System-architecture

The World’s first open STANDARD for Home and Building Control
Index

1. Introduction: the KNX network ... 3
2. Elements of the KNX architecture ... 5
 2.1. Applications, interworking and binding .. 6
 2.2. Basic configuration schemes .. 7
 2.3. Network management and resources .. 7
 2.4. Communication: Physical layers .. 8
 2.5. Communication: Common kernel and message protocol 9
 2.6. Resources ... 10
 2.7. Device models ... 11
 2.8. Device identification ... 12
3. System capabilities, communication and addressing models 13
 3.1. Logical topology and individual address space 13
 3.2. Network and resource management with broadcast and uni-icast “Point-to-point” services .. 14
 3.3. Multicast “Group addressing” for run-time efficiency 14
 3.4. Frame overview ... 15
4. Application models, data-points and binding 17
 4.1. Data-points and distributed applications 17
 4.2. Group objects ... 18
 4.3. Properties of interface objects as data-points 18
 4.4. Free or structured binding .. 19
 4.5. Tagged binding .. 20
5. Interworking model ... 22
 5.1. The application: Data-point types and functional blocks 22
 5.2. Parameter data-points .. 23
 5.3. Good citizenship and multi-mode integration 23
6. Configuration modes ... 24
 6.1. General ... 24
 6.2. System Mode .. 24
 6.3. Controller mode .. 25
 6.4. Push-button mode .. 26
 6.5. Logical tag mode .. 27
 6.6. Logical tag extended mode ... 28
 6.7. A-mode .. 28
7. Profiles ... 29
 7.1. Definition and use .. 29
 7.2. Profiles description ... 29
 7.3. Profiles as guideline to this specification 30
8. ETS, eteC and ANubis* .. 31
 8.1. The ETS tool family .. 31
 8.2. The eteC components and API’s .. 32
 8.3. KNX broadband, intranet, internet, and integrated services with ANubis ... 33
9. Certification ... 34
10. About Konnex Association ... 35
11. Contact .. 35
1. Introduction: the KNX network

This chapter outlines the main elements of the KNX system, and the concepts behind it. It should be useful as a guideline for newcomers to the system in finding their way around the KNX specification, for product managers and development engineers looking for suitable implementation options within the system, as well as for those with experience from KNX’ “parent systems” to get acquainted with some new terminology and challenging new possibilities.

Building control technology as provided by KNX is a specialised form of automated process control, dedicated to the needs of home and building applications. One premise for KNX is to furnish a radically decentralised, distributed approach; hence the term network.

The KNX device network results from the formal merger of the 3 leading systems for Home and Building automation (BatiBUS, EIB and EHS) into the specification of the new Konnex Association. The common specification of the “KNX” system provides, besides powerful runtime characteristics, an enhanced “toolkit” of services and mechanisms for network management.

On the Konnex device network, all the devices come to life to form distributed applications in the true sense of the word. Even on the level of the applications themselves, tight interaction is possible, wherever there is a need or benefit. All march to the beat of powerful interworking models with standardised data-point types and “Functional Block” objects, modelling logical device channels.

The mainstay of S- ("System") mode is the centralised free binding and parameterisation (typically with the PC-based ETS tool). It is joined by E- ("Easy") mode device profiles, which can be configured according to a structured binding principle, through simple manipulations – without the need for a PC tool. Completing the family, A- ("Automatic") mode achieves “Plug-and-Play” configuration aimed primarily at consumer products such as White and Brown goods. The three configuration modes share common run-time interworking, allowing the creation of a comprehensive and multi-domain Home and Building communication system.

The available Twisted-Pair and Power-Line communication media have been completed with Radio-Frequency (868 MHz band).

KNX explicitly encompasses a methodology and PC tools for project engineering, i.e. for linking a series of individual devices into a functioning installation, and integrating different KNX media and configuration modes. This is embodied in the vendor independent Engineering Tool Software (ETS) suites for Windows.

In contrast to the “One Size Fits All” creed, the KNX system is entirely independent of any specific microprocessor platform or even architecture. Depending on the profile chosen by the manufacturer, he can select any suitable industry-standard chip, or opt for available KNX OEM solutions like Bus Coupling Units, BIM’s, chip sets etc. Some KNX profiles allow a tiny system
footprint (say < 5kB), and easily run on an 8-bit processor. Other implementations use 16 or 32-bit processors, or even PC’s in the full sense of the word.

Through all of the above, KNX device networks may be flexibly adapted to present an optimal solution for each application domain and installation. Furthermore, they have also the capability to be inserted in a “Service Network” environment, usually based on broadband networks running IP; the Internet Protocol, to further amplify and leverage the benefits of our intelligent home, office or business environment. To address this need, Konnex Association proposes KNX-ANubis.

Joining all these requirements into one common, streamlined system – fulfilling stringent compatibility requirements with a large installed base – is no mean feat. The next section summarises the essential bricks KNX uses to accomplish all this, while further sections zoom in more closely on some distinctive features and characteristics of the KNX system.
2. Elements of the KNX architecture

KNX specifies many mechanisms and ingredients to bring the network into operation, while enabling manufacturers to choose the most adapted configuration for their market. The following figure 1 shows an overview of the KNX model, bringing the emphasis on the various open choices. Rather than a formal protocol description the following details the components or bricks that may be chosen to implement in the devices and other components a full operational system.

Figure 1: The KNX model
As essential ingredients of KNX, we find in a rather top-down view:

- Interworking and (Distributed) Application Models for the various tasks of Home and Building Automation; this is after all the main purpose of the system.
- Schemes for Configuration and Management, to properly manage all resources on the network, and to permit the logical linking or binding of parts of a distributed application, which run in different nodes. KNX structures these in a comprehensive set of Configuration Modes.
- A Communication System, with a set of physical communication media, a message protocol and corresponding models for the communication stack in each node; this Communication System has to support all network communication requirements for the Configuration and Management of an installation, as well as to host Distributed Applications on it. This is typified by the KNX Common Kernel.
- Concrete Device Models, summarized in Profiles for the effective realization and combination of the elements above when developing actual products or devices, which will be mounted and linked in an installation.

Below, let’s have a closer look on how KNX deals with all of this.

2.1. Applications, interworking and binding

Central to KNX’ application concepts is the idea of data-points: they represent the process and control variables in the system, as explained in the section Application Models. These data-points may be inputs, outputs, parameters, diagnostic data, the standardised containers for these data-points are Group Objects and Interface Object Properties.

