
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mobile Healthcare on a M2M Mobile
Gateway

Ricardo Jorge Travanca Morgado

WORKING VERSION

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Doctor Ana Cristina Costa Aguiar

June 15, 2014

© Ricardo Morgado, 2014

Abstract

Here goes the abstract written in English.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed vehicula lorem commodo dui.

Fusce mollis feugiat elit. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur
ridiculus mus. Donec eu quam. Aenean consectetuer odio quis nisi. Fusce molestie metus sed
neque. Praesent nulla. Donec quis urna. Pellentesque hendrerit vulputate nunc. Donec id eros et
leo ullamcorper placerat. Curabitur aliquam tellus et diam.

Ut tortor. Morbi eget elit. Maecenas nec risus. Sed ultricies. Sed scelerisque libero faucibus
sem. Nullam molestie leo quis tellus. Donec ipsum. Nulla lobortis purus pharetra turpis. Nulla
laoreet, arcu nec hendrerit vulputate, tortor elit eleifend turpis, et aliquam leo metus in dolor.
Praesent sed nulla. Mauris ac augue. Cras ac orci. Etiam sed urna eget nulla sodales venenatis.
Donec faucibus ante eget dui. Nam magna. Suspendisse sollicitudin est et mi.

Fusce sed ipsum vel velit imperdiet dictum. Sed nisi purus, dapibus ut, iaculis ac, placerat
id, purus. Integer aliquet elementum libero. Phasellus facilisis leo eget elit. Nullam nisi magna,
ornare at, aliquet et, porta id, odio. Sed volutpat tellus consectetuer ligula. Phasellus turpis augue,
malesuada et, placerat fringilla, ornare nec, eros. Class aptent taciti sociosqu ad litora torquent
per conubia nostra, per inceptos himenaeos. Vivamus ornare quam nec sem mattis vulputate.
Nullam porta, diam nec porta mollis, orci leo condimentum sapien, quis venenatis mi dolor a
metus. Nullam mollis. Aenean metus massa, pellentesque sit amet, sagittis eget, tincidunt in,
arcu. Vestibulum porta laoreet tortor. Nullam mollis elit nec justo. In nulla ligula, pellentesque sit
amet, consequat sed, faucibus id, velit. Fusce purus. Quisque sagittis urna at quam. Ut eu lacus.
Maecenas tortor nibh, ultricies nec, vestibulum varius, egestas id, sapien.

Donec hendrerit. Vivamus suscipit egestas nibh. In ornare leo ut massa. Donec nisi nisl,
dignissim quis, faucibus a, bibendum ac, diam. Nam adipiscing hendrerit mi. Morbi ac nulla.
Nullam id est ac nisi consectetuer commodo. Pellentesque aliquam massa sit amet tellus. Vivamus
sodales aliquam leo.

i

ii

Acknowledgements

Aliquam id dui. Nulla facilisi. Nullam ligula nunc, viverra a, iaculis at, faucibus quis, sapien.
Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Curabitur
magna ligula, ornare luctus, aliquam non, aliquet at, tortor. Donec iaculis nulla sed eros. Sed felis.
Nam lobortis libero. Pellentesque odio. Suspendisse potenti. Morbi imperdiet rhoncus magna.
Morbi vestibulum interdum turpis. Pellentesque varius. Morbi nulla urna, euismod in, molestie
ac, placerat in, orci.

Ut convallis. Suspendisse luctus pharetra sem. Sed sit amet mi in diam luctus suscipit. Nulla
facilisi. Integer commodo, turpis et semper auctor, nisl ligula vestibulum erat, sed tempor lacus
nibh at turpis. Quisque vestibulum pulvinar justo. Class aptent taciti sociosqu ad litora torquent
per conubia nostra, per inceptos himenaeos. Nam sed tellus vel tortor hendrerit pulvinar. Phasel-
lus eleifend, augue at mattis tincidunt, lorem lorem sodales arcu, id volutpat risus est id neque.
Phasellus egestas ante. Nam porttitor justo sit amet urna. Suspendisse ligula nunc, mollis ac, ele-
mentum non, venenatis ut, mauris. Mauris augue risus, tempus scelerisque, rutrum quis, hendrerit
at, nunc. Nulla posuere porta orci. Nulla dui.

Fusce gravida placerat sem. Aenean ipsum diam, pharetra vitae, ornare et, semper sit amet,
nibh. Nam id tellus. Etiam ultrices. Praesent gravida. Aliquam nec sapien. Morbi sagittis
vulputate dolor. Donec sapien lorem, laoreet egestas, pellentesque euismod, porta at, sapien.
Integer vitae lacus id dui convallis blandit. Mauris non sem. Integer in velit eget lorem scelerisque
vehicula. Etiam tincidunt turpis ac nunc. Pellentesque a justo. Mauris faucibus quam id eros. Cras
pharetra. Fusce rutrum vulputate lorem. Cras pretium magna in nisl. Integer ornare dui non pede.

Ricardo Morgado

iii

iv

“I work on the motto that if something’s not impossible, there must be a way of doing it.”

Sir Nicholas Winton

v

vi

Contents

1 Introduction 1
1.1 Context of Project . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Structure . 3

2 State of the Art 5
2.1 Publish-Subscribe Paradigm . 5
2.2 Networking Layers - OSI Model . 6
2.3 M2M Communications . 8

2.3.1 ETSI M2M Standard . 9
2.4 Marshalling . 15

2.4.1 XML . 15
2.4.2 JSON . 16

2.5 M2M Protocols . 17
2.5.1 HTTP . 17
2.5.2 CoAP . 18
2.5.3 MQTT . 19
2.5.4 AMQP . 20

2.6 Security Mechanisms . 21
2.6.1 X.509 Certificates . 21
2.6.2 RSA Criptography . 21

2.7 E-Health Technologies . 21
2.7.1 ISO/IEEE 11073 . 21
2.7.2 Continua Alliance . 22

2.8 Conclusion . 22

3 Mobile M2M System 25
3.1 Proposed Use Cases . 25
3.2 Approach . 26
3.3 Mobile Gateway . 27
3.4 Mobile Network Application . 30
3.5 ETSI Interpretation . 31

3.5.1 ETSI mapping . 31
3.5.2 Send commands to the Gateway . 32

3.6 Local API . 33
3.7 Technologies . 34
3.8 Evaluation . 35

vii

viii CONTENTS

4 Development 37
4.1 Bootstrap . 37
4.2 ETSI Protocol Implementation . 38
4.3 Web-server . 38
4.4 ETSI Resource Structure Implementation . 39
4.5 Sensor Integration . 40
4.6 Gateway Communication (GSCL <-> NSCL) 40

4.6.1 Subscription Check . 42
4.7 Network Application Communication (NACL <-> NSCL) 42
4.8 Local API (GSCL <-> NACL) . 43
4.9 Bandwidth Measurements . 43

4.9.1 Communicating through the NSCL . 43
4.9.2 Communicating through the Local API 43

4.10 Discussion . 43
4.10.1 Main Obstacles . 43

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future Work . 45

A ETSI classes changes 47
A.1 XML Imports . 47
A.2 Jackson Annotations . 47
A.3 Custom Serializers and De-Serializers . 48

List of Figures

2.1 Model comparison . 6
2.2 OSI Layers . 6
2.3 Machine-to-Machine high level architecture. From [1]. 9
2.4 M2M Service Capabilities functional architecture framework. From [1]. 11
2.5 Base SCL on ETSI’s standard. Adapted from [2] 12
2.6 Simplified Gateway ETSI resource tree. 13
2.7 Simplified Network Application ETSI resource tree. 14
2.8 HTTP packet size . 18
2.9 CoAP resource-observe. From [3]. 19
2.10 CoAP packet size . 19
2.11 MQTT packet size . 20
2.12 AMQP functionality overview. From [4] . 20
2.13 AMQP packet size . 21
2.14 IEEE 11073 Framework. From [5]. 22
2.15 Continua Alliance profile of standards. From [5]. 22

3.1 UML 2.0 Use Case Diagram for the study scenario 26
3.2 Architectural overview of integrated solution 26
3.3 Mobile M2M Gateway’s Architecture . 28
3.4 Protocol Manager Architecture . 29
3.5 Network Application Architecture . 31
3.6 Mapped Gateway ETSI resource tree. 32
3.7 Mapped Network Application ETSI resource tree. 32
3.8 NSCL as information forwarder. 34

4.1 Sequence diagram of the communication held between the GSCL and the NSCL. 41
4.2 Procedure to check if Subscription created by this GSCL is present. 43

ix

x LIST OF FIGURES

List of Tables

xi

xii LIST OF TABLES

Abreviaturas e Símbolos

CoAP Constrained Application Protocol
HTTP Hypertext Transfer Protocol
M2M Machine to Machine

xiii

Chapter 1

Introduction

In a society irreversibly marked by the everyday use of technology, new ways to automatically

share this data and automate systems and decisions are constantly emerging. Machine-to-Machine

(M2M) solutions are becoming increasingly popular, for the great scalability they provide, and

because they generally make people’s lives easier. An easily understandable example of M2M

system is GPS (Global Positioning Satellites) [6, 7]. There is no human interaction, and yet by

gathering and processing data from satellites, it is able to compute the user’s current position. The

ease of use of these systems grant them the massive adoption they hold in today’s society.

