this stage allows detecting timing violations at this stage of the

design. ICC can try to eliminate these violations automatically by accelerating or delaying

paths.

Automatic Optimization: psynopt

Routing

15. Route the clock nets.

Route the high sensitive clock nets first. route_zrt_group -all_clock_nets

16. Route signal nets.

At this stage ICC will try to preserve the previously routed clock nets.

route_zrt_auto -max_detail_route_iterations 20

Chip Finishing

17. Check for errors.

Check for DRC and timing errors. If big violations exist, ICC can try to fix them automati-

cally.

route_opt -effort high -incremental

Setup time violations can be fixed by accelerating the path, which can be done by replacing

cells by stronger and logical equivalent ones. To fix hold time violations the path has to be

delayed. This is achieved by inserting buffers into the logical path.

18. Place FILL and DCAP cells in the empty gaps.

Place FILL DCAP cells to establish nwell continuity.

insert_stdcell_filler -cell_with_metal $decap_cells

insert_stdcell_filler -cell_without_metal $filler_cells

19. Run DRC and LVS.

To check if the Place&Route process respected all rules.

4.2 Backend flow 31

verify_drc

verify_lvs

20. Save the Milkyway database and the post-layout netlist.

21. Proceed to sign off

At this stage the post layout netlist is ready to be verified by the sign of timing, power, DRC

and LVS tools.

4.2.4 Parasitic extraction

Parasitic extraction has the objective to create an accurate RC model of the circuit so that future

simulations and timing, power and IR Drop analyses can emulate the real circuit response. Only

with this information, all the analyses and simulations can report results close to the real func-

tioning of the circuit. This way this stage needs to precede all signoff analyses. Star RCXT is

the Synopsys tool capable of performing parasitic extraction. It takes the post-layout Milkyway

database and the NXTGRD files provided by the foundry (cells parasitic information) and pro-

duces SPEF (Standard Parasitic Exchange Format) and SBPF (Synopsys Binary Parasitic Format)

files.

4.2.5 Static Timing Analysis (STA)

STA is a method to obtain accurate timing information without the need to simulate the circuit.

It allows detecting setup and hold timing violations, as well as skew and slow paths that limit

the operation frequency. Synopsys PrimeTime allows running STA over a physical design, for

each corner. Taking as inputs the post-layout netlist and parasitic and standard cells information

it outputs a series of reports, which give the possibility to detect timing violations. As mentioned

before these timing violations can be fixed by inserting buffers or resizing cells. With PrimeTime

it is possible to identify where to perform these modifications and test them. When a list of new

buffers and resized cells is available, the modifications need to be done back in ICC, followed by

another parasitic extraction and STA to check the results. This process is done iteratively until no

violations are reported.

4.2.6 Post-layout Analysis and Verification

Once again, formality should be run to check the logical equivalence of the post-layout netlist

with the RTL description. The huge number of transistors in a circuit can make the voltage level

drop below a defined margin that ensures that the circuit works properly. IR Drop analysis allows

checking the power grid to ensure that it is strong enough to hold that minimum voltage level.

Synopsys PrimeRail is the tool that outputs IR-drop and EM analyses reports. Then, PrimeTime-

PX, which is an extension of Prime Time, is the tool responsible of performing power analyses to

estimate the power consumption of the circuit, for each corner. It has the capability of computing

32 Standard design flow

the dynamic and static power consumption of the whole design or the power consumption of each

cell or macro.

4.2.7 Integration and DRC/LVS Verification

The final step is to generate a GDSII file of the entire design layout. For that Custom Designer can

be used to integrate the GDSII layout of the standard cells and the one outputted by IC Compiler,

thus creating the final and complete graphics layout file. Finnaly, the Synopsys DRC/LVS verifi-

cation tool, Hercules, is run. DRC (Design Rules Checking) checks if the foundry geometric and

connectivity rules are met. Examples of DRC’s include: Metal to metal spacing; well to well spac-

ing; minimum metal width; Antenna Effect; Metal fill density. LVS (Layout Versus Schematic)

checks if the physical circuit corresponds to the original circuit schematic. The schmatic is a CDL

netlist and the layout is the GDSII stream.

4.3 Summary

Throughout this chapter the standard design flow using Synopsys tools was depicted. Keeping in

mind the power gating implementation, it is possible to understand that there is no focus on power

characteristics. With this flow, every design is assumed as being a single-supply design. It is, then,

necessary to understand how to use these tools taking into account power intent and how to intro-

duce power gating related cells. It is important to mention that a power gating implementation has

its focus on the physical implementation, thus, the steps Place&Route and Post-layout Analysis

and Verification are where this dissertation will have its main impact.

Chapter 5

Low Power Design Flow

This chapter documents the main changes that need to be made to the original high-level design

flow presented in the previous chapter. The main objective is to understand how to inform the tools

about the existence of different power domains and power islands and ho to insert power gating

related cells like power switches, retention registers and isolation cells. Each tool specific flow

and modifications are shown in Chapter 6.

5.1 Power Intent Specification using UPF

The answer to the first problem is to use the IEEE 1801 Standard for Design and Verification of

Low Power Integrated Circuits, also known as the Unified Power Format (UPF) [11]. It consists

in a set of Tcl-like commands that allow to specify the power intent for electronic systems. Using

UPF the designer is able to specify the different power domains of a system, the supply network,

power switches, isolation and retention strategies, power states and other aspects related with the

power management of a chip design. This is even more convenient due to the the fact the Synopsys

tools supports the UPF standard across all design flow.

5.1.1 UPF Concepts

Although the UPF standard allows to specify the power characteristics of a chip design it doesn’t

specify how those requirements are implemented, in other words, it is just an abstract description

of a design strategy that is interpreted and implemented by Synopsys tools.

The first and more important construct of an UPF specification is the power domain. It is

an abstract group of elements that share the same power characteristics in a design. Typically all

these elements are connected to the same power supply and ground, the so called primary power

and primary ground. It is also possible to define other power supplies for a domain as it will be

shown is Section 6.3. A power domain is physically translated into a voltage area. Each power

domain is defined within a context and has a set of design elements belonging to it. The scope is

the hierarchy level at which the domain is defined.

33

34 Low Power Design Flow

Each power domain has supply nets and supply ports associated with it. A supply net carries

a supply voltage or ground across a power domain. A supply net that is associated with more

than one power domain is said to be "reused". A supply port is the connection point between two

adjacent levels of hierarchy.

A supply set is a collection of supply nets. Each net serves a particular function (power,

ground, pwell and nwell polarizations)regarding to a power domain. A supply set can be used for

each domain or standalone supply nets can be created and then associated to a power domain. The

first option is useful when power domains have a large set of supply nets associated. Otherwise,

not using supply sets can be simpler and sufficient.

The power switch as defined in Section 2.3 is also an UPF element. A power switch has

an input supply net (always-on), an output supply net (switched), and at least one input signal to

control the switching activity. Optionally an acknowledge signal can be defined representing the

moment when a power switch has finished its power on sequence.

A Power State Table lists the possible combinations of voltage values (power states) for all

domains in the design.

Besides the elements described above, which are the mandatory constructs for a power gating

implementation, UPF standard also defines isolation cells and retention registers. These cells, as

explained in Chapter 2 can be used to, respectively, isolate power-gated blocks IO ports and to

retain data during shutdown.

The UPF syntax to be used when implementing power gating will be described in Chapter 6.

5.2 Low Power Flow Using Synopsys Tools

As mentioned in the previous section the UPF standard allows to describe the whole power intent

of a chip design. This characteristic makes possible the use of a golden RTL description without

any modifications (since it does not contain power pins instantiation) and complement it with an

UPF file. Then, Synopsys tools are prepared to read the UPF file and use it along the entire flow,

updating it when necessary. Figure 5.1 illustrates the design flow using the UPF standard and

Synopsys tools [2].

Begining from the Synthesis step, Design Compiler reads the golden RTL logic description

and the golden UPF power intent specification in order to synthesize a gate-level netlist. This

netlist, besides, the logic normal gates, contains special cells like retention registers and isolation

cells, added according to the UPF description [12]. Design Compiler also outputs an updated

UPF file (UPF’). This file contains the original UPF information plus the supply connections for

special cells created during synthesis.

In the physical implementation step, IC Compiler reads the gate level netlist and the UPF’

file. The UPF information is used to create the needed voltage area for each power domain and to

logically connect every supply pin to its correspondent supply net. More importantly, the power

switches are physically placed in this step, taking into account the information of the UPF’ file.

5.3 Summary 35

Figure 5.1: Low power design flow using Synopsys tools. Adapted from: [2]

Last, but not less important, the power network is created in ICC. The updated UPF file (UPF”)

created by ICC contains any UPF command that may be introduced during the Place&Route stage.

In what concerns to analysis and verification, the UPF descriptions are used by formality for

equivalence checking, Prime Rail for rail analysis, including IR drop, in-rush current and wake-up

time (concepts introduced in Chapter 2), Prime Time for Static Timing Analyses and Prime Time

PX for power analyses. These tools use UPF to annotate voltage supplies on power and ground

nets and pins and to define the power states of the design, more specifically, of the power switches.

None of these tools change the design power characteristics of the design in any way. Therefore,

the UPF description is not updated.

5.3 Summary

A slightly modified design flow was presented in order to take into account the power character-

istics of the system to be designed. This modified flow makes use of the IEEE 1801 Standard

for Design and Verification of Low Power Integrated Circuits, also known as the Unified Power

Format (UPF). With UPF it is possible to inform Synopsys tools about what are the existent power

domains in a circuit, the needed power switches and its characteristics, the power states and the

36 Low Power Design Flow

supply connections. This way the the RTL golden description can still be used alongside with the

UPF specification.

Chapter 6

Power Gating Implementation

This is the section where the steps taken in order to implement power gating are described. The

low power design flow is complemented with the specifics steps that need to be taken for each flow

stage and respective tool. The objective is to present what was made in this specific implementa-

tion and, at the same time, the needed methodology is explained.

6.1 Power Gating Strategy

Before proceeding with the design flow some decisions should be made in advance. The first one is

what switches topology to use. As explained in Section 2.4.3.3 there are two possible approaches:

Ring or Array. In this case, the objective is to power gate an entire digital hard IP that does not

allow physical modifications. Thus, the only possible solution is to use the Ring implementation

and place power switches around the IP. This will also make the power network synthesis simpler,

with only two digital power domains. The problems with this solution are bigger IR drop and

bigger area overhead that need to be carefully handled.

The second decision that needs to be made is whether to use Header Switches (PMOS) or

Footer Switches (NMOS). This decision is limited by the standard cells library. The available

library in Synopsys only features header switches, making them the only option.

Retention registers cannot be used for the same reason that an array of power switches is

impossible.

Since this design is composed of only one digital block, its floating outputs (when power

gated) wont affect an non existing always-on block. This way, isolation cells are not absolutely

necessary and their use would have a negative impact on area. However this cells should be added

at the SoC level where this IP could be integrated.

6.2 Frontend stage

As already said, this implementation has its main focus on the physical implementation and ver-

ification. Nevertheless, a little "backend work" is needed. The first problem arises from the fact

37

38 Power Gating Implementation

Figure 6.1: Blocks diagram of the modified design.

that, when the digital rxlanedig block is powered-off, the AFE still needs to receive the control

signals related with the squelch block. Considering this fact, Synopsys defined as a requirement

that the squelch control signals are given to the SoC (Section 3.2). It is useful to remember that

the control signals are rx_sq_en and rx_sq_on (see Section 3.1). This way, two extra input ports

need to be added to the design. The operating principle is easy: when the rxlanedig is powered

on, the control comes from it; when powered off, the control comes from the input ports. This be-

haviour is achieved using a simple multiplexer for each signal. Therefore, a new block containing

two multiplexers was added. Another requirement is also to give the control of the power switches

to the SoC. To fulfil these requirement another input port was added, RX_SQ_CTR_SOC. Still,

in what regards the power switches control a port was added to be used as an acknowledge of the

moment when the power switches have finished their power on sequence. The new design blocks

diagram is shown in Figure 6.1. Note that the output port RX_SQ_ACK_SOC is yet not con-

nected because it will be later connected to the power switches. These new specifications resulted

in a new block and in modifications in the top level where all blocks and IO ports are instantiated.