The Communication System and Protocol are expected to offer a reduced instruction set to read and write (set and get) data-point values: any further application semantics is mapped to the data format and the bindings, making KNX primarily “data driven”.

In order to achieve interworking, the data-points have to implement “Standardised Data-point Types”, themselves grouped into “Functional Blocks”. These functional blocks and data-point types are related to applications fields, but some of them are of general use and named functions of common interest (such as date and time).

Data-points may be accessed through uni-cast or multi-cast mechanisms, which decouple communication and application aspects and permits a smooth integration between implementation alternatives.
The Interworking section below zooms in on these aspects. To logically link, the data-points of, applications across the network, KNX has three underlying binding schemes:

- one for free,
- one for structured
- one for tagged binding.

How these may be combined with various addressing mechanisms is described below.

2.2. Basic configuration schemes

Roughly speaking, there are two levels at which an installation has to be configured. First of all, there is the level of the network topology and the individual nodes or devices. In a way, this first level is a precondition or “bootstrap” phase, prior to the configuration of the “Distributed Applications”, i.e. binding and parameter setting.

Configuration may be achieved through a combination of local manipulations on the devices (e.g. pushing a button, setting a code-wheel, or using a locally connected configuration tool), and active network Management communication over the bus (peer-to-peer as well as more centralised master-slave schemes are defined).

As described in the corresponding section below, a KNX Configuration Mode:

- picks out a certain scheme for configuration and binding
- maps it to a particular choice of address scheme
- completes all this with a choice of management procedures and matching resource realisations.

Some modes require more active management over the bus, whereas some others are mainly oriented towards local configuration.

2.3. Network management and resources

To accommodate all active configuration needs of the system, and maintain unity in diversity, KNX is equipped with a powerful toolkit for network management. One can put these instruments to good use throughout the lifecycle of an installation:

- for initial set-up,
- for integration of multi-mode installations,
- for subsequent diagnostics and maintenance, as well as for later extension and reconfiguration.
Network Management in KNX specifies a set of mechanisms to discover, set or retrieve configuration data actively via the network. It proposes procedures, i.e. message sequences, to access values of the different network resources within the devices, as well as identifiers and formats for these resources – all of this in order to enable a proper interworking of all KNX network devices. These resources may be addresses, communication parameters, application parameters, or complex sets of data like binding tables or even the entire executable application program.

The network management basically makes use of the services offered by the application layer. Each device implementing a given configuration mode (see below) has to implement the services and resources specified in the relevant “Profile” (set of specifications, see below). For managing the devices, these services are used within procedures.

The different configuration modes make use of an identified set of procedures, which are described in the “Configuration Management” part. As indicated above, and further demonstrated in the configuration modes section below, KNX supports a broad spectrum of solutions here, ranging from centralised and semi-centralised “master-slave” versions, over entirely peer-to-peer to strictly local configuration styles.

However, mechanisms and resources are not enough. Solid network management has to abide by a set of consistency rules, global ones as well as within and among profiles, and general “Good Citizenship”. For example, some of these rules govern the selection of the address, its numerical value, when binding data-points.

But now, we first turn our attention to how the communication system’s messaging solutions for applications as well as management, beginning with the physical transmission media.

2.4. Communication: Physical layers

The KNX system offers the choice for the manufacturers, depending on his market requirements and habits, to choose between several physical layers, or to combine them. With the availability of routers, and combined with the powerful interworking, multi-media, and also multi-vendor configurations can be built.

The different media are :

- **TP₀**, inherited from BatiBUS, and **TP₁**, basic medium of EIB, provide both improved solutions for twisted pair cabling, both using a SELV network and supply system. Main characteristics are : data and power transmission with one pair (devices with limited power consumption may be powered by the bus), and asynchronous character oriented data transfer and half duplex bi-directional communication. **TP₀**, transmission rate is 4.8kbits/s while **TP₁** is 9.6 kbits/s. Both media implement a CSMA/CA collision avoidance. All topologies may be used and mixed (line, star, tree, ...).
• PL\textsubscript{110}, from EIB, and PL\textsubscript{132} from EHS, enable communication over the mains supply network. Main characteristics are:
 - Spread frequency shift keying signalling,
 - Asynchronous transmission of data packets
 - Half duplex bi-directional communication.
 - Both differ mainly by their central frequency; 110 and 132 kHz, their decoding process, and data rate; PL\textsubscript{110} = 1200 bits/sec; PL\textsubscript{132} = 2400 bits/sec.

Both media implement CSMA and are compliant to EN 50065-1, respectively in frequency band without and with standard access medium protocol.

• RF has been fully specified within KNX, and enables wireless communication in the 868 MHz bandwidth. Main characteristics are:
 - frequency shift keying signaling,
 - asynchronous transmission and half duplex bi-directional or unidirectional communication.
 - The central frequency is 868,30 MHz, using a short range device frequency with duty cycle limited to <1%, with a data rate of 32 kHz.
 - Medium access is based on CSMA mechanisms.

The medium and the lower part of the Link Layer have been specified in common with CEN TC294 for metering, to be able to share hardware platforms. RF is compliant with ERC Recommendation ERC/REC 70-03 and the ETSI European Standard ETS 300-220.

• IR has been taken over from EIB as associated standard and shall serve as basis for future implementations.

• Beyond these Device Network media, KNX has unified service- and integration solutions for IP-enabled media like Ethernet (IEEE 802.2), Bluetooth, WiFi /Wireless LAN (IEEE 802.11), “FireWire” (IEEE 1394) etc., as explained in the ANubis section below.

\subsection*{2.5. Communication: Common kernel and message protocol}

The communication system must tend to the needs of the application models, configuration and network management. On top of the physical layers and their particular data link layer, a common kernel model is shared by all the devices of the KNX network; in order to answer all requirements, it includes a 7 Layers OSI model compliant communication system:

 • “Data Link Layer General”, above “Data Link Layer” per medium, provides the medium access control and the logical link control

 • “Network Layer” provides a segment wise acknowledged telegram; it also controls the hop count of a frame. Network layer is of interest mainly for nodes with routing functionality.
• “Transport Layer” enables 4 types communication relationship between communication points:
 - one-to-many connectionless (multicast),
 - one-to-all connectionless (broadcast),
 - one-to-one connectionless,
 - one-to-one connection-oriented.

For freely bound models (see below), it also separates (“indirect”) the network multicast address from the internal representation.