The concept of the Internet of Things (IoT), explained in [8] by Atzori, Iera and Morabito,

states that in the near future, everyday objects as simple as food packages, paper documents or

even furniture will have the ability to be connected to each other and to the Internet, providing

services that can hopefully ease people’s lives. M2M systems can act as a possible enabler of

this IoT future, by providing the means for the objects to interact with each other and enable the

creation or services that rely on their information.

This dissertation is going to study how the smartphone can fit into this M2M system, in an

health-care scenario, aiming to allow the user to effortlessly make blood pressure or weight mea-

surements and store them in the Cloud. This will allow the user, for example, to conveniently

search his medical measurements history. The use cases and scenario in study are detailed in

Section 3.1.

The context of the project in which this dissertation is inserted, is explained in Section 1.1,

followed by the motivation for studying the subject at hand, in Section 1.2. The objectives this

dissertation aims to achieve are stated in Section 1.3, before a brief explanation of the document’s

structure, in Section 1.4.

1.1 Context of Project

This dissertation is integrated in a joint project between the Instituto de Telecomunicações

(IT Porto) and Portugal Telecomunicações Inovação (PT Inovação). It involves the creation of a

mobile M2M Gateway using the ETSI M2M standard (explained in greater detail in Section 2.3)

1

2 Introduction

as an Android application. This gateway will aggregate sensor data (either internal or external)

and manage the communication with the M2M network domain, as a proxy for the sensors. The

Gateway was designed to be multi-protocol, and originally implemented with MQTT (Message

Queue Telemetry Transport [9]). HTTP [10] has since then been used to implement the message

exchanges with the server, while CoAP (Constrained Application Protocol [11, 12]) support is on

hold and will be added later. AMQP [13] remains a possibility for later addition, although as we

will see in the next Chapter, they will not fit the M2M system. All these protocols are described in

Section 2.5.

Back when the project started in May 2013, it focused in the architectural design and imple-

mentation of the M2M Gateway, with MQTT. The aim was to develop it as modularly as possible,

to ease the addition of protocols and sensors. At the beginning of this dissertation (September

2013), version 0 of the Gateway had been released with the MQTT protocol working (sending

data to PT’s Broker), as well as the Gateways base architecture, which had the ability to gather

the internal sensors data, store it and then send in defined intervals or when the buffer got full. It

also featured the modularity which was desired, having each significant module running in its own

thread, to improve parallel processing and thus overall performance.

1.2 Motivation

Nowadays, the ascension of technology is a given fact, as evident by the well-known Moore’s

Law [14], which has been fairly accurate since the paper was published back in 1965. As today’s

trends focus on the ubiquity of smartphones, there is a massification of applications that aim to

ease people’s lives. Despite this, there are not many applications focused on M2M systems, let

alone mobile M2M scenarios, which inspired this dissertation’s theme.

M2M communications, which will be further explained in Section 2.3, have an important role

in interconnecting sensors and services, providing the means to allow data to be seamlessly stored

and then available to applications authorized to access it. As an example, cities are starting to

explore the possibility of using M2M Smart Grids [15, 16], that allow meter measurements to

be automatically uploaded to the service provider, either it is water, electricity or gas. There are

also other scenarios in smart homes, where M2M communication can be used to autonomously

optimize and manage energy consumption of any applicable appliance that runs on electricity [17].

These and many other scenarios are becoming a reality every day, but the lack of mobile

solutions for the M2M architecture limits its possibilities. Evaluating an health-care scenario, it

should be possible for someone who suddenly felt bad to make a blood pressure measurement,

with a friend’s or pharmacy’s sphygmomanometer, and upload for his doctor’s assessment, storing

it in the service for future reference in his medical history.

These needs provided the proper motivation for the study of this subject, since it will only

be possible if the M2M modules are mobile. Smartphones are then an excellent choice, since

they are permanently around the user, possess the necessary processing, battery, and connectivity

1.3 Objectives 3

power needed for a Gateway, while retaining the mobility necessary to fulfill a new wider range

of scenarios.

Having a smartphone working as an M2M Gateway has its advantages, but since users usually

do their best to save battery power, the smartphone in this dissertation’s scenario is being consid-

ered constrained, so that the application working as the M2M Gateway uses the absolute minimum

resources possible, to fulfill this requirement.

1.3 Objectives

The goal of this dissertation’s project is to create a mobile M2M system composed by a Gate-

way and a Network Application that will work together in a health-care scenario. Both will be

built on a modular structure that can be facilitate the addition of new protocols, sensors and func-

tionalities. The communication between them and the server will be executed with a supported

protocol, following the ETSI M2M communications standard.

The M2M Gateway will gather and process the sensor information and send it to the Network

Application through the NSCL. On the other hand, the Network Application will be able to send

commands to the Gateway, triggering sensor searches and starting/stopping the readings. The

M2M concepts will be further explained in Section 2.3.1 and the Use Cases will be addressed in

Section 3.1.

Given the constrained nature of smartphones, there is a special interest in saving its scarce

resources, and so one of the objectives is also to determine a way to save the battery drain and

network usage on 3G/Wi-Fi networks, by using a local bypass in certain situation.

1.4 Structure

This document is structured in 5 Chapters. After this introduction to the subject of this disser-

tation, Chapter 2 is focused on the bibliographic revision focusing on picturing the current state

of the art of the topics related to this dissertation. On Chapter 3 the complete scenario in study

is explained, explaining the importance of each part to the project’s goal. Then, in Chapter 4, the

future tasks and the work plan for the upcoming semester is detailed, followed by Chapter 5 which

concludes this document with some final remarks about the dissertation.

4 Introduction

Chapter 2

State of the Art

In this Chapter there is going to be a closer study of M2M communications, explaining its

importance in the evolution of information technology. This Chapter aims to help the reader fully

understand the technologies involved in the development of this dissertation’s project.

First off, a useful explanation of the Publish Subscribe paradigm on which the M2M commu-

nication is based is explained in Section 2.1, followed by an overview of the OSI Layers on which

every networking communication relies, on Section 2.2.

First, in Section 2.3, there is going to be a wider approach into machine-to-machine communi-

cations, followed by the ETSI proposed general architecture in Section 2.3.1. Then a a deeper look

will be taken into the role of a Gateway in the general M2M architecture (2.3.1.2), followed by the

role of a Network Application (2.3.1.3), followed by the most common marshalling techniques

such as XML and JSON in Section 2.4.

This will pave the way for a deeper look into the more commonly discussed protocols to

provide M2M communications, namely HTTP, CoAP, MQTT and AMQP, respectively in Sec-

tions 2.5.1, 2.5.2, 2.5.3 and 2.5.4.

Then, in Sections 2.7.1 and 2.7.2, the IEEE 11073 standard and the Continua Alliance pro-

tocol will be detailed, followed by an application revision of the systems currently using these

technologies in health-care scenarios.

Last but not least, the Section 2.8 will resume this Chapter’s study.

2.1 Publish-Subscribe Paradigm

As wireless grew, by 2002, the author of [18] stated that: "Wireless has experienced explosive

growth in recent years, and ’push’ will be the predominant wireless service delivery paradigm

of the future". Push is another term for the publish subscribe paradigm that basically refers to

systems that have the architecture necessary for users to subscribe to a topic, message, publisher,

etc., and receive all the subsequent updates about it. The usual web paradigm needs a request if

information is desired (polling), but this is inefficient as it overloads the servers with unnecessary

requests, slowing down the response times.