All the RTL files are described using Verilog.

6.3 Describing the power intent using UPF

Once the golden RTL files are ready, it is time to describe the power specifications in an UPF file.

For the definition of the UPF constructs used to specify the power intent, refer to Section 5.1.1.

The first step is to define the power domains. For this implementation we need to create three

power domains, as illustrated in Figure 6.2. In order to specify the power domains the following

UPF commands are used:

create_power_domain TOP

create_power_domain PD_DIG -elements rxlanedig

create_power_domain PD_AFE -elements PHYGNRXAFE

6.3 Describing the power intent using UPF 39

Figure 6.2: UPF diagram.

When creating the power domain called TOP, without specifying any element that it might

contain, every element of the design, that does not belong to any power domain yet, is automati-

cally associated with it. TOP contains the always on digital cells, like the multiplexers. PD_DIG

is created with the digital rxlanedig IP associated with it, while PD_AFE contains the analogue

block PHYGNRXAFE.

The next step is to specify the supply nets and connect them to supply ports. In this implemen-

tation it was chosen not to use supply sets, since each power domain as a relatively small number

of nets, mainly one power and one ground net. Thereby, each net is created and associated with one

or more power domains.In this implementation VP is the always-on net, which is associated with

the always-on domain TOP and the analogue domain PD_AFE. VPH is the analogue power net,

thus associated with PD_AFE. VPS_DIG is the switched power net, used to power rxlanedig and,

this way, associated with PD_DIG. Finally, GD is the supply net used to distribute the common

ground. The supply nets creation is achieved using the following commands:

create_supply_net VP -domain TOP

create_supply_net VP -domain PD_AFE -reuse

create_supply_net VPH -domain PD_AFE

create_supply_net -domain TOP -reuse VPH

create_supply_net VPS_DIG -domain PD_DIG

40 Power Gating Implementation

create_supply_net VPS_DIG -domain TOP -reuse

create_supply_net GD -domain TOP

create_supply_net GD -domain PD_DIG -reuse

create_supply_net GD -domain PD_AFE -reuse

The supply ports of this design are specified using the following commands:

create_supply_port VP

create_supply_port GD

create_supply_port VPH

Note that only top level ports are created once both digital and analogue blocks already have

power ports. Normally, a supply port should be created whenever a supply net crosses power

domains. The connection between the supply nets and supply ports is achieved with:

connect_supply_net VP -ports VP

connect_supply_net VPH -ports VPH

connect_supply_net GD -ports GD

Still in the supply nets context, one needs to define the main supply nets for each power

domain. The UPF standard defines that a power domain as a primary power net and a primary

ground net. All power pins of all elements of a certain power domain are connected to that nets.

PD_AFE has the particularity of having two power nets associated with it. This way, one of

the nets should be explicitly connected to its power pin. It was chosen to explicitly specify the

connection between VPH and vph port (see Figure 3.2). Note that the primary supply net of

PD_DIG is VPS_DIG, the switched power net. This way all elements contained in this domain

will be power gated. The following commands were used:

set_domain_supply_net TOP

-primary_power_net VP

-primary_ground_net GD

set_domain_supply_net PD_DIG

-primary_power_net VPS_DIG

-primary_ground_net GD

set_domain_supply_net PD_AFE

-primary_power_net VP

-primary_ground_net GD

connect_supply_net VPH -ports I01MPHYGNRXAFETYPE1/vph

A power switch designated (PD_DIG_SW) is specified to switch power to the domain PD_DIG:

6.3 Describing the power intent using UPF 41

create_power_switch PD_DIG_SW

-domain TOP

-input_supply_port VDDP VP

-output_supply_port VDDC VPS_DIG

-control_port RX_SQ_CTR_SOC RX_SQ_CTR_SOC

-ack_port RX_SQ_ACK_SOC RX_SQ_ACK_SOC

-on_state on_state VDDP !RX_SQ_CTR_SOC

Note that the specified domain is TOP. These means that this switch is to be placed in the TOP

domain, which has both input and output nets associated. However, the controlled domain is still

PD_DIG. The -input_supply_port and -output_supply_port options allow to specify

the input and output supply nets and their connections to supply the ports of a certain switch. In

this case the input switch supply port VDDP is connected to the input supply net VP. In turn,

the output switch supply port VDDC is connected to net VPS_DIG. The switch is controlled by

the port RX_SQ_CTR_SOC and is connected to the acknowledge port RX_SQ_ACK_SOC. The

-on_state option allows to specify the boolean function of the control port for which the switch

is considered to be on, meaning that the output net is powered.

Lastly, one needs to specify the power states of the chip, which means, the different voltage

values of the different power ports. The first step is to define the port states for each power port,

including the power switch output port. The following UPF commands define the port power states

for the operating conditions corresponding to the FC (fast process, 0.99V and 125 ◦C).

add_port_state VP -state TOP_VP 0.99

add_port_state GD -state GND 0.0

add_port_state PD_DIG_SW/VDDC

-state POWER_ON 0.99

-state POWER_OFF off

add_port_state VPH -state TOP_VPH 1.98

Note that the switch power output port PD_DIG_SW/VDDC has two states. The one corre-

sponding to the moments when the switch is on and a second state for the opposite situation. The

former state has an associated voltage of 0.99 while the latter uses the keyword off. The state

names can be defined according to the user’s will. These names are, now, used to create a Power

State Table (PST). This table has an entry for each possible voltage combination of the supply nets.

Each entry associates every supply net to an already defined power state. In this implementation

the PST is defined in the following way.

42 Power Gating Implementation

create_pst PST -supplies VP VPS_DIG GD VPH

add_pst_state ON -pst PST -state TOP_VP POWER_ON GND TOP_VPH

add_pst_state OFF -pst PST -state TOP_VP POWER_OFF GND TOP_VPH

At this point the UPF file is ready to be used and it is possible to proceed to synthesis.

6.4 Synthesis using Design Compiler

Considering the UPF specification, synthesis turns the RTL description into a gate-level netlist, as

described in Sections 4.2.1 and 5.2.

In this implementation this process is done in a very straight forward way. The analogue and

digital block are already existing physical designs, thus they don’t need to be synthesized. In the

other hand, as explained in Section 6.1, this implementation doesn’t require the use of retention

registers or isolation cells. Thus, no cells are added as a result of the UPF specification. This

way, the already exiting blocks are black boxes and the only RTL code that will be translated

to gates is the one regarding the control of the SQUELCH related signals (see Chapter 3). The

resulting gate-level netlist instantiates both black boxes and four extra cells: two multiplexers and

two inverters, representing the SQUELCH control. For the rest of this document these four cells

will be addressed as multiplexer cells.

6.5 Formal Verification using Formality

Formality performs functional equivalence checking between the different netlists generated through-

out the flow. Formality recognizes the low power intent specified using UPF and the data supported

data comparison are as follows [13]:

• RTL + UPF versus gate-level netlist + Design Compiler updated UPF

• RTL +UPF versus post-layout PG netlist

• Gate-level netlist + Design Compiler updated UPF

The UPF file is read using the load_upf command. Formality recognizes the UPF informa-

tion and identifies the supply nets and the power states defined in the PST. When powered off, a

power gated block is considered as don’t care for the functional equivalence checking. By default,

Formality only considers the ON states. Thus, in order to perform a complete verification, it must

be instructed to consider all states defined in the PST. This is achieved by setting to FALSE the

verification_force_upf_supplies_on variable, after the load_upf command.

For this implementation, all verification were successfully completed without any issue.

6.6 Floorplan Modification using Custom Designer 43

Figure 6.3: Original floorplan.

6.6 Floorplan Modification using Custom Designer

Figure 6.3 is a snapshot of the Custom Designer tool interface showing the floorplan of the existing

PHYGNRX.

It is possible to see that the boundary is adjusted to rxlanedig and PHYGNRXAFE. The first

modification was to add extra space for placing the power switches, the four SQUELCH control

cells and to synthesise the Power Network. Thus, the floorplan shape was enlarged by 20 µm

around rxlanedig, as shown in Figure 6.4.

The second modification was to add the necessary IO ports according with the new design. The

IO ports related with PHYGNRXAFE were not placed in the boundary, but in the exact position of

the respective hard IP pin. Figure 6.5 shows the added pins.

When all modifications are done, Custom Designer outputs a set of Tcl scripts containing the

floorplan information, which is later read by IC Compiler.

6.7 Library Data Preparation

To perform its task IC Compiler reads in the gate-level netlist produced by Design Compiler and

libraries that contain information about the cells instantiated in the netlist. The multiplexer cells

and the power switches (to be created) are present in the standard cells library but the black boxes

libraries need to be created.

44 Power Gating Implementation

Figure 6.4: Modified floorplan.

Figure 6.5: Added pins on the floorplan boundary .

6.7 Library Data Preparation 45

6.7.1 Libraries

The physical information is contained in the Milkyway database. The design unit of a Milkyway

database is a cell. A cell can be anything from a leaf standard cell to a whole chip. Each cell is

represented by different views. The main types of views presented in a Milkyway database are:

• CELL view: The full layout of a physical cell. Contains placement, routing, pin and netlist

information;

• FRAM view: An abstract representation of a cell. It is used for placement and routing, thus,

only having information about the shape, pins, metal blockage and allowed areas for vias

connections;

• CONN view: A representation of the supply network. It is used by PrimeRail for rail

analysis.

Besides physical data, ICC also needs logical information. A logical library contains func-

tional information about the cells, like logic function, timing and power characteristics that Syn-

opsys tools use to perform optimizations and verifications. This information is contained in a set

of binary Synopsys database (.db) files. For each .db file there is an equivalent ASCII-format Ly-

berty (.lib) file. Each cell is characterized for different corners, corresponding to different PVT

(processes, voltages and temperatures) resulting in a .db and .lib file for each corner. These log-

ical libraries have to be compliant with the Liberty PG Pins Syntax. This means that each cell

characterization needs to contain supply pins related information. It will allow synthesis, physical

implementation and verification tools to properly connect the cells in the layout and to analyse

designs with different supply domains. An example of a power switch cell definition, compliant

with the Liberty PG Pin Syntax, where it is possible to see the PG pins definition is shown below.

cell ("SW4")

...

pg_pin (VDDC)

direction : output;

pg_function : "VDDP";

pg_type : "internal_power";

switch_function : "!EN";

voltage_name : "VDDC";

pg_pin (VDDP)

direction : input;

pg_type : "primary_power";

related_bias_pin : VBP;

46 Power Gating Implementation

voltage_name : "VDDP";

pg_pin (VSS)

direction : input;

pg_type : "primary_ground";

related_bias_pin : VBN;

voltage_name : "VSS";

....

6.7.2 Libraries creation

The rxlanedig Milkyway and its corresponding CELL view already existed. However a FRAM

view needs to be created for placement and routing in ICC. This FRAM view can be easily cre-

ated from the CELL, using the ICC command create_macro_fram. This command will execute a

process called blockage, pin and via (BVP) extraction.

In the case of the PHYGNRXAFE the Milkyway library has to be created from a physical data

source. This information can be provided in two ways:

• GDSII stream format, the layout data exchange format for the industry.

• LEF, data exchange format for physical libraries (Library Exchange Format).

To convert this information into a Milkyway database, the layout data needs to be read into the

Milkyway tool [14]. In addition, the information that is not provided in the LEF or GDSII file,

such as the technology file needs to be given, as illustrated in Figure 6.6.