• Session and presentation Layers are empty

• “Application Layer” offers a large “toolkit” variety of application services to the application process. These services are different depending on the type of communication used at transport layer. Services related to point-to-point communication and broadcast mainly serve to the network management, whereas services related to multicast are intended for runtime operation.

Remember KNX does not fix the choice of microprocessor. Since in addition, KNX covers an extensive range of configuration and device models, the precise requirements governing a particular implementation are established in detailed profiles, in line with the configuration modes. Within these boundaries, the KNX developer is encouraged to find the optimal solution to accommodate his implementation requirements! This is expounded in later sections.

As we shall also find out later, the KNX message frame or telegram format also reflects this communication structure.

2.6. Resources

We have seen that network management consists of procedures for manipulating resources, and that the common kernel provides a toolkit of services for this purpose. Given central importance for the system, these resources merit some further consideration.

Remember that they can be:

• “System” (configuration) resources, with address, lookup and parameter information to help the layers of the communication system carry out their task.

By way of example, we mention the address and indirection tables for free group communication or the individual address of the node as such. Still among the system resources, we also find “discovery” information, which allows a partner on the network to find out about the capabilities of some other node or application.

One bonus of this is certainly that a very rich interaction becomes possible between configuration controllers or PC-based tools such as ETS, and the network.
Parameters controlling the application.

The present specification gives detailed descriptions not just of the role, but also of the identifiers, formats and encoding of each resource, which is after all a set of data element(s).

Some different formats may be defined for a given abstract resource, allowing for simpler or more sophisticated realisations, and perhaps depending on the configuration mode. For complex resources, like binding tables, realisations which are more “White-Box” allow more management responsibility to be shifted to the configuration master.

It is worth noting that KNX’ interface objects, provide a powerful, implementation-independent framework for realising resources, the individual elements of which can be modelled as data-points. Interface objects and their relationship to data-point are explained below.

At any rate, all identifiers and formats given in the specification shall be understood as a network interface, i.e. not necessarily an internal memory map of the device.

2.7. Device models

Eventually, a KNX installation always consists of a set of devices connected to the bus or network. Every facet we have discussed so far is ultimately realised in and through the devices. All of these adhere to a number of logical node architectures for devices harbouring resources and implementing the protocol. Models vary according to node capabilities, management features and configuration modes; and not to forget, according to its role in the network, e.g. typical “application (end) device”, configuration master, router, gateway etc.

KNX also standardises certain general-purpose device models, such as for “Bus Coupling Units” (BCU’s) or “Bus Interface Modules” (BIM’s), mainly used in combination with ETS and downloadable application programs. Specifically for platforms like these, supplementary hosting “Application Programming Interface (API), are defined, such as the “Communication Object” model (see below), and the “External Message Interface” (EMI).

Together with the characteristics of the configuration modes, these device models are all laid down in the profiles.
2.8. Device identification

In complement to the basic operational system, a set of identification mechanisms is provided:

- Devices may be identified and subsequently accessed throughout the network either by their individual address, or by their unique serial number, depending on the configuration mode.

- Installation's extendibility and maintenance is considerably eased through product identification (i.e. a manufacturer specific reference) and functional identification (manufacturer independent) information retrievable from devices.

Mechanisms are defined around the unique serial number feature to:

- get individual address of a device with a given serial number (so providing further access)
- set individual address of a device with a given serial number
- retrieve serial number of a device at a given individual address

The uniqueness of the serial numbers is ensured through controlled allocation of number ranges by the certification department of Konnex Association.
3. System capabilities, communication and addressing models

Before tackling the configuration modes, the application and interworking models, it is good to have a better understanding of the addressing schemes and the related communication modes of KNX.

The encoding space for addressing fixes some fundamental capabilities of the system in terms of size (maximum number of addressable devices and data-points). The addressing is reflected in the encoding format of the message frame or telegram, as is the “shadow” of the communication stack and kernel. According to which principles addresses are used to identify data-points (binding) will be discussed in section 4.

3.1. Logical topology and individual address space

KNX is a fully distributed network, which accommodates up to 65’536 devices in a 16-bit Individual Address space. The logical topology or sub-network structure allows 256 devices on one line. As shown in Fig.1 lines may be grouped together with a main line into an area. An entire domain is formed by 15 areas together with a backbone line.

Note that KNX ANubis optionally allows the integration of KNX sub-networks via IP.

Fig. 2 The logical topology of KNX
As shown in the figure, this topology is reflected in the numerical structure of the individual addresses, which (with few exceptions) uniquely identify each node on the network.

On powerline, nearby domains are logically separated with a 16-bit Domain Address. Without the addresses reserved for couplers, \((255 \times 16) \times 15 + 255 = 61'455\) end devices may be joined by an KNX network. Installation restrictions may depend on implementation (medium, transceiver types, power supply capacity) and environmental (electromagnetic noise, …) factors. Installation and product guidelines shall be taken into account.

On RF, interference between two adjacent installations is avoided by using the extended address scheme, that associates the individual or group addresses to the unique device identifier. This enables also to take into account unidirectional devices only, which can be designed at lower costs for sensor functions.

Couplers connect lines or segments, e.g. within the twisted pair (TP) medium, or different media; their functionality may be (some combination of) repeater, bridge, router, package filter (for traffic optimisation), firewall protection etc. KNX defines various standard coupler profiles.

3.2. Network and resource management with broadcast and uni-cast

“Point-to-point” services

To manage network and device resources (e.g. when configuring an installation), KNX uses a combination of broadcast and point-to-point communication.

Most often, each device in the installation is assigned a unique individual address via broadcast (optionally using a device’s unique serial number), which is used from then on for further point-to-point communication.

- A connection (optionally with access authorisation) may be built up, for example to download the complete ‘applet’ binary image of an application program.
- Some resources may also be accessed in connectionless point-to-point communication.

3.3. Multicast “Group addressing” for run-time efficiency

KNX supports full multicast (“group”) addressing, which provides the mainstay of KNX run-time communication. **Full** means that:

- KNX is not limited to grouping devices: each device may publish several data-points (known as “(Group) Communication Objects”) individually, which can be grouped.
System capabilities

- independently from one another into network-wide shared variables. As a bonus, properties of Interface Objects (see 4.3) may be published as shared variables as well.

- As explained above in the description of the group-oriented KNX communication stack, a shared variable can be fully read/write bi-directional. In this way, all devices can also send unsolicited multicast frames.