5

6 State of the Art

Please note Figure 2.1, for the exact same interaction. In 2.1a the client is polling the server

for the publisher’s content, having the need to re-poll whenever there is new content. On the other

hand, in Figure 2.1a, the client only has the need to subscribe once, to receive notifications for the

following publications, until the subscription is canceled.

(a) Request-Response model (b) Publish-Subscribe model

Figure 2.1: Model comparison

Publishers and subscribers do not need to be actively participating in the interaction at the

same time, or even know about each other. They can both produce and consume events in an

asynchronous way (i.e. not online at the same time), which allows for very flexible scenarios.

2.2 Networking Layers - OSI Model

The Open Systems Interconnection, or OSI model (ISO/IEC 7498-1 [19]), was created by the

International Organization for Standardization (ISO) and the International Electrotechnical Com-

mission (IEC) in order to create an abstraction model where each layer had a specific objective of

providing some communication characteristics for the layer above, and together create a functional

and reliable system. The OSI model Layers are shown in Figure 2.2 and explained below.

Figure 2.2: OSI Layers

2.2 Networking Layers - OSI Model 7

Physical Layer

The physical layer is the lowest layer in the model, and assures that the information reaches

its destination properly. This means encoding it in its binary form, and making sure that the

destination knows how to decode it afterwards. It is also the layer responsible for knowing its

connection to the medium, and how each specific connector or pin works, while also determining

the appropriate transmission technique (if analog or digital), and how many volts/db should be

used to ensure a safe transmission [19, 20].

Data Link

This layer ensures error-free data frames exchange between nodes over the physical layer. It

the connection between nodes, while performing all the actions to ensure that frames are being

successfully transmitted: Traffic control ensures that data is only transmitted when frame buffers

are available; Sequencing ensures that the frames are transmitted and received sequentially; Frame

acknowledgment ensures that the data frames are correctly received by providing and expecting

acknowledgments. If error occur, non-acknowledged frames are re-transmitted; Delimiting pro-

vides the creation and recognition of the frames boundaries; Error checking provides integrity

checks on every frame received.

The Data Link also manages which node has access to the physical medium at any time [19, 20].

Network Layer

First, the Network Layer provides a communication sub-network (subnet) that nodes can con-

nect to, where each node has an unique address. This layer is responsible for handling the ex-

change of frames (datagrams) between nodes, by choosing the best route for it, and deciphering

the physical location of each logical address or name. This layer may also fragments the data-

grams, which will be reassembled at the destination, and it is also responsible for handling the

traffic in the router, when its buffers fill up. This layer does not guarantee reliable delivery of

datagrams [19, 20].

Transport Layer

The Transport Layer assures quality of service to the layers above, guaranteeing error-free

deliveries with no loss or duplication. This allows the upper layers to focus on other aspects of

the communication, while knowing that the message will be properly received at the destination,

behaving as an end-to-end layer (does not know how it connects to the destination, only that the

messages reach it). This layer is responsible for providing message segmentation, where messages

sent from above layers are split into smaller units and sent to the network layer while it handles

the reliability of deliveries with acknowledgments control [19, 20].

Session Layer

This layer provides session (virtual connection between points of contact) control. This means

managing the creation and termination of connections between two applications processes on dif-

ferent machines. It also provides the associated session support such as security, name recognition,

logging, etc.[19, 20].

8 State of the Art

Presentation Layer
This layer is responsible for how the data is shown on the Application Layer. It translates the

data from the format used by the Application Layer to an easier format for the transport, and then

re-translate it into an Application Layer format at the receiving end. This layer is also responsible

for data compression and encryption, reducing the size of the message to send, and providing

security for sensitive information such as passwords [19, 20].

Application Layer
This layer is the closest to the end user, meaning that users or application processes can access

it, with the quality of service guarantees provided from all the layers below. The applications

running on top of this layer fall out of the OSI scope, but most protocols fall in this category, such

as the those studied in Section 2.5 [19, 20].

2.3 M2M Communications

"The exponential growth of wireless communication devices and the ubiquity of wire-

less communication networks have recently led to the emergence of wireless machine-

to-machine (M2M) communications as the most promising solution for revolutioniz-

ing the future “intelligent” pervasive applications", [7]

As technology advances, machine-to-machine (M2M), which can also be called machine-type

communications (MTC), will continue to increasingly replace the traditional human-to-machine

(H2M) operations [17]. By definition, M2M communications is a term used to refer to data com-

munications without or with limited human intervention amongst various terminal devices such

as computers, embedded processors, smart sensors/actuators and mobile devices, etc. [21]. Since

M2M, as opposed to H2M, does not need user interaction to provide their service, the devices com-

municating with each other have some degree of decision making, and thus the services provided

can be at some extent considered intelligent, as the quote above, from [7], suggests.

The journey towards having a wide range of devices using M2M to communicate each other

converges into the Internet of Things (IoT) paradigm, which in essence states that if devices (tags,

sensors, actuators, mobile phones, etc.) can be uniquely addressed, they will be able to interact

with each other and cooperate to reach common goals [8].

This raising interest in M2M communications arises due to the impact possibilities for both

domestic (e.g. domotics, assisted living, e-health, etc.) or working (e.g. automation, indus-

trial manufacturing, logistics, business/process management, etc.) fields [8]. In mobile scenarios

M2M communications can allow for resource optimization, optimizing the usage of energy, net-

work resources, computational cost, etc., allowing for more efficient and cheaper solutions for

the consumers [3, 7]. Some interesting statistics are shown in [17], stating that the number of

M2M-enabled devices (terminals) is increasing exponentially, forecasted to grow from 50 million

in 2008 to well over 200 million in 2014, and up to 50 billion by 2020.

As the growing interest in M2M communications increased, so did the need to standardize it,

so that the roughly 50 billion devices to exist in 2020 can have the ability to communicate with

2.3 M2M Communications 9

each other. The standardization and currently accepted M2M architecture are going to be detailed

in the next Section.

2.3.1 ETSI M2M Standard

In 2005 3GPP started with the standardization of M2M in the Global System for Mobile

(GSM) and the Universal Mobile Telecommunications Systems (UMTS). In 2007 the technical

report (TR) 22.868 (release 8) [22] completed the study on facilitating Machine-to-Machine com-

munications in 3GPP systems, after which the 3GPP working group for M2M standardization was

organized.

In January 2009 the European Telecommunications Standards Institute (ETSI), which is the in-

dependent and non-profit standardization organization in the telecommunications industry, picked

up where 3GPP left of and continued the standardizing process of M2M, defining entities and func-

tions to provide efficient end-to-end information delivery. ETSI published the Technical Specifica-

tion (TS) 102 689 [23] with the M2M service requirements, and TS 102 690 [1] with the functional

architecture for M2M.

The system architecture is based on current Network and Applications domain standards, and

it is extended with M2M Applications, and with the Service Capability Layer (SCL) as a key

functionality in the M2M service platform. This layer provides the different elements in the M2M

architecture with a consistent resource tree, allowing information to be shared between them. The

elements of that resource tree are called Service Capabilities (SCs), which is where the information

is kept.

Figure 2.3: Machine-to-Machine high level architecture. From [1].

10 State of the Art

Figure 2.3 presents the high level view of the ETSI M2M system architecture within the scope

of [23, 1]. Two domains are depicted: The M2M Device domain and the Network and Application

domain.

The elements present in the Device and Gateway domain are:

• M2M Device: Device that runs M2M Applications using M2M Service Capabilities (SCs).

Devices can connect to the Network Domain in two ways:

Direct Connectivity: Directly connects to the Network Domain, performing all the

procedures such as registration, authentication, authorization, management and provisioning

with the Network Domain.

Gateway as a Network Proxy: Using the M2M Area Network, the device connects to

a M2M Gateway that acts as a proxy, handling all the procedures mentioned above. Devices

can connect to the Network Domains via multiple M2M Gateways.

• M2M Area Network: Provides connectivity between the M2M Devices and M2M Gate-

ways.

• M2M Gateway: The Gateway runs M2M Application(s) using M2M SCs. It acts as a proxy

between the M2M Devices and the Network Domain, and it may provide a legacy service

to other devices that are hidden from the Network Domain.