A LEF file includes more information than just the physical layout of a GDSII file. It contains

information about the layers, vias, placement site type, macro definitions and pin types. This way,

in this implementation a LEF file was used. At this point, it is important to know that, later, in

the ICC flow, when assigning a macro cell to a power domain this cell has to have the "Hard

macro" attribute. In order to create a FRAM view with that attribute, it is mandatory that the LEF

file explicitly indicates that the corresponding cell is an hard macro using the keywords SOURCE

USER and CLASS BLOCK. Otherwise, power domains and voltage areas will not be created.

6.8 Technology File and Metal Layers

In the previous and 4.2.3 sections it was mentioned that a Milkyway library needs to be created

with an associated technology file. But what exactly is a technology file and what does it defines?

The technology file is an ASCII-format text file that informs Synopsys tools about the physical

6.9 Adding supply (PG) pins around rxlanedig 47

Figure 6.6: Library Preparation flow

characteristics of the technology process to be used. It defines which metal layers are available

and each layer physical and electrical rules.

Each metal layer has an associated direction for power and signal routing, which is presented

in Table 6.1. This directions aren’t mandatory but, when routing IC Compiler will use them,

avoiding shorts.

Table 6.1: Metal layers routing directions

Metal layer Direction
Metal 1 Vertical
Metal 2 Horizontal
Metal 3 Vertical
Metal 4 Horizontal
Metal 5 Vertical
Metal 6 Horizontal
Metal 7 Vertical
Metal 8 Horizontal

6.9 Adding supply (PG) pins around rxlanedig

As shown by Figure 6.3, in the initial floorplan rxlanedig was placed on top of the PHYGNRXAFE,

thus only having PG pins at its bottom. In this implementation it will be powered by a ring of power

switches. The more efficient way to distribute power and ground is having PG pins placed around

the entire rxlanedig block, allowing it to receive the supplies from all sides of the ring.

This way, using IC Compiler pins in layers 6 and 8 were placed on both sides to allow hori-

zontal connections, while, pins in layers 7 were added at the top for vertical connections. One pin

was added at the beginning and end of each existing power strap. Thereby, 120 new PG pins were

48 Power Gating Implementation

Figure 6.7: Added PG pins

added. Figure 6.7 shows the upper left corner of the new rxlanedig cell with some of the newly

created pins.

6.10 Place&Route using IC Compiler

Having prepared all design libraries, the physical implementation itself can be performed. Consid-

ering the strategy presented in Section 6.1 and the UPF power intent specification, IC Compiler

will transform the gate level netlist into a physical design. Furthermore, in this design design stage

the power switches will be inserted and the power network synthesized.

According with ICC user guide [15] and some outcomes from the implementation itself,

Figure 6.8 illustrates this tool specific flow for a power gating implementation, which is described

below.

1. Read the design

The first step is to prepare the IC Compiler environment by reading all the logic and physical

libraries and setting some useful variables. For instance the UPF and technology files ab-

solute paths can be loaded into variables with the set Tcl command and be referenced

latter in the flow. Furthermore, by default, ICC creates an implicit supply set when a

power domain is created (see Section 5.1.1). To disable this feature the ICC variable

upf_create_implicit_supply_sets needs to be set to false. Then the Milky-

way library for this implementation is created and associated to the technology file and to

6.10 Place&Route using IC Compiler 49

Figure 6.8: ICC Flow for a Power Gating Implementation. Main stages highlighted in purple

the rxlanedig and PHYGNRXAFE physical libraries using the create_mw_lib command.

The last step is to read in the gate-level netlist.

2. Load Floorplan

The Tcl scripts outputted by Custom Designer are read by ICC, creating the design floorplan.

At this stage the coordinates for the macro cells are already defined and also read, which,

places them in the correct position.

3. Load UPF

The load_upf command executes the UPF commands in the specified file loading the

power intent into ICC.

4. Set net voltages

In order to completely specify the operating conditions the set_voltage command is

used to specify the operating voltage of every top-level supply nets. At this stage the

check_mv_design should be used to check the correctness of the power characteristics

specification.

50 Power Gating Implementation

5. Logically connect power and ground

In this step every power and ground pin is connected to the respective supply net. This

connection is achieved in an automatic way, without the need to explicitly specify which

power pins should be connected to which supply net. The derive_pg_connection

-create_nets -create_ports interprets the UPF specification and connects the sup-

ply pins of every cell to its power domain primary-power or primary-ground net. The

-create_nets and -create_ports command creates any non-existent power net and

port. Remember that the supply nets are not specified in the gate-level netlist, so before

using this command they do not exist, being only present in the UPF specification. The

-reconnect option updates the supply connections, connecting all unconnected supply

pins. This command issues a report about the created connections:

Power/Ground Connection Summary:

P/G net name P/G pin count (previous/current)

--

Power net "VP": 0/6820

Power net "VPH": 1/1

Power net "VPS_DIG": 0/519

Unconnected power pins: 7339/0

Unconnected back-bias power pins: 5332/5332

Ground net "GD": 0/6821

Unconnected ground pins: 6821/0

Unconnected back-bias ground pins:

5332/5332

--

Information: connections of 14160 power/ground pin(s) are

created or changed.

Note that the derive_pg_connection does not connect back-bias pins. These connec-

tions have to be, latter, explicitly made.

6. Create voltage areas

This very important step has the objective of creating a voltage area for each power domain.

This will turn the abstract construct of a power domain into a physical region in the layout.

For this implementation 3 voltage areas are considered, once 3 power domains were created:

PD_DIG, PD_AFE and PD_TOP. The first two voltage areas were created in the following

way:

6.10 Place&Route using IC Compiler 51

create_voltage_area -power_domain PD_DIG

-coordinates 17.710 475.260 202.315 655.745

create_voltage_area -power_domain PD_AFE

-coordinates 20.080 1.290 200.125 459.375

The -power_domain option specifies for which power domain the voltage area is being

created. This way, all elements belonging to the power domain are also associated with the

voltage area. The -coordinates allows to specify a bonding box for the voltage area.

7. Place Power Switches

In this stage, the power switch strategy specified in the UPF will be mapped into a ring

of several power switching cells, which will be placed around the specified voltage area.

The first step is to map the UPF switch into a power switching cell from the standard cells

library. Usually a library comes with a few switches with different characteristics. It is up

to the designer to choose one. The metrics for this choice are:

• The cell logic characteristics;

• The cell ON state resistance and the induced IR drop;

• The cell leakage;

• The area overhead.

The designer should choose a power switching cell that fulfils the design needs. The library

available for this implementation features eight different power switching cells. Beginning

from the functional characteristics a cell with an enable/control signal buffer is needed (see

the next stage for the justification). From the initial eight cells available in the library, only

four fulfils this requirement. Their characteristics, considering the FC (fast, 0.99V , 125 ◦C)

are resumed in Table 6.2.

From Table 6.2, the leakage current of all cells is similar. Cells SW1 and SW3 have,

slightly, less resistance, which could lead to less IR drop. However SW1 and SW3 are

bigger. These cells are what is considered a double-height cell. It means that they occupy

two rows, instead of one occupied by SW2 and SW4. Thus, using SW2 or SW4 allows

Table 6.2: Power switching cells characteristics

Cell ON Resistance (Ω) Leakage Current (nA) Height (µm) Width (µm)
SW1 218.957 -58.07 1.9 1.485
SW2 332.293 -63.17 0.95 2.295
SW3 236.133 -58.35 1.9 1.89
SW4 298.428 -60.25 0.95 3.105

52 Power Gating Implementation

to place more switches in the same physical area, thus less IR drop. Comparing SW2 and

SW4, it is possible to verify that SW4 has less resistance, making it the switch to be used in

this implementation.

In order to map the UPF switch into the SW4 cell, the command map_power_switch is

used in the following way:

map_power_switch PD_DIG_SW -domain TOP -lib_cells SW4

The next question regarding the power switches placement is: how many to insert? It is

known that more switches means less IR drop but higher leakage and area. For an array

approach, the ICC explore_power_switch command presents a set of possible combi-

nations showing their impact. However, these feature does not work for a ring, so another

approach is needed. Giving a target IR drop for the power switching ring, Equation 6.1

gives us a way to estimate the number of switches [16].

Numberswitches =
RON × Idomain

Droptarget
(6.1)

where,

• RON is the switches linear resistance, when they are in ON mode,

• Idomain is the power gated domain current and

• Droptarget is the limit IR drop for the switches.

For the FC, which is the worst case scenario for IR drop, considering a target drop (peak)

of 3% of the supply voltage and the peak consumption when in HS-mode (the highest), the

number of power switches to insert would be:

Numberswitches =
298.418×67mA

29.7mV
= 673 (6.2)

However there is the area limitation. There is a certain area in which is possible to place

the switches that is limited by the rxlanedig and the floorplan itself. In this implementation,

673 switches exceeds the available area. With a 100% density of switches, only 518 cells

fits in the ring area, providing an estimate IR drop of 38,6 mV.

IR drop values are only valid when the design is analysed by PrimeRail. In most cases, the

optimal trade off between leakage, area and voltage drop is not achieved at the first try, so

after rail analyses, the results have to be improved. An approach like this one is not possible

if the total ring area is used in the first iteration. It is obvious that placing less power switches

will result in higher drop. Nevertheless, it is interesting, in an academic point of view, to

try different combinations and take conclusions. This way, an intermediate start point was

considered: to fill in only 50% of the switches. The IR drop across the switches will be

6.10 Place&Route using IC Compiler 53

approximately 50% larger and the leakage impact will be approximately 50% smaller than

they could be if all the available space was used. The analysis results are shown later in

Chapter 7.

To create a power switching ring, the following command is used:

create_power_switch_ring -switch_lib_cell PD_DIG_SW

-density 0.5

-snap_to_row_and_tile

-area_object PD_DIG

-prefix RING_DIG

The shown command has the following important options:

• -density specifies the percentage of the available area that is filled with power

switches;

• -switch_lib_cell specifies the power switch strategy from the UPF file;

• -snap_to_row_and_tile places the switches in legal positions;

• -area_object specifies the voltage area to control;

• -prefix, as the name says, allows to specify a prefix for each ring cell name. This

provides an easy way to address the ring in later steps.

In Figure 6.9, it is possible to see the 260 inserted switches around the voltage area PD_DIG.

8. Logically reconnect power and ground

The power switches supply pins are logically connected with derive_pg_connection

-reconnect

9. Connect power switches control signals

After the power switches cells have been inserted, the control/enable pin of each cell must be

connected. The way they are connected has effects in the generated in-rush current during

the power up (wake-up time) time. The best way to mitigate in-rush current is to connect

the power switches cells enable pins in a daisy-chain fashion [17], using the same concept

explained in Section 2.4.2. In order to make that type of connection, power switches with

an internal enable buffer are used. Thereby, this switches have an input enable pin and its

buffered version that is connected to the next switch and so one. The last buffered signal

can be used as an acknowledge signal. In this implementation it is connected to the port

RX_SQ_ACK_SOC. This will allow the power switches to wake-up in a sequential way,

instead of all at once. There are, however, a trade-off between the generated in-rush current

and the wake-up time.

In this implementation, to connect the enable pins in a daisy-chain fashion the following

ICC command was used:

54 Power Gating Implementation

Figure 6.9: Ring with 260 power switches

connect_power_switch -source RX_SQ_CTR_SOC

-port_name PG_EN

-mode daisy

-auto

-object_list [get_cells -all RING_DIG*]

The -mode daisy option will daisy-chain the power switches enables.

In figure 6.10, is possible to see the daisy-chain logic connection (highlighted in yellow).

The control/enable signal source is the RX_SQ_CTR_SOC input port, while its last buffered

version is connected to the RX_SQ_ACK_SOC output port.

10. Create placement

Having the hard macros and power switches placed, the remaining standard cells can be

placed like in the standard design flow.