- KNX makes a 16 bit address space available for these shared variables. This signifies that one installation may have up to 64k shared variables (or “Group Addresses”), each with any number of local instances.

In this way as well, KNX goes some distance towards reducing the need for redundant automation hierarchy levels (and bandwidth!) through appropriate addressing and device modelling schemes.

Later paragraphs explain how Group Addresses may be used for free as well as for tagged binding schemes.

3.4. Frame overview

Now’s the time to have a look at the actual KNX message format, as serially encoded in the frames or telegrams which are sent on the bus.

Depending on the modulation technique or access and collision control of any specific medium, some preamble or envelope sequence may be defined, which we ignore here. The following example format actually corresponds to the interface above Layer-2. Special acknowledge frames etc. are all described at length in the actual specification.

<table>
<thead>
<tr>
<th>Octets</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>...</th>
<th>N - 1</th>
<th>N ≤ 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Field</td>
<td>Source Address</td>
<td>Destination Address</td>
<td>Address Type; NPC1; length</td>
<td>TP CI</td>
<td>AP CI</td>
<td>data / AP CI</td>
<td>data</td>
<td>Frame Check</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 KNX LPDU standard frame structure (long frames allow N < 255).

First of all, the **Control Field** determines the frame priority and distinguishes between the standard and extended frame. In each case, there is an individual **Source Address** and individual (uni-cast) or group (multi-cast) **Destination Address**; the destination address type is determined by a special field.
A frame’s hop count is decremented by routers to avoid looping messages; when it becomes zero, the frame is discarded from the network.

The **Transport Layer Protocol Control Information** (TPCI) controls the transport layer communication relationships, e.g. to build up and maintain a point-to-point connection. In turn, the **Application Layer Protocol Control Information** (APCI) can tap into the full toolkit of Application Layer services (Read, Write, Response, …) which are available for the relevant addressing scheme and communication relationship.

Depending on the addressing scheme and APCI, the standard frame can carry up to 14 octets of data. Segmentation for bulk transfer, like the download of an entire application program, is the responsibility of the management client, e.g. the ETS tool. The standard frame ensures direct upward compatibility from EIB. The extended frame can harbour up to 248 octets of data. At the time this document is published, its usage is defined only for LTE Mode.

Finally, the **Frame Check** helps ensure data consistency and reliable transmission.
4. Application models, data-points and binding

Ultimately, all elements of the KNX architecture we have met so far just serve as infrastructure and means for getting application for lighting, HVAC, security, … to run on the system. In this section, we investigate the central role in KNX application modelling of data-points and how they are linked (“bound”). Once we have investigated their role and appearance, we are ready proceed to the interworking section, which lies at the heart of KNX.

4.1. Data-points and distributed applications

KNX models an application on the device network as a collection of sending and receiving data-points, distributed over a number of devices.

The system comes to life when data-points in different devices are linked via a common identifier, in other words bound, as exemplified by the multicast group address. Accordingly, data can be transferred between different devices, each with its local application, which is of course the whole purpose of having a network.

When a local application in a device, a sensor, say, writes a value to a sending data-point, this device sends a (“write”) message with the corresponding address and the new value. A receiving data-point with this same address will receive this value, and inform its local application. In turn, this receiving application can now act upon this value update if it wishes to do so. This action can be an internal state change or updating one of its own sending data-points (like in a controller), or modifying some physical output status (for example in an actuator device); or indeed any combination of these.

In this way, local applications in a number of devices, with linked data-points, combine to form a distributed application. Underscoring their quintessential role in KNX, data-points will figure prominently in the interworking models.

Next, we turn to different approaches, which KNX permits for such logical linking or binding of communication partners in the application, and for the realisation of a data-point.

KNX encompasses three underlying schemes for linking data-points, according to whether the value of the address carries semantic information or not, and whether the binding is precisely predefined, or merely follows some loose rules; this leads to the following classification:

- free binding;
- structured binding;
- tagged binding.
To achieve a thorough understanding of the configuration modes later on, we first proceed to investigate the ways to realise a data-point, and then look at each of these individually.

4.2. Group objects

KNX’s principal realisation form for data-points, is given by the group objects; as their name suggests, they are accessed via standard, multicast “group” addressing. The links are precisely the group addresses. Combined with the standard group message format, they make up the foundation of the system’s cross-discipline interworking and multi-mode integration facilities.

As we shall see below, group objects can be used with free, structured or tagged binding alike – always assuming standard group addressing, of course. Depending on the application and the configuration mode, the awareness of the local application program may vary, as to its communication partners on the network or the actual address values used on the bus.

In this respect, KNX’s group objects permit an interesting (if optional) encapsulation pattern, which provides a local application with a systematic, binding-independent interface to the bus. Applying this, applications using group addressing may effectively achieve the most radical decoupling from the network communication. This encourages reuse of the same application code for different configuration modes.

Here, the (local) application sees the bus as a limited set of group objects; these correspond to those data-points, which are of direct relevance to it. Put simply, each communication object appears to its application as a local variable with supporting attributes. Not surprisingly, the variable holds the value received from, or to be sent to the bus. Via the attributes, a default handler on top of the node’s communication stack can inform the application that the corresponding value has been updated; vice versa, the application can request the stack to send a value. Clearly, this assumes a cyclic polling on both sides of the interface; more sophisticated implementations may map this interface to a custom call-back handler.

Some group communication stack versions support this purpose with 2 levels of indirection. Transport layer converts a received group address to a purely local “internal reference”, using the “Group Address Table” resource. Now it’s up to application layer to map this reduced internal message, with possible multiplexing, to one or more communication object number identifiers, by means of the “Association Table” resource. The converse happens for sending, without local multiplexing. S-Mode exploits this n-to-m flexibility to the furthest.

4.3. Properties of interface objects as data-points

To accommodate additional requirements, KNX also provides a more intrinsic notion of data-point, in the form of a property belonging to an “Interface Object”. The interface object simply groups a set of property data-points into a common interface structure or object.
Whereas a node’s group objects constitute a flat set of data-points, which are each directly addressed, each property of an interface object is referenced relative to this Object, according to the <ObjectReference>.<Property> pattern. In this respect, an Interface Object is well suited to model a Functional Block (see 5.1) from the application models.

Clearly, interface objects are not limited to application data-points; they also allow a data-point-style modelling of management resources in the devices. The interface object itself is referenced relative to the node, in standard addressing with an Index and on point-to-point communication. In this fashion, they are used by A-mode for typical run-time communication, and by other modes for configuration and parameter setting.