The elements present in the Network Domain are:

• Access Network: Allows the M2M Device and Gateway Domain to communicate with the

Core Network.

• M2M Core: The M2M Core is composed by the Core Network (CN) and the M2M Service

Capabilities (SCs):

Core Network: provides IP connectivity, interconnections, and roaming capabilities

within the M2M core.

M2M Service Capabilities: The SCs provide M2M functions that are to be shared

by different Applications, exposing those functions through a set of open interfaces. It

simplifies and optimizes application development and deployment through hiding network

specificities.

• M2M Applications: Applications that run the service logic and use M2M Service Capabil-

ities accessible via an open interface.

• Network Management Functions: Consists of all the functions required to manage the

Access and Core networks. These include Provisioning, Supervision, Fault Management,

etc.

• M2M Management Functions: Consists of all the functions required to manage M2M

Service Capabilities in the Network Domain. The management of the M2M Devices and

Gateways uses a specific M2M Service Capability, such as the M2M Service Bootstrap

Function (MSBF) or the M2M Authentication Server (MAS).

2.3 M2M Communications 11

See Figure 2.4. The interface between a M2M application in the M2M Device Domain and

the M2M Service Capability (SC) in the Network and Application Domain is termed mIa; the

interface mId is between a M2M device or M2M gateway and the M2M SC in the Network and

Application Domain; and the dIa interface is between a M2M device or M2M gateway and the

M2M at the same device.

Representational State Transfer, or just REST [24], is the dominant approach in client-server

communications, that allows for stateless communication (meaning it does not need to be synchro-

nized nor have an open session), cacheable resources and resource operations. The latter allows

the use of CRUD verbs (Create, Retrieve, Update, Delete), which can largely reduce implementa-

tion efforts. Since REST is widely adopted and can be easily applied to M2M communications,

RESTful protocols (which allow for stateless communications) are encouraged [25, 1].

Figure 2.4: M2M Service Capabilities functional architecture framework. From [1].

As mentioned above in the M2M Management Functions of the Network Domain, one of

its responsibilities is the handling of the Bootstrap procedures. These procedures provide a way

to securely connect the different entities using certificates and private keys. Every entity has a

pre-provided certificate-key pair that allows them to receive a session key, which is then used to

encrypt the communications with TLS (HTTP) or DTLS (CoAP). The protocol specificities will

be discussed in Sections 2.5.1 and 2.5.2 for HTTP and CoAP respectively.

The next Sections will focus on understanding the resource structure provided in the standard.

2.3.1.1 Resource Structure

The ETSI resource structure is shown in Figure 2.5 and illustrates the different kinds of re-

sources and how they are connected to each other. The structure diversity is based on alternating

arrays and single resources. This Figure illustrates how this standard is very open to interpretation,

since it can have a varying tree size for every resource.

Analyzing the Figure it in greater detail, and knowing that the resources surrounded by ’<’ and

’>’ are arrays, it becomes easy to recognize how connected every resource is, since for instance,

inside the <scls> there is a scl resource (or more since scls is an array), and that inside the scl

12 State of the Art

resource there is quite a number of arrays, that have the exact same structure as the ones below

<sclBase>, on the left.

Different M2M elements have varying resource trees, so the next Sections will show what

changes between a Gateway and a Network Application.

Figure 2.5: Base SCL on ETSI’s standard. Adapted from [2]

2.3.1.2 Gateway

The Gateway entity communicates through the dIa interface with network capable sensors,

and communicates with the NSCL using the mId interface. The latter also effectively connects the

Gateway and sensors M2M domain to the application’s domain, as shown earlier in Figure 2.4 [1,

26].

As seen in the previous Section, each entity may have a resource tree quite large, and for the

purpose of this study there was no need to implement the totality of resources. So, this simplifica-

tion led to Figure 2.6, which represents the important resources for this dissertation’s study.

2.3 M2M Communications 13

Figure 2.6: Simplified Gateway ETSI resource tree.

How these resources are mapped into actual devices and concepts will be discussed in Sec-

tion 3.5.1.

For the Gateway to fully interact with the NSCL using this structure, it has to perform a series

of actions:

• Register the scl resource (with a specific ’sclId’) under the /sclBase/scls target on the NSCL

host.

• Receive the OK response for that registration.

• Receive a subscription from the NSCL on the scl resource just created.

• Register the application resource (one or more) under /sclBase/scls/’sclId’/applications.

• Receive the OK response for each application resource registered.

• Receive a subscription from the NSCL on the (one or more) application resource registered.

• Register a certain container resource belonging to the application ’appId’ under

/sclBase/scls/’sclId’/applications/’appId’/containers.

• Receive the OK response for that registration.

• Receive a subscription from the NSCL on the container resource just registered.

• Register a contentInstance resource belonging to the container ’containerId’ with under

/sclBase/scls/’sclId’/applications/’appId’/containers/’containerId’/contentInstances.

• Receive the OK response for that registration.

Being based in the publish-subscribe paradigm, subscriptions are needed to advance to the next

step. These actions illustrate the path taken to create the registration for one specific resource. The

last resource (contentInstance) is carries the information regarding the registered resource (for

example heart-rate measurements) encoded in Base64 [27].

14 State of the Art

2.3.1.3 Network Application

On the other hand, the Network Application entity communicates through the mIa interface

with the NSCL (as shown in Figure 2.4), that in turn may provide a different communication

interface apart from ETSI, to reach a wider range of Applications that do not need to know the

ETSI communication specificities [1, 26].

Just as in the previous Section there were some simplifications to the resource tree, that resulted

in Figure 2.7’s representation, which will be the base structure used in this dissertation’s study.

Figure 2.7: Simplified Network Application ETSI resource tree.

How these resources are mapped into tangible concepts will be discussed in Section 3.5.1.

For the Network Application to fully interact with the NSCL using this structure, it has to

perform a series of actions:

• Register the application resource (with a specific ’appId’) under the /sclBase/applications

target on the NSCL host.

• Receive the OK response for that registration.

• Receive a subscription from the NSCL on the application resource just created.

• Register a certain container resource under /sclBase/applications/’appId’/containers.

• Receive the OK response for that registration.

• Receive a subscription from the NSCL on the container resource just registered.

• Register a contentInstance resource belonging to the container ’containerId’ with under

/sclBase/applications/’appId’/containers/’containerId’/contentInstances.

• Receive the OK response for that registration.

Being based in the publish-subscribe paradigm, subscriptions are needed to advance to the next

step. These actions illustrate the path taken to create the registration for one specific resource. The

last resource (contentInstance) is carries the information regarding the registered resource (for

example heart-rate measurements) encoded in Base64 [27].

2.4 Marshalling 15

2.3.1.4 Mobile Considerations

Given the importance of being transparent to the user about the use of their hardware, the

most important resources of a mobile M2M system are data transmission and energy efficiency,

reliability and security [3, 7], so that the impact of the running the service does not affect the

normal use of the device. It is also critical that only someone with permissions over the smartphone

can trigger its functionalities, so that personal data is not misused.

Using the smartphone to implement a M2M Gateway stresses the issues just mentioned. Users

tend to be self-aware of the battery power of their phones, as they need it to be able to commu-

nicate, so a M2M Gateway needs to be considered constrained, keeping the footprint as low as

possible, and work unnoticed by the user.

2.4 Marshalling

Marshalling, or Serializing, is the nomenclature given to the process of encapsulating data

for storage or transport, so that it can be easily processed by different systems. Since marshalling

techniques exist in most programming languages available, it allows for interoperability of services

by using standards readable by both machines and humans [28].

The most common types of marshalling languages are XML and JSON, and both will be

explained in the next Sections.

2.4.1 XML

The eXtensible Markup Language, commonly known as XML, was first released in a World

Wide Web (W3C) draft in 1996 [29] as a derivation from the Standard Generalized Markup Lan-

guage (SGML), which had been standardized in the International Organization for Standardization

(ISO) in ISO 8879 [30]. XML 1.0 was originally submitted for standardization on an RFC (Re-

quest for Comments) in 1998 [31] and has since become one of the most widely used markup

languages. It is, for instance being used in Android OS for detailing the layout specifications and

the permissions needed to run the application.