11. Power Network Synthesis (PNS)

This is one of the most important stages in a power gating implementation. The power

network will have an huge impact in the total IR drop, which is already affected by the use

of power switches. This way, it is necessary to have a strong and balanced power distribution

network and deliver power the best way possible to the power switches.

6.10 Place&Route using IC Compiler 55

Figure 6.10: Power switches connected in a daisy-chain fashion

For a better understanding of the power network synthesis it should be, first, mentioned

that the standard cells use Metal 2 for their supply rails and Metal 1 for its internal signal

connections. In a ring implementation there are two power regions: The always-on region

and the power-switched region (VP and VPS_DIG nets, respectively.) From the always-

on region perspective, a normal power mesh can be used with both horizontal and vertical

power straps created in the upper metals, which are thicker and less resistive. From the

switched size a strong ring of power straps, created in all metals except the one used for the

standard cells rail, is used. When creating the always-on power mesh and the switched ring,

some aspects are considered (in general and also in this specific implementation):

• The macro IP (rxlanedig) power mesh strategy should be respected, to make the con-

nections possible and create continuity in the entire power network. This means re-

specting the used metal and directions;

• The maximum number of upper metal should be used to decrease resistivity.

• To achieve a high number of power straps, the minimum metal pitch specified in the

technology file should be used.

• The metal directions specified in the technology file should be respected in order not

to create routing problems. The exception to this guideline is the power ring itself.

If possible (not compromising routing) metals can be used in a different directions to

provide strong power straps connections and continuity. For instance, if the vertical

56 Power Gating Implementation

Figure 6.11: Metal 7 power straps placed on top of the power switches

straps are created in metals 3, 5, and 7, metal 4 can be used to fortify the metals 3 and

5 connection.

• The interface VP-VPS_DIG provided by the power switching cells is very important

to maintain a reduced IR drop. Instead of connecting this cells to the power straps

using metal 2 rails (like it happens for ordinary standard cells), vias should be used

to connect the switching cells power pins directly to the power straps. This implies

placing both permanent and switched power straps on top of the power switches (half

cell for each strap, respecting the metal pitch rule).

In Figure 6.11, it is possible to see VP and VPS_DIG metal 7 straps placed on top of the

power switches. In this figure, vias are not shown, however they exit and connect the power

straps to the power rails.

The power network strength is verified in a latter stage, using PrimeRail, in an iterative

process. If the results are not satisfactory, one must go back and improve it.

12. Routing, Chip Finishing and Write netlist/GDSII

The final steps are performed in the same way as in the standard design flow. Routing is

done in the lower metals, which are still available after the PNS. In the chip finishing step,

tap cells are added for polarization and DCAPS or filler for nwell continuity. The use of

DCAPS is important as it allows to decrease IR drop peaks. Finally, the PG-connected

netlist is exported, as well as the GDSII stream.

6.11 STA with PrimeTime 57

Figure 6.12: Final layout in ICC

The final layout has viewed in IC Compiler is shown in Figure 6.12.

6.11 STA with PrimeTime

The low power STA analysis has minor changes. Like in the normal flow PrimeTime needs the

logical libraries, the design constraints and the extracted parasitics. In what concerns to the low

powr flow, the UPF power specification is read into PrimeTime. Then, the operating voltages of

each supply net is specifies using the set_voltage command. In the presence of power switches

both input and output net voltages needs to be defined, once PrimeTime doesn’t propagate voltage

values through the power switches [13].

load_upf PHYGNRX.upf

set_voltage 0.99 -object_list VP

set_voltage 0.99 -object_list VPS_DIG

set_voltage 0 -object_list GD

Having specified the power intent and the supply nets voltages, PrimeTime builds a virtual

model of the power network and propagates the voltage from the supply nets to every cell supply

58 Power Gating Implementation

pin. Using this information PrimeTime performs timing analysis and checks for any violation to

the defined constraints. Aditionally, it is possible to report any timing path.

This analysis is dependent on the operating corner. For an accurate analysis, the extreme and

typical corners should be considered. The extreme corners are those that have a bigger impact on

timing. The slow corner (SC) is the one for which the cells have a bigger delay. The fast corner

(FC) represents the lowest delay. The typical corner (typ) represents the conditions for which the

circuit will most likely operate.

PrimeTime offers an additional functionality, which allows to take into account the voltage

drop in every cell. This way, the delay induced by lower voltage values will be considered. To use

this voltage scaling feature the following additionally inputs are needed [13]:

• Voltage map outputted by PrimeRail, with ever cell voltage annotated;

• A set of CCS logic libraries characterized for different voltage values.

To specify the voltage in each cell, the set_voltage command is used taking into account

the IR drop. To infer each cell delay for a specific voltage, PrimeRail interpolates the data from the

given libraries. For instance, to invoke voltage scaling STA for the SC, the following command is

issued, after reading the design:

define_scaling_lib_group lib_0.72V .db lib_0.81V.db lib_0.9V.db

The STA timing analysis will output a set of SDF files (Standard Delay Format) containing the

annotated net delays, to be later used in simulation.

In this implementation, as the rxlanedig hard macro is used the STA is already done for that

block. However it is important to check if the added multiplexer cells are not inducing new and

big delays slowing down the interface between rxlanedig and PHYGNRXAFE. The timing paths

related with these new cells were constrained to have a maximum delay of 100 (ps), which is

considered to be acceptable. The report_timing command checks for any violation in all

constrained timing paths and reports them. In this case no violations are reported. It is also

possible to check the specific timing paths of the rx_sq_en and rx_sq_on signals, reporting the

delay induced by the multiplexer cells. The report listed above shows an induced delay of 90 (ps)

for therx_sq_en path, considering the slow corner, which is the worst case scenario regarding

timing. The rx_sq_on path has equivalent values.

Point Fanout Cap Trans Incr Path

I01mrxlanedig/rx_sq_en (mrxlanedig) 0.01 0.00 0.00 r

rx_sq_en_dig (net)

I01mrxmuxsxU3/X (SEP_AO22_DG_4) 0.03 0.09 & 0.09 r

rx_sq_en (net) 1 0.01

I01MPHYGNRXAFETYPE1/rx_sq_en (MPHYGNRXAFETYPE1)

6.12 Rail Analysis with Prime Rail and ICC 59

0.02 0.00 & 0.09 r

data arrival time 0.09

max_delay 0.10 0.10

output external delay 0.00 0.10

data required time 0.10

data arrival time -0.09

slack (MET) 0.01

Table 6.3 shows the multiplexer cells delay for the three corners:

Table 6.3: Multiplexer delays for the three corners

Corner Delay (ps)
FC 30

TYPC 2 50
SC 90

6.12 Rail Analysis with Prime Rail and ICC

Synopsys toolset offers a feature called In Design Rail Analysis. It allows preparing the PrimeRail

environment and invoke it within IC Compiler. After the analysis, the results are displayed back

in ICC GUI in form of a voltage drop map and text reports, which makes debug easier and faster.

Figure 6.13 illustrates the In Design Rail Analysis flow.

PrimeRail supports the use of power switching cells. It has two ways of performing rail anal-

ysis considering that cells. One is power-on mode analysis, which is a static analysis considering

all switches to be on. The other one is in-rush analysis, which is a a dynamic, analysis. In fact,

the vector-based dynamic analysis allows to verify for peak and average voltage drops as well as

the in-rush current generated for a specific wake-up sequence. In order to perform such dynamic

analysis the following inputs should be provided when preparing the analysis environment [18]:

• Cell libraries according to the Lyberty PG Pin Syntax;

• Power switches CCS models;

• CONN view for any analogue hard macros;

• Switching activity VCD file where all nets are annotated (including the power switches

control nets);

• Parasitic information (SBPF) file;

60 Power Gating Implementation

Figure 6.13: In Design Rail Analysis Flow

• UPF file for information regarding the existent power domains and net voltages;

These information is set using the ICC command set_rail_options. To perform a com-

plete analysis, which can take some time (two days for this implementation), PrimeRail is invoked

using the following ICC command:

analyze_rail -inrush VP VPS_DIG

Note the option -inrush, which indicates both permanent and virtual power nets. PrimeRail

performs the following steps:

1. Power switches cells modelling

In this stage PrimeRail infers the power switches characteristics based on the CCS models.

The infered characteristic are: main and virtual power pins; control signal; linear resistance,

leakage current and max in-rush current supported.

2. Power analysis

PrimeRail invokes PrimeTimePX for time-averaged and peak power analyses, which outputs

current waveforms to be later used in rail analysis. In this power analysis all power switches

are considered to be on.

3. Power and Ground Network extraction

PrimeRail will extract the resistance and parasitics information of all supply nets.

6.13 Power Analysis with PrimeTime PX 61

4. Rail Analysis

In this stage prime rail performs IR drop, rush current and wake-up time analyses.

The outputed results are:

• Average and peak IR drop for all supply nets;

• Controlled power domain and associated virtual power net;

• Total leakage current from power switches cells;

• Leakage current of the control power domain in the on state;

• Number of power switches and cells belonging to the controlled power domain;

• Peak current (In-rush) and associated time;

• Wake-up time.

It is important to mention that this analysis should be also made for the extreme and typical

corners. This implies that the used libraries and operating conditions are different. It also means

using a different UPF file for each corner.

Since these analysis outputs are directly associated with the dissertation results, they are shown

later in Chapter 7.

6.13 Power Analysis with PrimeTime PX

PrimeTime PX allows to do gate-level power analysis. As in a STA, the power analyses is not much

different than the one in the standard design flow. According with [19], the difference resides in

the recognition of the power switches and its on/of states. To perform a dynamic analysis it reads:

• Logic libraries with power tables;

• The post-layout netlist;

• Switching activity information provided by a VCD file;

• Parasitics information provided by a SPEF file;

• The UPF file.

PrimeTime recognizes the power switches on and off states through the UPF -on_state

boolean function specified upon the switch creation. This way, a switch is considered to be off

when the boolean function is FALSE. In turn, the logic value of the control signal is read from the

VCD for every time instant.

62 Power Gating Implementation

As it happens for a STA, PrimeTime PX does not propagate voltage values through the power

switches. So, after reading the design and UPF, the set_voltage command should be used for

all supplies.

PrimeTime PX generates detailed power reports. It shows the total power consumption, as well

as the individual contribution of switching and leakage power. Once again, since these analyses

outputs are directly associated with the dissertation results, they are shown later in Chapter 7.

6.14 Integration and LVS/DRC checking

The final steps are the sign-off LVS and DRC checking. As already mentioned DRC verifies if all

foundry rules are respected. Otherwise the design will not be accepted for production. LVS is the

layout-versus schematic verification. In order to perform these verifications, a final GDSII layout

has to exist. This way, Custom Designer was used to integrate the GDSII exported by IC Compiler

and the layout of the standard cells. The final layout as viewed in Custom Designer is shown in

Figure 6.14. It is possible to see the power straps continuity from the created power network to

the already existing mesh. In this implementation Hercules tool was run and used to check LVS

and DRC.

6.14 Integration and LVS/DRC checking 63

Figure 6.14: Final layout integrated using Custom Designer

64 Power Gating Implementation

Chapter 7

Results

7.1 IR Drop Analysis

7.1.1 Comparative Analysis

As mentioned in Section 4.2.3 the IR-drop is very dependent on the number of power switches

and in the characteristics of the power network. It was also said that, in order to analyse results

for two different cases and take conclusions, a start point of 260 power switches is used. This

comparative analyses, were made considering the Fast Corner (FC) (Fast, 0.99V and 125 ◦C, as it

is the most pessimist corner, where the IR-drop will be higher.

The first iteration, using 260 power switching cells outputted the IR-drop results showed in

Table 7.1. Using In Rail Analysis feature, peak IR drop maps can be visualized in the ICC GUI.