LTE Mode uses extended addressing and references the interface object through the combination <ObjectType>.<InstanceNumber>.

In each case, the <ObjectReference>.<Property> combination forms an explicit tag in the message, to identify a specific data-point. What this means is explained in the paragraph on tagged binding below.

4.4. Free or structured binding

We have already met the KNX communication & addressing models, distinguishing between broadcast, multi-cast and uni-cast. Obviously, addressing comes into play when different local applications running in different nodes have to be bound (linked). In the present and next section, we focus on the binding principle underlying the selection and assignment of the address, regardless how the message is distributed. We will see that, from a network management point of view, binding is a distinguishing characteristic of the configuration modes.

Indeed, in order to establish a link on one given communication partner, we have to go through two steps:

- to select the numerical value of the address;
- to assign the address to the data-points to be linked.

Both the free and structured binding schemes discussed immediately below, assume free addressing. This means that the numerical value of the address carries absolutely no application semantics. The only assumption is that all data-points who wish to communicate directly with each other, be assigned the same address. This concept stands in contrast with tagged addressing, which we will come across in the next section.
The next aspect is the assignment of the chosen address, where we distinguish the following categories:

- **free binding**: there is no *a priori* prescription on which data-points may be linked to one another, apart from some very general “equal data-point type” consistency rules; in combination with free addressing, this supports customised multicast grouping at the level of individual data-points, i.e. not just at the level of functional blocks or even devices. Free binding is central to S-Mode.

- **structured binding**: the application model in the KNX specification, stipulates a precise pattern for linking a whole set of data-points, usually corresponding to a functional block or channel; but remember: the address value as such is free. controller, push-button, LT-S, and A- Modes follow this concept.

4.5. Tagged binding

Several modes rely on a **tagged binding** approach. Their binding is also pre-structured by the application models, but here, the numerical value of address is *never* don’t care; instead, part of its value, the **semantic (data-point) identifier**, directly implies the target data-point(s) in the communication partner.

For the “tagged E-Modes” (LT-R and LT-E) using this principle, tagged binding goes hand in hand with zoning. The **logical tag** or **zoning** part of the address selects the intended communication partner(s) at the level of the device. So for a given data-point, its semantic ID is fixed by the application model; the zone is set, often locally on the device, for a particular instance in a given installation. This concept caters for simple binding between devices or functional blocks, but of course according to a predetermined application model. When data-points have been assigned the same zone, they clearly form a group, so zoning also adheres to the multicast principle.

A-mode uses the tagged model in a client-server approach.

KNX foresees 3 possibilities for this tagging to be realised.

- **Tag mapped to standard Group Addressing**
 Some E-configuration modes map the semantic ID to a connection code, in a fixed range of group address space; the remainder of the group address is then the zoning tag; schematically: `<GroupAddress> = <Zone>.<ConnectionCode>`.
 In standard KNX group addressing, special ranges are reserved for tagged addressing.

- **Properties on Individual addressing**
 To accommodate complementary application and configuration requirements, KNX also supports data-points where the tag is not encoded in the group address. These implementations exploit the implementation-independent structure of KNX Interface objects, which allows one individual data-points to be considered (and addressed) as a property of such an object. In this case, this takes on the explicit form
<Target>.<SemanticID>, with <SemanticID> = <ObjectReference>.<PropertyID>. This mechanism can be used on individual addressing, as is typically done in A-mode; in this case, <Target> = <IndividualAddress> of the node. To this end, the Application Controller keeps a persistent copy of the Individual Address of the devices it has enrolled. In this case, there is of course no zoning concept.

- Properties on Extended Addressing
 The same principle as in the "Individual Addressing" may also used on interface objects via extended group addressing, as is done in LTE mode. The group address space of LTE mode is designed especially with this purpose in mind and is only used for the zone information. The connection code (or semantic ID) is build from ObjectType + Property ID.

In the upshot, the application models for tagging have strong and detailed linking semantics already fixed in the model itself, which is in turn embedded in the devices, via the semantic identifiers. With free binding in contrast, much of the application can be (or of course: has to be) designed and tailored explicitly to the needs of each individual installation; this is also what designing a project in ETS ultimately amounts to.
5. Interworking model

Having set the scene in the preceding section, time has come to discover the concept of KNX interworking. Holding out the promise to a world of open, multi-vendor installations for intelligent Homes and Buildings, interworking is, so to speak, the icing on the Konnex cake.

For installers and integrators – or indeed, the consumer! – the interworking models are definitely the most valuable and valued among the numerous assets KNX has to offer. interworking guarantees them the possibility to achieve the richest possible integration between devices within any application, as well as between various application domains, especially when combined with the ETS project tools.

When the interworking concepts were laid down, great care was taken to ensure continuity with the parent systems of KNX, and to consolidate and extend the multi-vendor setting.

5.1. The application: Data-point types and functional blocks

KNX interworking principles clearly rest upon the application model from the previous section.

Essentially, they describe how each local application looks, when seen from the network; in other words: what is its data-point interface? Completed, to the relevant extent, with its intended behaviour in terms of internal state machines, message and physical I/O, this constitutes the so-called functional block description of each local part of the distributed application.

Inside the functional block specification, each data-point is assigned an explanatory name, together with its required data-point type; the type fixes the format of the data, which the data-point sends to or receives from the bus. The core set of the KNX data type family comprises types for:

- Binary Value (Boolean)
- Relative Control ("%")
- Analogue Value (long and short float)
- Counter Value (signed and unsigned integer)
- Date & Time
- Status (bit field)
- ...

For implementation in tagged binding models, the functional block description also has to specify the (standardised!) semantic identifier of its data-points.
5.2. Parameter data-points

“Application variable” data-points exhibiting such general purpose types cover most of the elementary communication needs for run-time operation. For a particular application, its variables in this sense enable it to perform its essential functionality. Complementary to these we find parameters:

- specialised data-points, sometimes requiring more specific types, to give more subtle and sophisticated control over the basic conduct of the application.

- Using S- and A-Mode, parameter data-points may be implemented in a more private manner, without impairing the fundamental task of the application. “More private” means e.g. that they can only be accessed by a controller with a certain knowledge about the implementation. On the other hand, this assumes that this knowledge itself is available in a neutral way, as is the case with the ETS.

- project design tools (with the help of detailed information from the manufacturer’s product database entry for the relevant product and application, possibly even describing a detailed memory map), or an appropriately configured Building Control Station.