An XML example is below:

<person>

<firstName>John</firstName>

<lastName>Smith</lastName>

<age>25</age>

<address>

<streetAddress>21 2nd Street</streetAddress>

<city>New York</city>

</address>

<phoneNumbers>

<phoneNumber type="home">212 555-1234</phoneNumber>

<phoneNumber type="fax">646 555-4567</phoneNumber>

16 State of the Art

</phoneNumbers>

<gender>

<type>male</type>

</gender>

</person>

After parsing, the variables would be:

<person firstName="John" lastName="Smith" age="25">

<address streetAddress="21 2nd Street" city="New York"/>

<phoneNumbers>

<phoneNumber type="home" number="212 555-1234"/>

<phoneNumber type="fax" number="646 555-4567"/>

</phoneNumbers>

<gender type="male">

</person>

2.4.2 JSON

JavaScript Object Notation (JSON), was originally specified in [32] as a less verbose alter-

native to XML, featuring pairs of attribute-value, and it is currently in use in the many server-

application communication systems. It is used primarily to transmit data between a server and

web application, as an alternative to XML. Its official and most widely used MIME type is "appli-

cation/json".
A JSON schema example from [33] is below. As intended it is very readable, while maintain-

ing the ability to be parsed automatically.

{

"title": "Example Schema",

"type": "object",

"properties": {

"firstName": {

"type": "string"

},

"lastName": {

"type": "string"

},

"age": {

"description": "Age in years",

"type": "integer",

"minimum": 0

}

},

"required": ["firstName", "lastName"]

}

2.5 M2M Protocols 17

2.5 M2M Protocols

Given the ascension of M2M demand, protocols started to shift their focus onto M2M scenar-

ios. In this Section, protocols that can be applied to these communications will be studied.

Section 2.5.1 will focus on explaining the most commonly used web protocol, HTTP. Then, in

Section 2.5.2, CoAP will be studied, followed by MQTT and AMQP in Sections 2.5.3 and 2.5.4

respectively. Although all these protocols can be used in M2M scenarios, only HTTP and CoAP

are supported by the ETSI standard, because of their stateless and REST approach.

2.5.1 HTTP

Hypertext Transfer Protocol, or HTTP [10, 34], is the most well known protocol currently

available. Nearly every website is transmitted over HTTP or its secure version HTTPS, which

adds TLS (Transport Layer Security [35]) to encapsulate the HTTP packets.

HTTP started to be used in the early 1990’s World-Wide Web global information initiative

only being proposed as standard in 1997 [36], receiving that status in 1999 with version 1.1 [10].

It can use TCP [37] or UDP [38] as Transport Layer protocols, but TCP is much more common

because of the reliability it provides.

It relies heavily on Uniform Resource Identifiers (URI) [39] to uniquely identify names of web

resources, to be able to execute methods on them. HTTP provides a variety of request methods

(also known as verbs) to allow for versatile communication between clients and servers.

GET This verb requests the server for a representation of the specified resource (i.e. a Download)

POST This verb sends some information from the client to the server (i.e. submitted online form,

login, etc.)

PUT This verb requests the server to store the sent entity at the destination URI.

DELETE This verb requests the deletion of the specified resource.

HEAD This verb executes a request similar to a GET, but without receiving the body of the re-

sponse. This is useful to retrieve meta-information.

TRACE This verb is returned unchanged by the server, so that a client can see if any changes occurred

during transit.

OPTIONS This verb returns the verbs supported by the server for that specific URI.

CONNECT This verb is used to request a connection to a TCP/IP tunnel, which is useful for creating

SSL/TLS encrypted communications when the client is behind an unencrypted proxy.

PATCH This verb is used to partially modify a resource.

The normal HTTP packet, is illustrated in Figure 2.8.

18 State of the Art

Figure 2.8: HTTP packet size

2.5.2 CoAP

The Constrained Application Protocol (CoAP) [11] is a lightweight protocol designed for con-

strained devices (with low memory, processing power, etc) and constrained networks (e.g low

power, lossy), and specially fulfilling M2M requirements. It is currently a final IETF draft (ver-

sion 18), and awaiting the RFC standardization in the near future.

Its simple interface and applicability was demonstrated in the 2013 ETSI plug-tests where it

was shown that in an event with eight companies with several different CoAP implementations of

clients and servers, the interoperability rate was 94.1% [40].

CoAP derives from Representational State Transfer (REST), explained in Section 2.3.1, fo-

cused for the use in constrained networks and nodes in M2M applications [3]. To identify re-

sources Uniform Resource Identifier (URI) [41] are used, just like in HTTP. CoAP is also easily

translated to HTTP for integration with the Web while accomplishing specialized requirements,

such as multicast support, built-in resource discovery, block-wise transfer, observation, and sim-

plicity for constrained environments [42]. This allows for compatibility with existing systems.

Being RESTful in is nature, CoAP allows four HTTP verbs to be used: GET, POST, PUT and

DELETE. But unlike HTTP, where transactions are always client-initiated, and GET operations

must be repeatedly performed (polling), CoAP has an asynchronous approach to support pushing

information from servers to clients: observation (see Figure 2.9). In constrained environments,

the polling wastes to many resources, and CoAP addresses this with a special GET request, where

a client can indicate its interest in further updates from a resource by specifying the OBSERVE

option. If the server accepts this option, the client becomes an observer of this resource and

receives an asynchronous notification message each time it changes. Every notification is identical

in structure to the response to the initial GET request [42]. This model is an attempt to achieve

stateless publish-subscribe communication, ideal for devices with fewer resources.

2.5 M2M Protocols 19

Figure 2.9: CoAP resource-observe. From [3].

The clients do not need to maintain state, i.e., the client can be stateless. Furthermore, in order

to implement CoAP in constrained small devices (memory available, computational and power

consumption restrictions), the transport protocol is User Datagram Protocol (UDP) [43] and the

protocol overhead in the header can be up to 4 bytes. Reliability can be implemented by an

optional stop-and-wait protocol, and security by the use of Internet Protocol Security (IPsec) [44]

or Datagram Transport Layer Security (DTLS) [45]. CoAP also supports TCP [46] connections,

which add reliability of delivery, but increases the overhead of each message, which is not ideal

for constrained situations.

The CoAP packet is illustrated in Figure 2.10.

Figure 2.10: CoAP packet size

2.5.3 MQTT

MQ Telemetry Transport (MQTT) [9] is a lightweight broker-based publish/subscribe messag-

ing protocol designed to be open, simple, lightweight and easy to implement.

These characteristics make it ideal for use in constrained environments just like a smartphone.

It is a protocol developed by IBM to address the issue of reliable M2M communications [9].

20 State of the Art

It is Based on publish/subscribe paradigm associated with topics. It is connection oriented,

used over TCP and features 3 quality of service (QoS) levels for assuring delivery (no retransmis-

sion, re-transmit once and re-transmit until received). Can be used for PUSH applications, to save

the constrained device to have to answer to requests, saving messages, and thus processing power

and battery.

The underlying TCP connection causes MQTT to have a bigger overhead than other protocols

such as CoAP, which in evidenced in the protocol comparison tests done in [3].

The CoAP packet is illustrated in Figure 2.11.

Figure 2.11: MQTT packet size

2.5.4 AMQP

The Advances Message Queue Protocol (AMQP) [47] is an open standard application layer

asynchronous protocol for message oriented middleware. It uses the publish-subscribe model

defined earlier in Section 2.1

AMQP uses brokers (servers) to receive messages from publishers, and route them to con-

sumers. Figure 2.12 gives a high level perspective of the protocol. [4] has a simple explanation

of the functionality of the protocol: "Messages are published to exchanges, which are often com-

pared to post offices or mailboxes. Exchanges then distribute message copies to queues using rules

called bindings. Then AMQP brokers either deliver messages to consumers subscribed to queues,

or consumers fetch/pull messages from queues on demand".

Figure 2.12: AMQP functionality overview. From [4]

In terms of security, AMQP implements SASL [48] and TLS [49]. Figure 2.11 illustrates the

AMQP packet size.

2.6 Security Mechanisms 21

Figure 2.13: AMQP packet size

2.6 Security Mechanisms

2.6.1 X.509 Certificates

[50]

2.6.2 RSA Criptography

[51].