From the analysis of Figure 7.1, it is possible to see that 89.186 mV peak drop of net VP is

located in both sides of the power mesh. This means that some problem exits in that region and

the power mesh should be checked and improved. Figure 7.2 is a zoom on a switch interface,

where it is possible to see the drop on both power nets. From its analysis, the drop imposed by the

power switches in that particular strap (but that can be extrapolated to the whole power switching

interface) is

IRDropswitches = IRDropV PS_DIG − IRDropV P (7.1)

IRDropswitches = 151.224−86.618 = 64.606(mV) (7.2)

Looking at these results with a critical sense, it is verified that the IR-drop across the switching

interface is approximately what was expected. In the other hand the total drop across the power

Table 7.1: IR-drop values with 260 power switching cells (FC)

Supply Net Max Average IR-drop(mV) Max Peak IR-drop (mV)
VP 4.351 98.186

VPS_DIG 6.676 157.341

65

66 Results

Figure 7.1: IR-drop over net VP considering 260 power switching cells

network is high. Firstly, the use 518 switches to reduce the interface and, consequently, the total

drop is needed. Remember that it means filling in the empty spaces on the power switching ring,

getting, approximately, the double number of switching cells and half the drop. The trade-of is

higher leakage and area. It’s time to look at the other PrimeRail outputs:

Controlled voltage domain 0: VPS_DIG

260 power management cell channels are used to control 34840 std

cells.

Total OFF leakage current from PM cells is 15.665 (uA).

Total ON leakage current from std cells is 5.698e3 (uA).

From the previous report it is possible to have an idea of the power savings (that will be only

confirmed with PrimeTime PX). It is possible to understand that the leakage current induced by

the power switching cells would be duplicated to approximately 30 µA. This value is completely

affordable if we consider a leakage reduction of about 5.67 mA and the IR-drop reduction that this

will provide. Thus, using ICC, the empty spaces in the ring were filled to a total number of 518

7.1 IR Drop Analysis 67

Figure 7.2: IR-drop imposed by the 260 power switching cells

power switching cells. Besides the insertion of more power switching cells, the power network

was checked and improved. Missing vias were added and, to improve IR-drop on both sides,

of the power mesh, some extra power straps were created. Also, the power connection between

PHYGNRXAFE and rxlanedig was improved with more power straps.

7.1.2 Final Results

Table 7.2 shows the improved results for the FC, also considering the voltage rise in the net GD.

Table 7.2: IR-drop and rise values with 518 power switching cells (FC)

Supply Net Max Average IR-drop (mV) Max Peak IR-drop (mV)
VP 1.489 43.116

VPS_DIG 2.534 70.996
GD 1.225 (rise) 39.653 (rise)

Effective 2,714 102.255

68 Results

Figure 7.3: IR-drop over net VP considering 518 power switching cells

These final results are much better. The average drop is quite acceptable and the peak value

has decreased 86.345 mV, due to the power mesh changes and the use of more power switches.

From the map showed in Figure 7.3, it is possible to validate that the IR-drop over net VP has

improved on the sides of the power mesh, due to the inserted power straps. Figure 7.4 shows that

the drop over VPS_DIG net has its worst value in the rxlanedig logic, as expected.

From Equation 7.1 and Figure 7.5 the drop across the power switching cells is

IRDropswitches = 64.4882−42.1595 = 22.3287(mV) (7.3)

As expected, IRDropswitches decreased in approximately 50%.

Having a final power mesh and final number of power switching cells, the analysis for the

TYPC (typical, 0.9, 25 ◦C) and SC (slow, 0.81 , -40 ◦C) were made. Net IR-drop values for these

corners are present in Tables 7.3 and 7.3, respectively.

Finnaly, Table 7.5 presents IR-drop across the power switching cell for all corners. Note the

biggest IR-drop across the power switches for the SC. This may seem an error because, for the

7.1 IR Drop Analysis 69

Figure 7.4: IR-drop over net VPS_DIG considering 518 power switching cells

FC and TYPC the circuit consumes more current. However, it can be explained considering the

higher resistance for which these cells are characterized for the SC (about 1kΩ, which represents

a 700Ω increase comparatively to the FC). Even if the average and peak currents are smaller, the

high resistance value can induce a higher drop, with more impact on the peaks.

It is worth to mention that a big effort was made with the objective of decreasing the IR-drop

as much as possible. In this section, two iterations are shown, the one corresponding to the first

(and worst) obtained values and the one corresponding to the final (and best) values. However, a

few more were made. A big number of iterations were made to understand how PrimeRail works

and its different possible analyses. A smaller number of PrimeRail runs were made to evaluate

changes in the power network. The results presented in the following sections are regarding the

final version of the power network and 518 power switching cells.

70 Results

Figure 7.5: IR-drop imposed by the 518 power switching cells

7.2 In-Rush Current and Wake-Up Time

In-rush and wake-up time analyses are outputed at the same time as IR-drop. Table 7.6 presents

these two results for the three corners.

As expected, the FC analysis represents the fastest wake-up time, while the SC has the slowest

power-on sequence. The typical values are the intermediate case. The comparison of the in-rush

current values are also as expected, since for a fast wake-up time, a bigger in-rush current is

needed.

Table 7.3: IR-drop and rise values with 518 power switching cells (TYP)

Supply Net Max Average IR-drop or rise (mV) Max Peak IR-drop (mV)
VP 63.736×10−3 18.612

VPS_DIG 88.865×10−3 39.213
GD 31.335×10−3 (rise) 27 (rise)

Effective 120.2×10−3 60.451

7.2 In-Rush Current and Wake-Up Time 71

Table 7.4: IR-drop and rise values with 518 power switching cells (SC)

Supply Net Max Average IR-drop (mV) Max Peak IR-drop (mV)
VP 36.219×10−3 8.09

[1ex] VPS_DIG 112.47×10−3 42.913
GD 17.882×10−3 (rise) 11 (rise)

Effective 130.352×10−3 48.519

Figure 7.6 shows the waveforms outputted by PrimeRail for the FC. It is possible to see the

generated peak current of 31.189 mA, in order to reactivate the circuit in 4.32 ns.

What needs to be evaluated is if these values don’t compromise the normal functionality of the

interface. In what concerns the wake-up time the Synopsys specifications indicate that it should

be in order of magnitude of nanoseconds, so that the interface can be quickly receiving data after a

power-on request. This way, the presented times are acceptable and were validated by Synopsys.

It also needs to be proven if the in-rush current doesn’t affect the circuits normal operation.

For that not to happen the generated peak current through the switches cannot be larger than the

current associated with the normal switching activity. PrimeRail outputted waveforms also allow

to verify this. In Figure 7.7 the first peak in both waveforms is the generated in-rush current. It

is possible to verify that it is, in fact, smaller than the sum of all currents related with the circuit

normal operation. These waveforms are also regarding the FC. For the other two corners, the same

situation happens, although with different values.

Finally, as mentioned in Section 4.2.3 the power switching cells enable pins were connected

in a daisy-chain fashion to reduce the in-rush current. In order to check what would happen if

the switches were all powered-on at the same time, a PrimeRail analysis was made considering

this scenario. The power on sequence revealed to be much faster, as expected, achieving a wake-

up time of only 441.681 (ps). But, to power the circuit in such a fast way, a in-rush current of

373.924 (mA) was generated, which would disturb the proper functionality of the interface. To

get this type of analysis done, the enable signals switching activity cannot be provided. Instead, a

VCD file can be used with the other nets switching activity annotation and, in the in-rush mode,

PrimeRail will a create a default file called .default_pm_event with the power-up sequence.

This default sequence wakes-up the power switches all at once. These results validate the need of

a daisy-chained power-on sequence.

Table 7.5: IR-drop across the power switching cells

Corner Max Average IR-drop (mV) Max Peak IR-drop (mV)
FC 0.98 22.3287

TYPC 13×10-3 17
SC 71.05×10−3 33,43

72 Results

Table 7.6: In-Rush Current and Wake-Up Time

Corner In-rush Current (mA) Wake-up time (ns)
FC 31.189 4.32

TYPC 13.939 8.202
SC 7.701 11.918

7.3 Area overhead

Table 7.7 presents area and cell number results for this implementation. An additional number

of 522 cells, corresponding to 518 power switching cells and 4 SQUELCH control related cells

was introduced. This increase in the number of cells has a reflection in the total cell area and gate

count. The biggest overhead concerns the floorplan area which has increased almost 30%. This

considerably high extra area is due to the use of a ring approach and the needed space for creating

the new power network. There is, also a considerable unused area on both sides of PHYGNRXAFE

for integration purposes. Each RX lane can be integrated with more lanes, which makes impossible

the use of irregular polygons when abutting. This is a very particular issue of this implementation.

7.4 Functionality and Performance Impact

One of the goals of this dissertation is to preserve the interface functionality. To verify this re-

quirement two types of simulations were done using Synopsys VCS tool, which are described in

the following sections.

7.4.1 Post-layout simulation

This simulation has the objective to validate the proper SQUELCH control and the data reception

activity. This way a testbench is used, which instantiates PHYGNRX, and one TX lane for data

exchange. It is also important to mention that the inputs for this type of simulation are the post-

layout netlist, the verilog description of the standard cells and the SDF delay information. Figure

7.8 shows the simulation waveforms.

Initially, RX_SQ_CTR_SOC has the logic value "0", while RXDP shows a reception of data.

Then, it is changed to "1" and the HIBERNATE mode is activated, at the same time, that RX_SQ_ON_SOC

is asserted to activate the SQUELCH functionality and the monitoring of RX_SQ_OUT signal. Dur-

ing this frame the RXDP line is at DIF-Z, as explained in Chapter 3. When, the SQUELCH block

Table 7.7: Area and cell number results

Characteristic Original Power gated Overhead (%)
Number of cells 21019 21541 2.48

Cell area (excluding AFE) 22297.032258 µm2 23828.08073 µm2 6.87
Gate count (total_cell_area

area_nand1) 43464 46448 6.42
Total floorplan area (including AFE) 114300 µm2 148500 µm2 29.9

7.4 Functionality and Performance Impact 73

Figure 7.6: In-Rush Current and Wake-Up Time for a FC analysis

detects an HIBERNATE exit condition it changes the RX_SQ_OUT signal to "1", informing the

SOC that the power should be restored. This way, RX_SQ_CTR_SOC is changed back to "0",

restoring power and the RX_RESET signal is asserted, which allows rxlanedig to start the hiber-

nate exit procedure. Finally, a new burst of data is verified, proving that the interface functionality

is kept unchanged. This simulation was validated by Synopsys design team.

7.4.2 STA with IR-drop induced delay

A voltage scaling Static Timing Analysis was performed taking into account the static IR-drop, as

explained in Section 6.11 . It was performed a setup time analyses for the extreme FC and SC

corners. For each one the, the biggest static IR-drop plus a pessimist factor was applied to every

cell. This way the considered IR-drops are:

• FC: 6 mV;

• SC: 1 mV

74 Results

Figure 7.7: In-Rush Current versus the sum of all current sources

In what concerns to results, for both corners the constraints are still met. Table 7.8 summarizes

this STA results for a timing path, in order to make a comparative analysis. The STA reports are

shown in Appendixes B and C. In what concerns an hold time analysis, the timing slacks are even

better, since the circuit is slower.

Considering this analysis, although a small impact on performance is verified, the timing con-

straints are still met, which means that the functionality is not compromised.

Figure 7.8: Post-layout simulation waveforms

7.5 Power Consumption 75

Table 7.8: IR-drop induced delay for a timing path (setup analysis)

Corner Original Timing Slack (ps) Actual Timing Slack (ps) Induced Delay (ps)
FC 977.5 966.3 11.2
SC 48.7 33.82 14.88

7.4.3 Co-simulation

A co-simulation is a mixed-signal simulation which takes as inputs the following data:

• Verilog netlist and parasitics information for the digital simulation, which is done by Syn-

opsys VCS.

• CDL spice netlist for analogue simulation, which is done by Synopsys XA;

The co-simulation is started by VCS, which, in turn, invokes XA. This type of simulation

objective is to take power aspects into account and check if the system, in its whole, is working

and properly powered. Two co-simulations with different objectives were made and are depicted

in the following sub-sections.