5.3. Good citizenship and multi-mode integration

Proper interworking implies some additional prerequisites. Surely, run-time application interworking as portrayed in the previous paragraph becomes worthwhile only as soon as the different devices and subsystems involved, can be linked and configured among one another to begin with. The broad spectrum of configuration modes, which KNX allows, of course adds to this challenge.

An important step towards coming to grips with this diversity is for a minimum set of Discovery prerequisites to be fulfilled. Each device and subsystem is expected to be able to furnish essential information about itself to interested partners on the KNX device network, for example the KNX Profile it implements. To this end, KNX defines a concise set of descriptor fields and objects (resources!), with corresponding discovery procedures.

In addition, this specification prescribes for each Configuration Mode, via the Profiles, minimum management requirements for its devices, to allow for flexible integration.

Vice versa, all KNX Configuration Masters have to master (!) sufficient “search” capabilities to find their way around in a multi-mode KNX network, and are of course expected to manage the part of the network within their responsibility as good citizens with respect to the rest of the system, and in compliance with the specification.

In all of this, the ETS tools have a special role to play: to allow rich and meaningful integration between different configuration modes, in one single installation. In the hands of the system integrator, ETS becomes the final arbiter. The Konnex Association is mounting a special development effort, to make the requisite tools available in the shortest possible time.
6. Configuration modes

6.1. General

Let’s return now to the issue of Configuration. To address many diverse needs, the KNX specification includes a toolkit of management features enabling the choice between several configuration modes, each adapted to different markets, local habits, level of training needed or application environment.

The specification ensures some degree of freedom for the manufacturer, whilst guaranteeing consistency and interworking in one mode, even in a multi-vendor context. All configuration modes include provisions in order to extend or modify the installation using the same mode.

By use of ETS, extension and interworking in multimode installations is made possible. The main reasons for this are the use of consistent management procedures, and for the run-time, exchange of data via the group objects, accessed through group addressing and multicast communication. ETS uses the device descriptor feature of the devices to know the type and mode used in the device. It then uses the management procedures corresponding to the information retrieved.

Devices compliant to one configuration mode shall implement the network management and runtime profiles, as stated in the relevant Volume 6. Specifications to the Network Management are given in Volume 3, Part 5.

6.2. System Mode

Devices implementing “System Mode” offer the most versatile and multi-usage configuration process, while permitting a compact implementation: the complexities of binding and application configuration are shifted to a powerful configuration master. Traditionally this role is taken on by a set of PC based tools from the ETS family, supplied by the Konnex Association. With the aid of the ETS project tools, one can configure these devices and set them into operation.

For the special information this requires about the devices, ETS makes use of a database representing all possible functionalities of the devices (or products) it supports; this “product template” information is created and maintained by each manufacturer for his own products, using dedicated ETS tools.

Usually, the manufacturer supplies the resulting database to his customers. The trained installer is now able to incorporate (import) into the database the product templates originating from several manufacturers, thus allowing him to build also complex and multi-vendor KNX Network installations. In this way, he may choose his functionalities among the broad offer from the various manufacturers.

The ETS tools for KNX project design support the configuration of the following features:
• **Binding:**
 Setting the group addresses in order to enable group object communication between the functional blocks. Group objects may be set into relationship if they share the same data-point type. The possibly complex address and indirection tables are constructed by the configuration master (like ETS), and downloaded into the device.

• **Parameterisation:**
 Setting the parameters of the devices according to the documentation of the manufacturer. Some parameters are standard for the considered functional blocks, some others may be manufacturer-specific.

• **Downloading:**
 Download of application program is also possible for multi-purpose devices exhibiting this special feature. In particular devices consisting in two physical parts (e.g. flush mounted BCU and the interchangeable application module) may offer different functions depending on the chosen and downloaded application program. However, due to the limited duty cycle, profiles without application download are foreseen in RF.

All of this adds up to the KNX installer himself designing and tailoring the desired distributed application functionality, to fit the precise needs of each individual installation – with the help of ETS, and using the building block libraries provided by the manufacturers in the form of their Product Databases. This relies entirely on the concept of free binding.

Mini-Profile: S-Mode uses the standard frame format. It needs active network Management (as performed by ETS) with broadcast and individual addressing. Run-time links by default employ the group address range for free binding; by design, tagged or binding links can be added to achieve run-time interworking with the E-modes based on Connection Codes.

6.3. Controller mode

The Controller Mode is defined to support installation of a limited number of devices on one logical segment of a physical medium. An installation using the controller mode will comprise one special device called controller that is in charge of supporting the configuration process. The controller supports one or more applications (e.g. lighting). It is not needed, but recommended that the controller remains present in the installation at runtime.

The KNX network devices implementing this mode exhibit with limited parameterisation the various functionalities as described in the corresponding application specifications. They are provided with the ability to be dynamically configured by setting the needed individual and group addresses and parameters.

At configuration time, the role of the controller is to establish the links between the so-called “channels”, which represent the set of group objects for the given functionality. The links and parameters are identified by an action of the installer, which may be different from one controller manufacturer to another. However, the set of channels supported by the KNX specification is
uniquely specified, and therefore any device from any manufacturer will be taken into account by any controller from another manufacturer. The controller doesn’t need to have any knowledge of the functionalities supported by the devices. This functionality can be read out of the devices by the controller and is “hard coded” in the so called Device Descriptor #2 implemented by each device. Following the instructions of the installer, the controller assigns individual addresses to the devices, calculates the links at data-point level using known rules which are part of the specification, and sets the parameters which are available for the considered devices. The runtime operation is independent from the configuration controller.

Mini-Profile : Ctrl-Mode uses Group communication with the standard frame format. It needs active Network Management (as performed by ETS) with Broadcast and Individual Addressing. Run-time links by default employ the Group Address range for structured binding.

6.4. Push-button mode

The Push Button mode, as the controller mode is defined to support installation of a limited number of devices on one logical segment of a physical medium. There is however no need for a specialised device for configuration, therefore each device implementing the push button mode shall include the means of configuration related to its application. The devices implement fixed parametrical functionalities as described in the corresponding application specifications.

Each device is provided with the ability to be dynamically configured by setting the needed individual and group addresses and parameters. Exchange of parameters is also possible, but will be mainly local on the devices.

At configuration time, the installer successively designates the devices the functions of which will be linked (therefore the name push button), the way he does it is manufacturer dependent. The exchange of configuration data occurring between devices, typically sensors and actuators, is made through a single application layer service. Each sending data-point device acquires itself its unique group address. This address will be given to the receiving data-points using the pushbutton procedure. The configuration obeys to the rules of the channels and of the functional block descriptors given by the KNX specification.