2.7 E-Health Technologies

In this Section, the current health-care standards are going to be presented, as the scenario of

this dissertation’s project is focused on this subject.

2.7.1 ISO/IEEE 11073

The ISO/IEEE 11073 is the family of standards for medical devices that was originally called

IEEE 1073, or just X73 [52]. It arose in 1982 with the need for easy to use (plug-and-play) medical

grade equipment for operating rooms or bedside monitoring in intensive care units (ICU), aiming

for real-time and efficient exchange of data [53]. In the past decade, the IEEE 11073 has focused

on developing Personal Health Devices (PHD) standards, standardizing functions for each of the

OSI layers mentioned in Section 2.2.

Figure 2.14 shows the IEEE 11073 Framework as of 2012, where several device specializa-

tions can be depicted. The main goal of all these standardizations is to facilitate the development

of equipment to monitor people’s well-being inside or outside of hospitals and provide interoper-

ability on medical grade equipments. These standards are not available for public scrutiny, causing

details on them to be scarce.

22 State of the Art

Figure 2.14: IEEE 11073 Framework. From [5].

On Android OS version 4.0 (API 14), a Bluetooth Health API was introduced, facilitating the

integration with devices following the IEEE 11073 specifications [54].

2.7.2 Continua Alliance

The Continua Health Alliance [55] is a profile of standards built on top of the IEEE 11073

family. Its goal is to provide the application layers with semantic interoperability, to further allow

communication between devices and services. Figure 2.15 shows how the protocol builds around

IEEE 11073 to allow for greater interoperability with a wider range of devices [5].

Figure 2.15: Continua Alliance profile of standards. From [5].

Currently the Continua Alliance has a set of guidelines for manufacturers to follow, to provide

them with the proper certification, ensuring the compatibility of all Continua certified devices. The

details of these guidelines and of the resulting communication protocol are proprietary, and thus

not available for deeper discussion in this state-of-the-art.

2.8 Conclusion

The ETSI M2M standard appears to have an in-depth approach on the concept, and aims to

thoroughly standardize every aspect of the communication between devices and applications. It

2.8 Conclusion 23

does so without ever demanding that certain resource should represent any specific application or

device, leaving it to the interpretation of anyone who wishes to implement it.

The project will be built upon the ETSI standard, and to properly communicate and build a

system, a Gateway and a Network Application will be built, thus implementing the mId and mIa

interfaces. This will have to be done either by HTTP or CoAP, since ETSI does not support MQTT

nor AMQP.

The connection to the sensors may require some implementation of either the IEEE11073 or

the Continua Alliance protocol, as most medical devices uses them. The case may be that the

sensor chosen uses a proprietary protocol.

24 State of the Art

Chapter 3

Mobile M2M System

This Chapter will start by explaining the Use Cases that were important in the concept cre-

ation for this dissertation’s project, in Section 3.1. Then, the Approach will explain the important

functional and non-functional requirements in Section 3.2.

Sections 3.3 and 3.4, will detail the architecture and functionality specificities of both the

Mobile M2M Gateway and the Network Application respectively. This will be followed by the

Technology specifications for this project, on Section 3.7.

Finally, Section 3.5 will explain the interpretations of the ETSI standard that were neces-

sary for the development of this dissertation’s project, followed by the Evaluation metrics in Sec-

tion 3.8.

3.1 Proposed Use Cases

Imagine a scenario where a user enters the proximity of a supported health-care sensors. The

user will be able to use the phone’s bluetooth capabilities to search and list nearby supported

sensors that are previously paired. After listing, he will be able to choose a sensor to connect to,

effectively starting that sensor’s measurements.

The readings taken by the sensors will be shown in the application and the user will be able to

choose the reading(s) he desires to store online. This storage will be supported by a could based

service that will handle the medical information for future consultation by physicians or by the

user itself. From the moment the measurements start the user is capable of stopping the sensor or

saving a specific measurement at any time.

On the chance the user has the Gateway and the Network Application on the same smartphone,

a secure local connection between the two will save the bandwidth referring to the transit of the

sensors measurements through the NSCL and back to the Network Application, also saving battery

in the process. This aims to save the limited smartphone’s resources such as battery and mobile

data bandwidth, while being fully transparent to the user.

25

26 Mobile M2M System

When the user saves the measurements, the data is stored in a supported cloud health-care

application that the user has previously logged in to, building a medical record that a physician or

himself can consult later, with his relevant medical data.

The UML 2.0 Use Case diagram for the scenario just described is present in Figure 3.1, ex-

plicitly defining the user’s possible actions.

Figure 3.1: UML 2.0 Use Case Diagram for the study scenario

3.2 Approach

The high-level system architecture is shown in Figure 3.2. Here, the M2M Gateway will take

advantage of the smartphone’s connectivity abilities, connecting to sensors via bluetooth while

communicating with the NSCL via Wi-Fi, just as the Network Application. This system aims

to allow to user easily control the way he connects to supported health-care devices and sees

information relevant to him.

Figure 3.2: Architectural overview of integrated solution

The Gateway and Network Application work as a system to fulfill the Use Cases explained in

the previous Section.

To tackle the M2M mobility issue explained in Section 1.2, this dissertation’s approach relies

on a versatile mobile Gateway, that will have to accommodate the following functional and non-

functional requirements.

3.3 Mobile Gateway 27

Functional requirements:

• Support disconnection and save any unsent data for next connection.

• Support a Web Server that allows the reception of requests and subscriptions from the

Server.

• Support health-care external sensors:

Heart-Rate monitor.

Sphygmomanometer.

Scale.

• Support API for local access.

Non-functional requirements:

• Support a modular design.

• Multi protocol support:

HTTP.

CoAP.

MQTT.

AMQP (Low Priority).

• ETSI M2M standard compliant.

3.3 Mobile Gateway

This Section will describe the architecture and functionality of the mobile M2M Gateway. The

original Gateway architecture that was present in Version 0 (mentioned in Section 1.1) has suffered

a massive overhaul to accommodate all the requirements and to better fit the ETSI standard.

The overall design of the gateway is based on the concept of services and threads to run entirely

in the background. Together, they manage the connectivity to the NSCL and to the Sensors, as

shown in Figure 3.3. The design’s main guideline was to build a Gateway as modular as possible,

easing the addition of features, external sensors, protocol implementations so that as the gateway

becomes more complex, there is no need to change the whole code to accommodate small changes.

28 Mobile M2M System

Figure 3.3: Mobile M2M Gateway’s Architecture

The gateway application is built with one service and it starts when the phone boots or when a

specific Intent (Android inter-process communication mechanism) is received. Upon initialization,

it automatically starts the Protocol and Memory Managers as well as the GPS module in separate

threads. Having their own threads and handlers is effective in reducing race conditions and delay

of processing, as the messages are stored and handled in a first-in first-out (FIFO) pile.

The Protocol Manager is responsible for handling status of the network connectivity, as well

as managing the messages to be sent. Upon creation it also starts a local storage file, so that data

is not lost when connection is unavailable. This module is also responsible for the marshalling of

the sensor specific data, so that it is ready to be sent.

As shown in Figure 3.4, and as the name suggests, the Protocol Manager also handles different

Protocols. If the protocol is supported by the ETSI standard, the communication is handled by the

GSCL module, and a Content Instance resource will be created, as described in Section 2.3.1.2.

If however, the protocol is not supported by ETSI, a different route is taken, and it connects

directly to the Protocol Manager (in this case MQTT), to execute the connection to a plugin in the

NSCL (this is not an mId communication as the image may suggest). As the non ETSI protocols

may be synchronous, the Protocol Manager also has a mechanism to reconnect after the internet

connection returns after a drop.

3.3 Mobile Gateway 29

Figure 3.4: Protocol Manager Architecture

At start-up there is still the initialization of the Memory Manager, which has its own thread.

The GPS module starts along side the Memory Manager to start collecting location information

in predefined intervals. This module’s job is to store the sensor’s information in buffers, until it is

passed on to the Internet Manager to be sent to the NSCL.

After all the necessary configurations are completed, the Gateway registers itself and the avail-

able sensors at that moment in the NSCL. It is important to state that the Gateway does not connect

to the sensors and no data is collected before there is a specific command to do so. This assures

that no resources are wasted in this step.

Every active sensor has remotely configurable parameters:

Reading Granularity : Maximum interval between two sensor readings.