7.4.3.1 Power gating simulation

This simulation has the objective of checking the proper power gating functionality, when the

RX_SQ_CTR_SOC is asserted. Figure 7.9 shows the VPS_DIG net discharging and charging con-

troled by RX_SQ_CTR_SOC. It is also represented the RX_SQ_ACK_SOC signal. This simulation,

done for the TYPC validates the proper power gating functionality.

Additionally, Figure 7.10 is a zoom on the VPS_DIG charging time, showing that the wake-up

time matches the one verified by PrimeRail in Section 7.2.

7.4.3.2 Peak simulation

This is a more precise simulation to verify if the peak currents and voltage drops verified in the

VPS_DIG net wont affect the data sampling by the flip-flops. The current and drop peaks are

associated with the switching activity and the clock transitions, making the flip-flops the most

critical cells. The waveform, considering the extreme corners (FC and SC) are shown in Figures

7.11 and 7.12. It is verified that, with these peak current and voltage drop values the flip-flops are

still capable of sampling data, thus validating the STA described in Section 7.4.2.

7.5 Power Consumption

This section presents the power consumption of the final power gated interface. First, the leak-

age savings for the Hibernate mode are shown. Then, the impact in HS-mode and LS-mode is

analysed.

76 Results

Figure 7.9: Co-simulation for power gating validation

From Table 7.9, it is possible to understand that high leakage savings are achieved for Hiber-

nate mode, which confirms Power Gating as a very effective low power technique. As expected the

FC presents the highest savings, since leakage grows with temperature and speed. Having anal-

ysed the leakage savings, it is interesting to see where does the remaining leakage comes from.

Table 7.10 shows the leakage consumption by design element. It is possible to verify that the a

big part still comes from rxlanedig which indicates that the power switches Io f f current is also

inducing leakage power consumption by rxlanedig, thus it is not possible to completely shut down

that power domain.

The benefits of power gating are evident when the Hibernate mode is considered. However,

in HS-mode and LS-mode, the extra power switching cells and multiplexer cells induce an extra

power consumption, in both dynamic and leakage power. This negative impact, shown in Tables

7.11 and 7.12 is small and acceptable when such higher power reduction is obtained for Hibernate

mode by power gating the design. It is certain, though, that the ratio between what is gained and

Table 7.9: Leakage Power Consumption and savings

Corner
Leakage Power

Original Power Gated Savings (%)
FC 5.77 mW 27.9 µW 99.51
TYPC 31.4 µW 1.92 µW 93.89
SC 1.25 µW 288 nW 76.96

7.5 Power Consumption 77

Figure 7.10: Co-simulation and wake-up time

lost, depends a lot on the application of this interface. In a normal application, the most likely

situation is having long periods of hibernating, intercalated with small periods of bursty activity,

which makes the power reduction considerably high.

78 Results

Figure 7.11: Co-simulation for the FC

Table 7.10: Leakage Power by elements

Corner Element Leakage Power %

FC
rxlanedig 10.9 µW 39

Switches and multiplexers 17 µW 61
PHYGNRX (total) 27.9 µW 100

TYPC
rxlanedig 1.80 µW 93.75

Switches and multiplexers 0.12 µW 6.25
PHYGNRX (total) 1.92 µ W 100

SC
rxlanedig 272 nW 94.4

Switches and multiplexers 16 nW 5.6
PHYGNRX (total) 288 nW 100

7.5 Power Consumption 79

Figure 7.12: Co-simulation for the SC

Table 7.11: Power Impact in HS-mode

Corner Power consumption Original Power Gated Increase (%)
Dynamic power 5.64 mW 5.74 mW 1.77

FC Leakage power 5.88 mW 5.90 mW 0.34
Total power 11.52 mW 11.64 mW 1.04

Dynamic power 4.33 mW 4.39 mW 1.39
TYPC Leakage power 32 µW 32.3 µW 0.94

Total power 4.362 mW 4.4223 mW 1.38
Dynamic power 3.27 mW 3.36 mW 2.75

SC Leakage power 1.25 µW 1.31 µW 4.8
Total power 3.27125 mW 3.36131 mW 2.75

80 Results

Table 7.12: Power Impact in LS-mode

Corner Power consumption Original Power Gated Increase (%)
Dynamic power 188.9 µW 189.7 µW 0.42

FC Leakage power 5.8 mW 5.82 mW 0.34
Total power 5.9889 mW 6.01 mW 0.35

Dynamic power 144.7 µW 145.4 µW 0.48
TYPC Leakage power 31.6 µW 31.8 µW 0.63

Total power 176.3 µW 177.2 µW 0.51
Dynamic power 112.6 µW 113.3 µW 0.62

SC Leakage power 1.25 µW 1.31 µW 4.8
Total power 113.85 µW 114.61 µW 0.67

Chapter 8

Conclusion

8.1 Final Conclusions

In this dissertation the low power technique Power Gating is implemented on the RX lane of a

state-of-the-art Synopsys interface, designed with the 28nm advanced technology process. Work-

ing in the industry environment and using Synopsys toolset, the standard design flow was learned

and adapted to allow a power gating implementation, being covered from the beginning to the end.

Initially, a research was made to understand the basic concepts that are present in a power

gating implementation. The definitions of power and energy was explained in order to understand

their difference. The power gating principle of operation was depicted and it was understood that

a digital chip or parts of it may be powered down when in idle state to reduce power. The main

element of a power gating implementation is the power switch. It is powered by the permanent

supply net and delivers power the the controlled elements. These switches can be placed in a ring

or array style.

Then, after the introduction of the standard design flow, it was explained that in order to apply

power gating the UPF standard can be used throughout the entire flow to describe the power

intent of the chip, complementing the RTL description. Synopsys tools understand the constructs

defined in an UPF file and allow implementing, optimizing and analysing a chip with low power

characteristics. The main constructs of an UPF specification are: power domains; supply nets and

ports; power switches; power state tables and, eventually, retention registers and isolation cells.

The core of this dissertation is the implementation itself described in Chapter 6. For every

flow stage the main issues in a power gating implementation are explained, considering the use of

header switches and ring implementation without the use of retention registers and isolation cells.

First, the power intent needs to be described using the UPF syntax. Then, it is important to ensure

that any interfacing signal of the power gated block that is still provided to other blocks as the

SQUELCH control signal for the PHYGNRXAFE.

The design libraries creation and management can be a challenge. There is a great amount of

data that needs to be taken care of and logic libraries compliant with the Liberty PG Pin Syntax

needs to be available. It is also needed a library containing power switching cells.

81

82 Conclusion

The synthesis step is simple. It is responsible to translate the RTL description into a gate-level

netlis, but also to infer special cells from the UPF description. In this implementation those cells

are not present, so, the synthesis process is similar to the standard. Formal equivalence using

Formality accepts the UPF standard and considers all possible power states.

The bigger part of the implementation and, so, the biggest changes are in the Place&Route

stage using IC Compiler. Among these changes it is possible to distinguish:

• The creation of voltage areas taking into account the power domains specified in the UPF

file;

• The automatic logic connection of supply pins to the power domains primary power and

primary ground nets, which are, again, defined in the UPF file;

• The power switching ring insertion and respective enable/control pins connection in a daisy-

chain fashion in order to minimize the in-rush current. In what concerns to the number of

power switches to insert the best approach is to use an iterative process, with an appropriate

start point, and see what best fits the design needs.

• The power network creation for two distinct supply regions. A normal power mesh in upper

metals can be used in the always-on side, while a strong ring can power the controlled

domain. At this point was concluded that the interface represented by the power switches

is very important for IR drop purposes. In order to minimize it the power straps should be

aligned with its pins and connected directly through vias.

The sign of analyses tools flow also presents changes. Although minimal, these changes allow

to proper analyse the design. PrimeTime uses the UPF to build a virtual network and annotate each

standard cell pin voltage. PrimeRail revealed to be the most tricky tool but allows to perform very

complete and exhaustive analyses. It needs a CONN view of the analogue block to understand

its power network. Using the UPF power intent it understands what power domains exist, as

well as nets and pin voltages. With this information it performs, IR-drop, in-rush and wake up

time analyses, providing, as well, information about the power consumption and what are the

possible gains. In turn, PrimeTime PX is the sign-off power analysis Synopsys tool. It recognizes

the switches ON/OFF states from the UPF file and the annotated value of the respective nets,

generating detailed power reports.

The dissertation goals where achieved, meaning that:

• A power reduction up to 99.51% was achieved for the Hibernate mode;

• The interface functionality was not affected;

• An adapted design flow was applied and fully covered;

• The negative impact of a power gating implementation in aspects like performance, area,

extra leakage from the switches or ir-drop was understood. The biggest impact is on the

physical area (29.9%) due to the use of a ring approach.

8.2 Future Work 83

Finally, some words in the first person. I found this dissertation to be very challenging, but with

a great personal satisfaction level. I can, certainly, say that I almost started form ground zero and in

a short period of time I have learnt more than could ever imagine. It allowed me to consolidate and

improve my knowledge in what concerns VLSI design and low-power methodologies, working

with such complex tools like the Synopsys toolset is. The most challenging part turned out to be,

indeed, the best part too: The adaptation to an industrial environment.

8.2 Future Work

In this final section, it is presented a possible expansion of the work here described:

• Power gating individual blocks inside the rxlanedig IP.

Notwithstanding the good results, this implementation only allows to save power for one

operating mode. With the gained knowledge, it is possible, now, to identify and power gate

individual blocks in a lower hierarchy level, thus saving power in other operating modes.

Considering that implementation, an array approach could be explored, as well as the use

of special cells, such as, retention registers and isolation cells. Thereby, it would allow to

further explore Design Compiler capabilities for low power implementations. It will also

have less impact on area.

84 Conclusion

Appendix A

UPF specification for the FC

Below is the UPF specification for this implementation, considering the FC. Section 6.3 explains

its construction.

#Power Domains

create_power_domain TOP

create_power_domain PD_DIG -elements {rxlanedig

create_power_domain PD_AFE -elements PHYGNRXAFE

#Suplly Nets

create_supply_net VP -domain TOP

create_supply_net VP -domain PD_AFE -reuse

create_supply_net VPH -domain PD_AFE

create_supply_net -domain TOP -reuse VPH

create_supply_net VPS_DIG -domain PD_DIG

create_supply_net VPS_DIG -domain TOP -reuse

create_supply_net GD -domain TOP

create_supply_net GD -domain PD_DIG -reuse

create_supply_net GD -domain PD_AFE -reuse

#Supply Ports

create_supply_port VP

create_supply_port GD

create_supply_port VPH

Supple Nets/Ports Connection

85

86 UPF specification for the FC

connect_supply_net VP -ports VP

connect_supply_net VPH -ports VPH

connect_supply_net VPH -ports PHYGNRXAFE/vph

connect_supply_net GD -ports GD

#Set Domain Primary Supplies

set_domain_supply_net TOP

-primary_power_net VP

-primary_ground_net GD

set_domain_supply_net PD_DIG

-primary_power_net VPS_DIG

-primary_ground_net GD

set_domain_supply_net PD_AFE

-primary_power_net VP

-primary_ground_net GD

connect_supply_net VPH -ports I01MPHYGNRXAFETYPE1/vph

#Power Switch

create_power_switch PD_DIG_SW

-domain TOP

-input_supply_port VDDP VP

-output_supply_port VDDC VPS_DIG

-control_port RX_SQ_CTR_SOC RX_SQ_CTR_SOC

-ack_port RX_SQ_ACK_SOC RX_SQ_ACK_SOC

-on_state on_state VDDP !RX_SQ_CTR_SOC

#Port States

add_port_state VP -state TOP_VP 0.99

add_port_state GD -state GND 0.0

add_port_state PD_DIG_SW/VDDC

-state POWER_ON 0.99

-state POWER_OFF off

add_port_state VPH -state TOP_VPH 1.98

UPF specification for the FC 87

#Power State Table

create_pst PST -supplies VP VPS_DIG GD VPH

add_pst_state ON -pst PST -state TOP_VP POWER_ON GND TOP_VPH

add_pst_state OFF -pst PST -state TOP_VP POWER_OFF GND TOP_VPH

88 UPF specification for the FC

Appendix B

STA Reports for FC

This appendix presents the Voltage Scaling STA reports (FC) for a setup time analysis, which

allows to see the delay induced by IR drop. The summary results are presented in Section 7.4.2.