Mini-Profile : For configuration, PB mode relies only on active management from one device directly by another. It uses group addressing with the standard frame, with structured binding.
6.5. Logical tag mode

6.5.1. Logical Tag Reflex:
In the Logical Tag Reflex mode (LTR), no configuration tool is necessary. Devices and their functionalities are provided with a means (generally selector or dip-switches…) to assign a value to be taken into account for the configuration.

Corresponding functions in different devices which have been assigned the same value for the tag are linked together, and will interoperate. Multi-channel devices are possible. They get consecutive tags for each channel. The operation at runtime is based also on group objects, and are in line with the channel and functional description of the KNX standard.

In order to enable a proper linking, the interpretation of the tag has to comply with the rules given in the KNX specification chapter “resources”, and is depending on the standardised connection code for the relevant channel(s).

Additionally, Logical Tag devices may also provide the Logical Tag Supervised feature (see LTS).

Mini-Profile: From the Network Management point of view, LTR devices appear as a collection, since they never possess an Individual Address. They do support basic discovery. LT-Reflex uses the standard frame, with tagged binding mapped to standard Group Addresses.

6.5.2. Logical Tag Supervised:
In the Logical Tag Supervised mode (LTS), no configuration tool is necessary but a supervisor is needed for each application. One supervisor may supervise more than one application. Devices and their functionality are provided with a means (generally selector or dip-switches…) to assign a value to be taken into account as individual address for the configuration.

The supervisor uses the embedded description provided by Device Descriptor #2, and standardized mechanisms to set into the devices, one after the other in individual addressing, the different group addresses that they need for run-time. Corresponding functions in different devices which have been assigned the same value for the group address are linked together, and will interoperate. Multi-channel devices are possible. The operation at run-time is based also on group objects, and is in line with the channel and functional description of the KNX standard.

Mini-Profile: LTS mode uses Group communication with the standard frame format. It needs active Network Management using broadcast and individual addressing. Run-time links use the Group Address Range for structured bindings.
6.6. Logical tag extended mode

As for Logical Tag mode, devices configuration is made using tags set locally by physical means. For the time being, Logical Tag extended is limited to HVAC applications, which need longer set of structured data. These data are exchanged via interface objects using the extended frame of the KNX protocol. Exploiting the extended address space, the tags represent powerful zoning information, which is essential in modular structured applications (e.g. heating of big buildings).

Data points of general interest may be shared with other applications, and are defined in the specification. These data-points may be accessed by group objects as usual and linked on base of the tag settings.

Mini-Profile: LTE defines extended frames for its “native” run-time communication, with tagged binding on Interface Object properties. The applicable profile requires LTE devices to support a supplementary interface with freely bound, standard Group Address communication. They implement standard management for Individual Address assignment and the free binding.

6.7. A-mode

Contrary to all previous modes dedicated to fixed installation, A-mode is essentially intended for appliances that may be set into operation by an uninstructed user. Therefore it includes the mechanisms for the device to find by themselves the necessary bindings. This takes also into account the fact that some appliances may be moveable.

The appliances are provided with the self-acquisition of the individual address. The concerned appliances are generally part of an application that has its dedicated Application Controller, usually also being the Configuration Master for its application.

Mini-Profile: In A-mode, communication is based on standard frames, with either point-to-point communication of interface objects initiated by the application controller (on tagged bindings), and on free, distributed group object communication.

The configuration of the group address is done dynamically by the Configuration Master by means of dedicated application layer services. The information needed for configuration is retrieved by the Configuration Master via descriptive information in an Interface Object in point-to-point communication.
7. Profiles

7.1. Definition and use

As it has been stated repeatedly in this document, the KNX specification is a kind of “toolkit” where one has to extract a set of features which will enable a device to interwork within a given configuration mode and within the whole network.

In order to maintain a coherent system, and to help the design and enable certification, these sets of features have been grouped in so called “profiles”. Profiles are in limited number and have been designed to cover the needs and habits within the Konnex Association community. Following a given profile (or a combination of them) will enable to build devices and systems which easily integrate into the KNX System.

Profiles are available for:

- System mode devices
- Easy mode devices
- A-mode devices
- Management clients for every mode

At certification time, the manufacturer shall declare to which profile(s) his device(s) conforms. Certification testing is then made accordingly.

7.2. Profiles description

Any profile may be based on the available media. The set of requirements to these media are given first in Volume 6 “Standard Profiles”. The common kernel and network management features are then configuration-mode dependent.

Profiles for system mode devices are either generic (System1 and System2), and ensure full compatibility with ETS, or encompass also standardized components features (BCU1, BCU2, CU) available in OEM.

These last profiles are mainly the available implementations inherited from EIB, but also newer ones, and provide supplementary to the generic features also extra hardware and embedded software features that lighten application design. Special profiles are needed for routers and bridges.
Easy mode profiles are only generic ones, but include also inheritance from previous system implementations: Controller mode DMA1 and DMA2, Push Button, Logical Tag, Logical Tag Extended, and A-mode.

Note: For future use with centralized configuration, the step to merge Controller mode and Logical Tag “Supervised” is also defined as a profile, and is preferred for totally new implementations.

Profiles for management clients are laid down to enable the realization of the management devices corresponding to one configuration mode. The specification of these profiles guarantees the fact that within one mode, every management client is able to take any device into account within its given application field.

7.3. Profiles as guideline to this specification

The present chapter should give you a pretty good overview of the strengths and possibilities of the KNX system. It is recommended that you compare this carefully with your company’s application, product and market intentions.

Which Configuration Mode(s) best correspond to these intentions? Will I begin my development from scratch, or do I take a jump-start by using available OEM implementations? These are definitely among the first questions you have to answer, when contemplating KNX development.

To assess these options in more detail, as well as to take your development from there, the Profiles provide a very practical compass to guide you through this very elaborate specifications document.

You may consider each single profile as a Table of Contents, giving a top-down view of consistent set of requirements for any corresponding implementation.

Finally, the Test Specifications in Volume 8 of this Specification, constitute the conclusive interpretation of the requirements given in Volume 3. For this reason, it is often advantageous to read the requirements and tests more or less in parallel. Proceeding in this way will answer many questions, and rule out any unpleasant surprises at a late stage of your development.
8. ETS, eteC and ANubis

8.1. The ETS tool family

Throughout the preceding sections, we repeatedly encountered ETS, the suite of PC (Windows) software tools from the Konnex Association.