Minimum Transmission Granularity : Maximum interval between two sensor transmissions.

Maximum Buffer Size : Maximum amount of phone space that is occupied storing data from

this sensor for later processing.

The data on the buffers stays stored until the transmission granularity is reached or the buffer

gets full. Once this data is "flushed", it is sent to the Protocol Manager for marshalling and

dispatch. In case there is no connectivity, the marshalled information, ready to send, is stored in

the storage file initialized at start up. When connection returns, this storage file is chached into

memory, and the messages are dispatched.

The sensor marshalling process starts with the packaging of the sensors data into a JSON

object. The basic output, shown below with an example from a Zephyr HxM Bluetooth sensor. The

values array is specific to each sensor, where the relevant data can be sent, whereas the remaining

information about the sensor and GPS is common between different types of sensors:

30 Mobile M2M System

{

"values": [

{

"timeStamp": "1397491419169",

"RRinterval": [

"728"

],

"heartRate": "87"

}

],

"sensorModel": "HxM™ BT Heart Rate Monitor",

"sensorSerial": "12:34:56:78:90:AB",

"GPS_Latitude": 40.6299045,

"sensorType": "ZEPHYR",

"GPS_Accuracy": 20,

"GPS_Longitude": -8.6460066

}

This marshalled sensor data is used on the creation of a Content resource, which is an attribute

of the Content Instance resource. The Content automatically encodes the payload in Base64 [27].

The Content Instance is then sent to the NSCL, as explained in Section 2.3.1.2, using one of the

ETSI supported protocols.

The Gateway is also going to support a local API module, that will bypass the communication

locally when the Gateway and the Network Application are in the same smartphone. This local

API is further explained in Section 3.6.

3.4 Mobile Network Application

The Network Application’s design is based on the Gateway, because despite being a different

entity in the ETSI standard, the communication does not differ very much. So, the Network

Application has the architecture depicted in Figure 3.5.

The Main Service was kept from the Gateway’s design, in order to process the Graphical User

Interface data without prejudicing the responsiveness of the Application. The Protocol Manager

works in the same way as it does for the Gateway (see Figure 3.4), except it does not support non-

ETSI protocols. It has the natural changes that the different entities require, and it implements the

communication with the NSCL as explained in Section 2.3.1.3.

Just like the Gateway, and as the Approach Section suggested, with Figure 3.2, the Network

Application also has a local API, that will allow to fulfill the energy and bandwidth requirements

of the Use Cases (as explained in Section 3.1).

3.5 ETSI Interpretation 31

Figure 3.5: Network Application Architecture

3.5 ETSI Interpretation

The ETSI M2M standard is undoubtedly very complete when it comes to the message ex-

changes between all parties. This includes which attributes should or should not be sent in each

message, and what are the procedures in case of failure or success. However, it does not map its

resources onto tangible things, leaving it open to interpretation. This Section explains the inter-

pretation made for the purpose of this dissertation’s project development.

3.5.1 ETSI mapping

Given the tree-like structure of the data (as shown in Figure 2.5), it made sense that the lower

on the tree, the closest the mapping would be of a physical device. The mapping for the M2M

Gateway arose from this, associated with the nature of the ContentInstance resource. The latter

has an attribute that stores data encoded in Base 64, which led to the Container resource being

mapped as a sensor, such as a bluetooth heart rate monitor.

Given this, the Application resource had to somehow generalize the sensors, and as such it

made sense that it group the different kinds of sensors the Gateway can connect to. Relating to the

above example of a Container as a heart rate sensor, the application it would be associated with

would be referring to health care monitoring.

Because of all the different kinds of sensors possible, all handled by the same mobile device,

the Scl resource was though as the smartphone, being the "father" of all the other resources.

This mapping, for the mobile Gateway is illustrated in Figure 3.6.

32 Mobile M2M System

Figure 3.6: Mapped Gateway ETSI resource tree.

Naturally the proof-of-concept Network Application had to have some mapping of its own,

and it differs a little bit from the Gateway. The only information the NA has to deliver are the

commands that manage the Gateway’s actions. Because of this, the Container was literally called

Actions, and the associated ContentInstances carry specific information about the action to be

performed.

The Application resource in this situation has no particular mapping, as it is only a proof of

concept to show that it is possible to control the Gateway remotely. The NA mapping is depicted

in Figure 3.7.

Figure 3.7: Mapped Network Application ETSI resource tree.

3.5.2 Send commands to the Gateway

As shown above in Section 3.4, dedicated to the Network Application, one of the key features

of this dissertation’s project is the ability to control the Gateway remotely since itself, the Gateway

has no User Interface. Using the ETSI standard for M2M, there was the need to somehow map

this interaction. Helped by the PT Inovação’s partners, two approaches were discussed:

First Approach:

In this approach, the data flow would start with the subscription of the resource Applications, by

the GSCL. This subscription would be limited in the NSCL by Access Rights, providing only

3.6 Local API 33

the relevant NA information back to the GSCL. This means that when the NA changes its own

resources, the GW will be notified, containing the relevant actuation data.

Second Approach:

In this approach, when the GSCL is in the process of registering the Container resources, two

different types of resources would be created, one for the GSCL to write in, that would be sub-

scribed by the NACL, and another for the latter to write in, that would be subscribed by the GSCL.

The sensor data would be sent in the container in which the GSCL would write in, and the act-

ing commands would be sent by the NACL Container, triggering the notification for the intended

destination, thus communicating.

Some considerations were taken into account to this decision:

• On the first approach, without the Access Rights limitation by the NSCL, the Gateway would

have an enormous amount of information to deal with, to subscribe all active Application

resources, increasing the network traffic with possibly useless information.

• The first approach is considerably more scalable, since as long as the mechanism for sub-

scribing the Network Applications is working, it will work on every case.

• The second approach would have the NACL write data in a Container that did not belong to

itself, which could possibly cause Access Rights issues in the future.

• The second approach would have the GSCL subscribe its own resource, because it would

be changed by the NA.

All things considered the First Approach was chosen, as shown previously in Figure 2.7, where

it becomes clear that the commands information is stored within the NA in the Actions Container.

The second approach had more issues to tackle to begin with, than the other, and was more scalable

and easier to implement.

3.6 Local API

Given the use case , the two major reasons for why a local connection is an interesting choice

are the previously mentioned savings in bandwidth and battery as a consequence. This is partic-

ularly useful in this dissertation’s situation, since the NSCL acts as a intermediary between the

Gateway and the Network Application, as shown in Figure 3.8. Only the information flow since

the subscriptions are already present is shown

34 Mobile M2M System

Figure 3.8: NSCL as information forwarder.

If the Gateway and Network Application are both in the same smartphone, it is unpractical to

keep communicating through the NSCL, when there could be a much easier local connection. The

information would be stored within the Gateway to delivery to the NSCL when the measurement

stops.

(In progress.)

3.7 Technologies

First off, both the mobile M2M Gateway and the Network Application are being built as an

Android Operating System application. This choice was made given the open source nature of

the operating system, which provides easy integration with the external sensors, and because the

programming language is in Java, which was already familiar. The wide range of devices currently

running Android OS was also an important factor since the result of this dissertation may evolve

into a commercially available product.

The main software used in the development was:

• Android Development Kit (SDK) [56].

• IntelliJ Integrated Development Environment (IDE) [57].

• Apache Maven, for the dependency management, and easier integration of the several mod-

ules [58].

• Subversion version control [59].

The frameworks used to implement the use cases were:

HTTP Native Apache HTTP implementation.

CoAP Californium CoAP framework [60].

MQTT Paho-mqtt library (Release 0.4.0, MQTT version 3) [61].

Jackson Jackson is the library used to execute the fast [62] marshalling and de-marshalling of ETSI

resources.

3.8 Evaluation 35

Also, as communication technologies, there was also need to use the Bluetooth, cellular

(2G/3G) and Wi-Fi capabilities to communicate with the NSCL.

3.8 Evaluation

This dissertation is going to be evaluated in according to the goals mentioned in Section 1.3.

To show that the M2M Gateway and proof-of-concept Network Application are fully func-

tional, they must be able to:

GW Have the ability to communicate securely with the NSCL using at least one supported pro-

tocol.

GW Have the ability to register itself and its sensors data onto the NSCL.