B.1 STA report discarding IR-Drop

**

Report : timing

-path_type full_clock_expanded

-delay_type max

-max_paths 1

Design : PHYGNRX

Version: G-2012.06-SP3

**

Startpoint: rxlanedig/rxwideifxdiv_clk_regx0x/Q

(clock source ’hswclkdiv2’)

Endpoint:rxlanedig/rxwideifxdiv_clk_regx1x

(rising edge-triggered flip-flop clocked by pointer_clk’)

Path Group: pointer_clk

Path Type: max

Point Incr Path Voltage

clock hswclkdiv2 (fall edge)

2.0250 2.0250

clock pointer_clk (source latency)

0.0000 2.0250

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 2.0250 f 0.9900

89

90 STA Reports for FC

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0228 & 2.0478 f 0.9900

rxlanedig/U316/X (INV_S_6)

0.0099 & 2.0577 r 0.9900

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0309 & 2.0886 r 0.9900

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0220 & 2.1106 r 0.9900

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.1460 & 2.2566 r 0.9900

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0197 & 2.2763 r 0.9900

rxlanedig/rxwideifxhand_inclk_scan_muxxU1/X (MUX2_S_4)

0.0213 & 2.2976 r 0.9900

rxlanedig/rxwideifxdiv_clk_regx0x/Q (FSDPSBQ_V2_4) (gclock source)

0.0633 & 2.3609 f 0.9900

rxlanedig/rxwideifxdiv_clk_regx0x/Q (FSDPSBQ_V2_4)

0.0000 2.3609 f 0.9900

rxlanedig/rxwideifxU158/X (OAI221_1)

0.0157 & 2.3766 r 0.9900

rxlanedig/U5335/X (DEL_L4_1)

0.0597 & 2.4363 r 0.9900

rxlanedig/rxwideifxdiv_clk_regx1x/D (FSDPSBQ_V2_4)

0.0000 & 2.4363 r 0.9900

data arrival time 2.4363

clock pointer_clk’ (rise edge)

3.3750 3.3750

clock source latency 0.0000 3.3750

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 3.3750 f 0.9900

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0226 & 3.3976 f 0.9900

rxlanedig/U316/X (INV_S_6)

0.0097 & 3.4073 r 0.9900

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0308 & 3.4381 r 0.9900

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0220 & 3.4601 r 0.9900

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.1456 & 3.6057 r 0.9900

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0194 & 3.6252 r 0.9900

rxlanedig/rxwideifxhand_inclk_scan_muxxU1/X (MUX2_S_4)

0.0211 & 3.6463 r 0.9900

B.2 STA report considering IR-Drop 91

rxlanedig/rxwideifxdiv_clk_regx1x/CK (FSDPSBQ_V2_4)

0.0000 & 3.6463 r 0.9900

clock uncertainty -0.2000 3.4463

library setup time -0.0325 3.4138

data required time 3.4138

data required time 3.4138

data arrival time -2.4363

slack (MET) 0.9775

B.2 STA report considering IR-Drop

**

Report : timing

-path_type full_clock_expanded

-delay_type max

-max_paths 1

Design : PHYGNRX

Version: G-2012.06-SP3

**

Startpoint: rxlanedig/rxwideifxdiv_clk_regx0x/Q

(clock source ’hswclkdiv2’)

Endpoint: rxlanedig/rxwideifxdiv_clk_regx1x

(rising edge-triggered flip-flop clocked by pointer_clk’)

Path Group: pointer_clk

Path Type: max

Point Incr Path Voltage

clock hswclkdiv2 (fall edge)

2.0250 2.0250

clock pointer_clk (source latency)

0.0000 2.0250

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 2.0250 f 0.9900

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0241 & 2.0491 f 0.9840

rxlanedig/U316/X (INV_S_6)

0.0101 & 2.0592 r 0.9840

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0322 & 2.0914 r 0.9840

92 STA Reports for FC

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0225 & 2.1139 r 0.9840

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.1583 & 2.2723 r 0.9840

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0205 & 2.2928 r 0.9840

rxlanedig/rxwideifxhand_inclk_scan_muxxU1/X (MUX2_S_4)

0.0225 & 2.3153 r 0.9840

rxlanedig/rxwideifxdiv_clk_regx0x/Q (FSDPSBQ_V2_4) (gclock source)

0.0676 & 2.3829 f 0.9840

rxlanedig/rxwideifxdiv_clk_regx0x/Q (FSDPSBQ_V2_4)

0.0000 2.3829 f 0.9840

rxlanedig/rxwideifxU158/X (OAI221_1)

0.0164 & 2.3993 r 0.9840

rxlanedig/U5335/X (DEL_L4_1)

0.0635 & 2.4628 r 0.9840

rxlanedig/rxwideifxdiv_clk_regx1x/D (FSDPSBQ_V2_4)

0.0000 & 2.4628 r 0.9840

data arrival time 2.4628

clock pointer_clk’ (rise edge)

3.3750 3.3750

clock source latency 0.0000 3.3750

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 3.3750 f 0.9900

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0239 & 3.3989 f 0.9840

rxlanedig/U316/X (INV_S_6)

0.0099 & 3.4088 r 0.9840

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0321 & 3.4409 r 0.9840

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0225 & 3.4635 r 0.9840

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.1579 & 3.6213 r 0.9840

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0203 & 3.6416 r 0.9840

rxlanedig/rxwideifxhand_inclk_scan_muxxU1/X (MUX2_S_4)

0.0223 & 3.6639 r 0.9840

rxlanedig/rxwideifxdiv_clk_regx1x/CK (FSDPSBQ_V2_4)

0.0000 & 3.6639 r 0.9840

clock uncertainty -0.2000 3.4639

library setup time -0.0348 3.4291

data required time 3.4291

B.2 STA report considering IR-Drop 93

data required time 3.4291

data arrival time -2.4628

slack (MET) 0.9663

94 STA Reports for FC

Appendix C

STA Reports for SC

This appendix presents the Voltage Scaling STA reports (SC) for a setup time analysis, which

allows to see the delay induced by IR drop. The summary results are presented in Section 7.4.2.

C.1 STA report discarding IR-Drop

**

Report : timing

-path_type full_clock_expanded

-delay_type max

-max_paths 1

Design : PHYGNRX

Version: G-2012.06-SP3

**

Startpoint: rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x

(rising edge-triggered flip-flop clocked by pointer_clk’)

Endpoint: rxlanedig/rx_phydordy_regx2x

(rising edge-triggered flip-flop clocked by symbolclkhs_incg’)

Path Group: symbolclkhs_incg

Path Type: max

Point Incr Path Voltage

clock pointer_clk’ (rise edge)

0.6750 0.6750

clock source latency 0.0000 0.6750

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 0.6750 f 0.8100

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

95

96 STA Reports for SC

0.0649 & 0.7399 f 0.8100

rxlanedig/U316/X (INV_S_6)

0.0296 & 0.7695 r 0.8100

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0967 & 0.8662 r 0.8100

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0607 & 0.9269 r 0.8100

rxlanedig/eco_cell_20_0/X (DEL_L6_8)

0.6429 & 1.5699 r 0.8100

rxlanedig/BUF_S_12_G1B1I1_3/X (BUF_S_12)

0.0982 & 1.6681 r 0.8100

rxlanedig/BUF_S_12_G1B2I3_3/X (BUF_S_12)

0.0588 & 1.7269 r 0.8100

rxlanedig/BUF_S_8_G1B3I19/X (BUF_S_8)

0.0606 & 1.7875 r 0.8100

rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x/CK (FSDPRBQ_D_2)

0.0014 & 1.7889 r 0.8100

rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x/Q (FSDPRBQ_D_2)

0.0981 & 1.8870 f 0.8100

rxlanedig/U3840/X (BUF_D_8)

0.0415 & 1.9285 f 0.8100

rxlanedig/U7334/X (BUF_8)

0.0264 & 1.9549 f 0.8100

rxlanedig/U8979/X (BUF_12)

0.0226 & 1.9774 f 0.8100

rxlanedig/U256/X (OR2_1)

0.0937 & 2.0711 f 0.8100

rxlanedig/U9139/X (BUF_2)

0.0463 & 2.1173 f 0.8100

rxlanedig/U10068/X (DEL_L4_4)

0.1971 & 2.3144 f 0.8100

rxlanedig/U9138/X (BUF_8)

0.0379 & 2.3524 f 0.8100

rxlanedig/U10458/X (DEL_L6_1)

0.6168 & 2.9691 f 0.8100

rxlanedig/U6485/X (BUF_4)

0.0816 & 3.0508 f 0.8100

rxlanedig/eco_cell_53_0/X (DEL_L4_1)

0.2151 & 3.2659 f 0.8100

rxlanedig/eco_cell_75_0/X (BUF_12)

0.0401 & 3.3060 f 0.8100

rxlanedig/rx_phydordy_regx2x/D (FSDPRBQ_D_2)

0.0000 & 3.3061 f 0.8100

data arrival time 3.3061

C.1 STA report discarding IR-Drop 97

clock symbolclkhs_incg’ (rise edge)

2.0250 2.0250

clock pointer_clk (source latency)

0.0000 2.0250

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 2.0250 f 0.8100

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0648 & 2.0898 f 0.8100

rxlanedig/U316/X (INV_S_6)

0.0295 & 2.1194 r 0.8100

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0966 & 2.2160 r 0.8100

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0607 & 2.2767 r 0.8100

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.6122 & 2.8889 r 0.8100

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0847 & 2.9736 r 0.8100

rxlanedig/rxwideifxU156/X (INV_S_6)

0.0150 & 2.9886 f 0.8100

rxlanedig/rxwideifxU289/A3 (OAI32_4) (gclock source)

0.0002 & 2.9887 f 0.8100

rxlanedig/rxwideifxU289/X (OAI32_4)

0.0379 & 3.0267 r 0.8100

rxlanedig/rxwideifxU153/X (OAO211_DG_4)

0.0469 & 3.0736 r 0.8100

rxlanedig/hand_symbolclkhs_scan_muxxU1/X (MUX2_S_4)

0.0742 & 3.1478 r 0.8100

rxlanedig/BUF_S_8_G1IP_8/X (BUF_S_8)

0.0428 & 3.1906 r 0.8100

rxlanedig/hand_symbolclkhs_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0299 & 3.2205 r 0.8100

rxlanedig/hand_symbolclk_muxxU1/X (MUX2_S_4)

0.0613 & 3.2819 r 0.8100

rxlanedig/hand_outclk_scan_muxxU2/X (MUX2_S_4)

0.0830 & 3.3649 r 0.8100

rxlanedig/hand_outclk_scan_muxxU1/X (BUF_S_8)

0.0407 & 3.4055 r 0.8100

rxlanedig/eco_cell_19_1/X (BUF_S_2)

0.0431 & 3.4487 r 0.8100

rxlanedig/eco_cell_19_0/X (BUF_S_2)

0.0888 & 3.5374 r 0.8100

rxlanedig/BUF_S_8_G1B1I5_7/X (BUF_S_8)

0.0929 & 3.6304 r 0.8100

rxlanedig/rx_phydordy_regx2x/CK (FSDPRBQ_D_2)