The most famous members of the ETS family are the tools for the design and configuration of KNX installations or projects; these deal mainly with 2 tasks:

- Design and configuration (management) of S-mode installations.
- Integration of multi-mode KNX Device Networks.

As described in the paragraph on S-mode, these ETS modules rely on a “product database” with detailed information about each S-mode product, provided by the manufacturer. This description also allows ETS to show the product, its available (downloadable) application programs plus parameters, and the corresponding possibilities for Group Address binding in a graphical way to the user. This person can now effectively design the whole system off-line, and download this result subsequently into the system with all components mounted.

A stored ETS project in fact constitutes an off-line representation of the thus configured installation. This project database or repository contains rich descriptive meta-information about the installed system. This can readily be used for troubleshooting and diagnostics access, also remote. Another application is as reference for the configuration of Building Control Stations, Service Gateways, Intranet Couplers etc. The entire ETS repository model is XML6-enabled.

When connected to the bus, ETS behaves as an extremely powerful Configuration Master – be it always under the direction of the ETS user, say the installer or integrator. For integration between modes, ETS can scan the installation and “discover” the various elements present in the installation. This information can now be used to define cross-links or adjust parameters.

Combined with the iETS communication component for IP, the resulting internet ETS ensures access to KNX installations via any appropriate IP link. Apart from system interventions through the local LAN, iETS also caters for remote maintenance functionality.

For manufacturers, a specialized set of editors is available to create the visual plug-in representation of their products for the product database – without a single line of programming. As a result, ETS encourages a harmonized look-and-feel for all product entries from all manufacturers, and combines them all into a common environment for project engineering. Again, this improves project design efficiency and permits the smooth realization of multi-vendor installations. Various tools for network analysis and diagnostics further complete ETS.
8.2. The eteC components and API’s

ETS is built on top of a framework of DCOM, Distributed Component Object Model, software-engineering components for PC/Windows platforms, called the eTool Environment – Component Architecture (eteC). eteC provides an abstract API and Object Model for on-line and off-line access to KNX resources. Viewed as a set of API’s, eteC forms part of the KNX standard.

One practical – and very useful – consequence of mapping the EIB logic to DCOM objects is that the resulting eteC interfaces may be used with almost any programming language: C, C++, Java, Visual Basic, etc. Even macro and scripting languages, like JavaScript and VBscript are supported; this may seem uninteresting at first, but it dramatically lowers the threshold for using these potent building blocks, while at the same time increasing flexibility significantly.

The key eteC components commercially available for 3rd party use:

- Falcon, which encapsulates physical access to the network, in the” form of a method-level interface to the KNX Device Network protocol,
- Eagle, which maps the relevant physical database structure of the ETS repository to an abstract model of persistent “KNX Domain Objects”.
8.3. KNX broadband, intranet, internet, and integrated services with ANubis

ANubis (Advanced Network for Unified Building Integration & Services) is a coherent blend of protocols, programming interfaces, models and tools, which the KNX manufacturer and integrator / installer alike, may exploit to realize solutions which integrate a KNX Device Network installation in a LAN or WAN environment.

Step by step, the Konnex specification will be enhanced and extended with ANubis elements. As a first example, the specification of a compact and flexible IP (Internet Protocol) tunnelling protocol, which (roughly) carries a KNX frame over an IP stretch. Implementations of this protocol exist, in the form of the iETS (Internet ETS) communicators, which allow remote maintenance of KNX installations.

Another way to put this, is that ANubis’ main aim consists of specifying appropriate connectivity to strategic partner systems or environments or applications:

- SCADA (Supervision, Control and Automated Data Acquisition), e.g. via OPC (OLE for Process Control).
- Remote service gateways, e.g. via OSGi.
- Local or remote network environments, say intranet, extranet and internet applications, systematically via IP-based protocols (IP = Internet Protocol).
- Specific established standards in building automation, such as BACnet.
- etc.

As it does for the KNX Device Network, ETS extends its role as universal configuration, integration and repository platform to the ANubis Service Environment solutions of the KNX system.
9. Certification

KNX not only provides its members with a powerful and versatile specification, but also with organisation of certification services. Among these, product certification is certainly one of the pillars of the Konnex Association. By marketing certified products, the Konnex Association members claim for the belonging of these products to a strong and widely shared standard, but also for the verified performance of these products to the Interworking rules laid down in the specification.

This is a guarantee for all the customers involved in the usage of HBES systems, who are sure to find the right function, in a multi-vendor context, which fits without problem into a global home management system.

Certification means full third party assessment, and granting the use of the KNX logo to show compliance of devices to this specification.
It covers:

- Independent testing and assessment of compliance to the KNX specification.
- Conformance to the hardware requirements contained in the EN 50090 series.
- Quality management of manufacturing to the ISO 9000 series.
- Guarantee of full multi-vendor interworking at runtime and configuration within one mode.
- Possible smooth integration in a global home management system with use of the software tools, on base of the certified database.

Certification rules are laid down in Volume 5 of the KNX specification, and testing in Volume 8. Development engineers are strongly encouraged to integrate the Konnex Association Certification process into their development management. This early integration enables to get the KNX logo “at no extra cost”, and to take advantage of the powerful certification tool software and procedures for the product validation phase.
10. About Konnex Association

Konnex Association is the creator of the *KNX* Bus Standard, a field bus technology for all applications in Home and Building Control. This standard is established upon over 10 years of experience in the market by its predecessors BatiBUS, EIB and EHSA. Their different configuration mechanisms and physical media have been integrated into the common KNX technology, in order to ensure a cost-performance appropriate for all types of buildings and applications.

As of December 2003 *Konnex Association* has 98 members, mainly manufactures of Home and Building Control, HVAC equipment, alarm and intrusion systems and household appliances. And, in addition to manufacturers, Konnex Association is also pleased to count energy distributors and telecom providers amongst its members.

Konnex Association has partnership agreements with more than 20,000 installer companies and around 70 technical universities within its scientific partner programme.

11. Contact

For more information feel free to contact us:

Harry Crijns, Marketing director

Konnex Association
Bessenveldstraat 5
B - 1831 Brussels-Diegem

Tel: +32 (0) 2 775 85 90
Fax: +32 (0) 2 675 50 28
E-mail: harry.crijns@konnex.org
Web: www.konnex.org