98 STA Reports for SC

0.0007 & 3.6311 r 0.8100

clock uncertainty -0.1500 3.4811

library setup time -0.1263 3.3548

data required time 3.3548

data required time 3.3548

data arrival time -3.3061

slack (MET) 0.0487

C.2 STA report considering IR-Drop

**

Report : timing

-path_type full_clock_expanded

-delay_type max

-max_paths 1

Design : PHYGNRX

Version: G-2012.06-SP3

**

Startpoint: rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x

(rising edge-triggered flip-flop clocked by pointer_clk’)

Endpoint: rxlanedig/rx_phydordy_regx2x

(rising edge-triggered flip-flop clocked by symbolclkhs_incg’)

Path Group: symbolclkhs_incg

Path Type: max

Point Incr Path Voltage

clock pointer_clk’ (rise edge)

0.6750 0.6750

clock source latency 0.0000 0.6750

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 0.6750 f 0.8100

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

0.0658 & 0.7408 f 0.8090

rxlanedig/U316/X (INV_S_6)

0.0297 & 0.7705 r 0.8090

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0976 & 0.8681 r 0.8090

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0611 & 0.9291 r 0.8090

C.2 STA report considering IR-Drop 99

rxlanedig/eco_cell_20_0/X (DEL_L6_8)

0.6509 & 1.5801 r 0.8090

rxlanedig/BUF_S_12_G1B1I1_3/X (BUF_S_12)

0.0986 & 1.6787 r 0.8090

rxlanedig/BUF_S_12_G1B2I3_3/X (BUF_S_12)

0.0592 & 1.7379 r 0.8090

rxlanedig/BUF_S_8_G1B3I19/X (BUF_S_8)

0.0611 & 1.7990 r 0.8090

rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x/CK (FSDPRBQ_D_2)

0.0014 & 1.8004 r 0.8090

rxlanedig/rxwideifxrx_phydordy_out_latch_regx2x/Q (FSDPRBQ_D_2)

0.0992 & 1.8996 f 0.8090

rxlanedig/U3840/X (BUF_D_8)

0.0418 & 1.9414 f 0.8090

rxlanedig/U7334/X (BUF_8)

0.0265 & 1.9679 f 0.8090

rxlanedig/U8979/X (BUF_12)

0.0227 & 1.9906 f 0.8090

rxlanedig/U256/X (OR2_1)

0.0950 & 2.0856 f 0.8090

rxlanedig/U9139/X (BUF_2)

0.0466 & 2.1322 f 0.8090

rxlanedig/U10068/X (DEL_L4_4)

0.1992 & 2.3314 f 0.8090

rxlanedig/U9138/X (BUF_8)

0.0382 & 2.3696 f 0.8090

rxlanedig/U10458/X (DEL_L6_1)

0.6252 & 2.9948 f 0.8090

rxlanedig/U6485/X (BUF_4)

0.0822 & 3.0770 f 0.8090

rxlanedig/eco_cell_53_0/X (DEL_L4_1)

0.2174 & 3.2944 f 0.8090

rxlanedig/eco_cell_75_0/X (BUF_12)

0.0404 & 3.3348 f 0.8090

rxlanedig/rx_phydordy_regx2x/D (FSDPRBQ_D_2)

0.0000 & 3.3348 f 0.8090

data arrival time 3.3348

clock symbolclkhs_incg’ (rise edge)

2.0250 2.0250

clock pointer_clk (source latency)

0.0000 2.0250

rxlanedig/rx_pointer_clk (mrxlanedig)

0.0000 2.0250 f 0.8100

rxlanedig/rxafectrlxhand_mux_scan_anapins_rx_pointer_clk_outxU1/X (MUX2_S_4)

100 STA Reports for SC

0.0657 & 2.0907 f 0.8090

rxlanedig/U316/X (INV_S_6)

0.0297 & 2.1204 r 0.8090

rxlanedig/hand_pointerclk_muxxU2/X (MUX2_S_4)

0.0974 & 2.2179 r 0.8090

rxlanedig/hand_pointerclk_muxxU1/X (BUF_S_8)

0.0610 & 2.2789 r 0.8090

rxlanedig/eco_cell_22_0/X (DEL_L6_8)

0.6197 & 2.8986 r 0.8090

rxlanedig/rxwideifxhand_inclk_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0852 & 2.9839 r 0.8090

rxlanedig/rxwideifxU156/X (INV_S_6)

0.0150 & 2.9989 f 0.8090

rxlanedig/rxwideifxU289/A3 (OAI32_4) (gclock source)

0.0002 & 2.9991 f 0.8090

rxlanedig/rxwideifxU289/X (OAI32_4)

0.0383 & 3.0374 r 0.8090

rxlanedig/rxwideifxU153/X (OAO211_DG_4)

0.0473 & 3.0846 r 0.8090

rxlanedig/hand_symbolclkhs_scan_muxxU1/X (MUX2_S_4)

0.0748 & 3.1594 r 0.8090

rxlanedig/BUF_S_8_G1IP_8/X (BUF_S_8)

0.0431 & 3.2026 r 0.8090

rxlanedig/hand_symbolclkhs_gatexhand_clk_gate_orxU1/X (OR2_6)

0.0301 & 3.2327 r 0.8090

rxlanedig/hand_symbolclk_muxxU1/X (MUX2_S_4)

0.0618 & 3.2945 r 0.8090

rxlanedig/hand_outclk_scan_muxxU2/X (MUX2_S_4)

0.0837 & 3.3782 r 0.8090

rxlanedig/hand_outclk_scan_muxxU1/X (BUF_S_8)

0.0409 & 3.4191 r 0.8090

rxlanedig/eco_cell_19_1/X (BUF_S_2)

0.0435 & 3.4627 r 0.8090

rxlanedig/eco_cell_19_0/X (BUF_S_2)

0.0895 & 3.5522 r 0.8090

rxlanedig/BUF_S_8_G1B1I5_7/X (BUF_S_8)

0.0936 & 3.6458 r 0.8090

rxlanedig/rx_phydordy_regx2x/CK (FSDPRBQ_D_2)

0.0007 & 3.6465 r 0.8090

clock uncertainty -0.1500 3.4965

library setup time -0.1279 3.3686

data required time 3.3686

data required time 3.3686

data arrival time -3.3348

C.2 STA report considering IR-Drop 101

slack (MET) 0.0338

102 STA Reports for SC

References

[1] ITRS Working Group. INTERNATIONAL TECHNOLOGY ROADMAP FOR SEMICON-
DUCTORS: Design, 2010.

[2] Synopsys Low-Power Flow User Guide, Version F-2011.09, September 2011.

[3] Michael Keating, David Flynn, Rob Aitken, Alan Gibbons, and Kaijian Shi. Low Power
Methodology Manual: For System-on-Chip Design. Springer Publishing Company, Incorpo-
rated, 2007.

[4] Ping Huang, Zuocheng Xing, Tianran Wang, Qiang Wei, Hongyan Wang, and Guitao Fu.
A brief survey on power gating design. In Solid-State and Integrated Circuit Technology
(ICSICT), 2010 10th IEEE International Conference on, pages 788–790, 2010.

[5] Eugene Wang. Synopsys power-gating design methodology based on smic 90nm process.

[6] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison-Wesley Publishing Company, USA, 4th edition, 2010.

[7] Sven Rosinger. RT-Level Power-Gating Models optimizing Dynamic Leakage-Management.
PhD thesis, Carl von Ossietzky Universität Oldenburg, 2012.

[8] Nelson Silva. Power reduction of a cmos high-speed interface using clock gating. Master’s
thesis, Faculdade de Engenharia da Universidade do Porto, To be published in July, 2013.

[9] D. Dal and N. Mansouri. Power optimization with power islands synthesis. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 28(7):1025–1037, 2009.

[10] Chao-Yang Chang, Pai-Cheng Tso, Chung-Hsun Huang, and Po-Hui Yang. A fast wake-
up power gating technique with inducing a balanced rush current. In Circuits and Systems
(ISCAS), 2012 IEEE International Symposium on, pages 3086–3089, 2012. doi:10.1109/
ISCAS.2012.6271972.

[11] Ieee standard for design and verification of low-power integrated circuits. IEEE Std 1801-
2013 (Revision of IEEE Std 1801-2009), pages 1–348, 2013. doi:10.1109/IEEESTD.
2013.6521327.

[12] Design Compiler User Guide, Version G-2012.06, June 2012.

[13] Synopys Multivoltage Flow User Guide, Version H-2013.03, March 2013.

[14] Library Data Preparation for IC Compiler User Guide, Version F-2011.09, September 2011.

[15] IC Compiler User Guide, Version G-2012.06-SP4, June 2012.

103

http://dx.doi.org/10.1109/ISCAS.2012.6271972
http://dx.doi.org/10.1109/ISCAS.2012.6271972
http://dx.doi.org/10.1109/IEEESTD.2013.6521327
http://dx.doi.org/10.1109/IEEESTD.2013.6521327

104 REFERENCES

[16] Arien Wolf. Robust Power Gating Implementatin using ICC, 2009.

[17] Implementing Power Gating Using Synopsys R© Implementation Tools Application Note, Ver-
sion A-2007.12, December 2007.

[18] PrimeRail User Guide, Version G-2012.06, June 2012.

[19] PrimeTime PX User Guide Version H-2012.12, December 2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and Goals
	1.3 Structure of the document

	2 Background
	2.1 Energy vs Power
	2.2 Dynamic and Static Power
	2.2.1 Dynamic Power
	2.2.2 Static Power

	2.3 Power Gating Overview
	2.4 Power Gating Challenges
	2.4.1 Voltage Island identification
	2.4.2 Wake-Up Time, In-Rush Current and Power/Ground Bounce
	2.4.3 Power Switching Fabric
	2.4.4 Retention Registers
	2.4.5 Isolation Cells

	3 Interface and Project Requirements
	3.1 SNPS high-speed interface
	3.1.1 Physical and Power Consumption data

	3.2 Project Requirements

	4 Standard design flow
	4.1 Front End Flow
	4.2 Backend flow
	4.2.1 Synthesis
	4.2.2 Synthesis Verification
	4.2.3 Place&Route
	4.2.4 Parasitic extraction
	4.2.5 Static Timing Analysis (STA)
	4.2.6 Post-layout Analysis and Verification
	4.2.7 Integration and DRC/LVS Verification

	4.3 Summary

	5 Low Power Design Flow
	5.1 Power Intent Specification using UPF
	5.1.1 UPF Concepts

	5.2 Low Power Flow Using Synopsys Tools
	5.3 Summary

	6 Power Gating Implementation
	6.1 Power Gating Strategy
	6.2 Frontend stage
	6.3 Describing the power intent using UPF
	6.4 Synthesis using Design Compiler
	6.5 Formal Verification using Formality
	6.6 Floorplan Modification using Custom Designer
	6.7 Library Data Preparation
	6.7.1 Libraries
	6.7.2 Libraries creation

	6.8 Technology File and Metal Layers
	6.9 Adding supply (PG) pins around rxlanedig
	6.10 Place&Route using IC Compiler
	6.11 STA with PrimeTime
	6.12 Rail Analysis with Prime Rail and ICC
	6.13 Power Analysis with PrimeTime PX
	6.14 Integration and LVS/DRC checking

	7 Results
	7.1 IR Drop Analysis
	7.1.1 Comparative Analysis
	7.1.2 Final Results

	7.2 In-Rush Current and Wake-Up Time
	7.3 Area overhead
	7.4 Functionality and Performance Impact
	7.4.1 Post-layout simulation
	7.4.2 STA with IR-drop induced delay
	7.4.3 Co-simulation

	7.5 Power Consumption

	8 Conclusion
	8.1 Final Conclusions
	8.2 Future Work

	A UPF specification for the FC
	B STA Reports for FC
	B.1 STA report discarding IR-Drop
	B.2 STA report considering IR-Drop

	C STA Reports for SC
	C.1 STA report discarding IR-Drop
	C.2 STA report considering IR-Drop

	References