GW Have the ability to store sensors information for situations where connection is lost, or for

battery saving purposes.

GW Have a web server implemented, that allows it to receive and process commands that fulfill

the Use Cases explained in Section 3.1.

GW Have the ability to be controlled by both NSCL and local API, with aid of the proof-of-

concept application.

NA Have the same abilities as the Gateway (secure connection, functional communication,

working webserver), to allow the delivery of commands to the Gateway.

NA Have a graphical user interface that allows the user to fulfill the proposed Use Cases (Sec-

tion 3.1).

Both Test the proof-of-concept application ability to fulfill the proposed use cases.

Both Gather Network traffic information on the M2M Gateway:

Communicating through the NSCL;

Communicating through the Local API;

36 Mobile M2M System

Chapter 4

Development

The development of the architectured solution shown in the previous Chapter had its share of

obstacles and difficulties, which are always present in this kind of project. This Chapter aims to

explain the development of each feature and functionality, what were the main difficulties, and

how they were overcome.

First off, the Bootstrap procedures are present in Section 4.1, followed by the ETSI supported

protocols implementation and explanation in Section 4.2. Then, in Section 4.3 the Webserver cre-

ated within the Gateway and Network Application to receive the needed subscriptions is detailed,

before the details of the ETSI resource structure implementation in Section 4.4.

Section 4.5 focuses on the integration of the heal-care sensors, paving the way for the explana-

tion of the Gateway communication with the NSCL as well as the functionalities of the commands,

in Section 4.6. The Network Application’s communication is then detailed in Section 4.7 detailing

how different actions are shown in the user interface.

The proposed Local API is detailed in Section 4.8, followed by some Bandwidth measure-

ments in Section 4.9 comparing the communication with and without the use of this Local API.

Finally, in Section 4.10, there will be a discussion on all the development executed and the

results obtained.

4.1 Bootstrap

As mentioned in Section 2.3.1 the Bootstrap is the first procedure to be executed, either by

the Gateway or by the Network Application (the procedure is the same for both), as it yields the

Session Key (which is a Certificate-Key pair) to be used in the secure connection with the NSCL.

Certificates and private keys were explained in Section 2.6.1 and 2.6.2 respectively.

In order to correctly execute the Bootstrap, the GW or NA have to have use a pre-shared

certificate-key pair, so that they can retrieve the session keys. This pre-shared pair was stored as

a project resource, and is compiled with the applications to allow them to execute this procedure.

After receiving the NSCL answer, the application

37

38 Development

4.2 ETSI Protocol Implementation

The Protocol Manager and its GSCL and NACL sub-modules were built in a very modular way

(as explained in Chapter 3), to allow the use of either HTTP or CoAP protocols to communicate

with the NSCL.

Initial development efforts focused on CoAP, for the communication with the NSCL, but there

were some issues with the Californium CoAP library (suggested by the PT Inovação partners

because they were also using it) and the use of DTLS, since the framework did not provide a

useful API to determine where the configuration and certificate files were located. This forced the

import of the framework’s source code into the project, to set these options. However, since the

NSCL didn’t fully support CoAP at the time, this integration was put on hold, and efforts focused

on the integration of HTTP.

With HTTP, the first stage was to find a library that could connect over TLS using the certifi-

cates retrieved from the NSCL. PT Inovação used an Oracle library, that yielded dependency is-

sues in Android, which ultimately led to the use of the native Apache HTTP libraries shipped with

the Android Operating System. The choice was fruitful, since the connections were successfully

implemented using TLS (v1.2) and also implementing a TLS extension (and ETSI requirement)

called SNI. Server Name Indication (or SNI), allows a server (in this case the NSCL) to provide

different services over the same IP address, provided that the client specifies its destination in the

connection. In this project’s case, the NSCL URI was https://phonegw.nscl.m2m.ptinovacao.pt,

and the SNI "phonegw.nscl.m2m.ptinovacao.pt" was used to differentiate between the different

NSCL instances.

On Android there were some issues with this feature implementation, where the well doc-

umented Android fragmentation [63] was felt. The Apache features that allow the SNI to be

properly implemented in Android were only introduced in API 17 (Android version 4.2), which

means that this functionality limits the number of devices that can use the final application.

4.3 Web-server

The web-server exists both in the GW and NA to allow the NSCL (or each other using the

local API) to subscribe their resources. These are naturally protocol specific, and the CoAP web-

server was never implemented, because the communication development focused on HTTP for the

reasons mentioned in the previous Section.

As had happened on the client, there was some research on HTTP lightweight implementa-

tions, being NanoHTTPD [64] the most interesting. This library was implemented, but the lack

of SSL/TLS support led to its eventual abandon. Since the client was already functional with the

Apache libraries, the Server was also implemented using these, with and without support for TLS.

Since the NSCL still does not use a secure connection to subscribe to the web-server, the TLS is

turned off for now.

4.4 ETSI Resource Structure Implementation 39

Within FEUP there were a few bureaucracy steps1, as well as configuration challenges2, to

allow the web-server to be accessed from the outside of the FEUP network (from PT Inovação, in

Aveiro). All this was an unexpected delay that forced some thoughts on how this implementation

would scale, since normal users do not know or want to mess with their home router configurations.

A solution would be the use of mobile data for this, but assuring that every card had its own

external IP address in an age where IPV4 addresses are scarce, would probably force the shift to

IPV6, with all the inherent costs.

4.4 ETSI Resource Structure Implementation

Implementing the ETSI resource structure was the first big milestone of this dissertation’s

project, since it was a requirement for communicating with the NSCL.

The ETSI documents, specifically the TS 102 921 [26], besides the useful information about

communication, also provided XML schemas for every resource of the structure. With JAXB

(XML marshalling library) it was possible to convert these schemas into Java classes with an-

notations, for automatic marshalling and de-marshalling. The problem faced was that Android

could not understand the annotations because of missing XML libraries. What happens is that

although Android uses XML files to build its user interfaces, it does not implement the core XML

libraries (javax.xml.*) and prevents them to be compiled with the application, because they are

core libraries.

Given this, there were two possible approaches:

• Import the XML libraries under a different package (such as xml.libraries.*) so that they

could get compiled along with the application.

• Use a different library and figure out the best way to make use of the provided classes.

The solution chosen was to use the Jackson library, because of its fast performance on An-

droid OS [62] (even when compared with the native Android JSON library), and because both

approaches meant editing some or all of the provided 120 classes: The first approach meant chang-

ing the imports of every class, while the second meant commenting out the XML annotations and

include a few Jackson when needed (only known by trial and error).

The Jackson JSON approach seemed like the best option on the long run, even though it is

clear that if there are new changes to those classes, they will have to be implemented by hand,

prevent having the same annotation issue as before.

A comprehensive list of the changes executed in the ETSI generated classes can be found in

Appendix A.

1Acknowledgment of the significant help of Assistant Professor Isidro Ribeiro in requesting the port openings to
CICA.

2Acknowledgment of the significant help of Paulo Vaz (IT technician), and Carlos Pereira (Doctorate student in
FEUP) for the help given with this configuration procedure.

40 Development

After all the changes were completed and the applications were successfully marshalling and

de-marshalling the resources using Jackson, the focus shifted on the communication of the GSCL

with the NSCL, but not before integrating a medical sensor to test the data with.

4.5 Sensor Integration

The Gateway’s Sensor Handler was built in a modular way, and each sensor connected has

its own thread to prevent race condition issues. When the sensors are searched, for each sensor

found, a new Container is created, with the sensor name (e.g. ZEPHYR), but these the sensors are

not connected until a specific START command is received. Only then, does the Gateway connect

to the sensor and start collecting data to build and send the ContentInstance resources with. This

was done for scalability, because no sensor is going to consume battery unless specifically started.

Originally the sensor chosen was the Zephyr™ HxM Heart-Rate monitor, because it has an

open Java API for connection and data decoding, with Android examples. This sensor was suc-

cessfully implemented and used for the tests executed during the development of the communica-

tion between the Gateway and the NSCL (explained in the following Section).

Additional health sensors (a medical scale and a sphygmomanometer) integration was planned,

but some bureaucracy issues occurred between PT Inovação and Instituto de Telecomunicações

over a Non-Disclosure Agreement. PT had signed the NDA with a sensor provider (ForaCARE),

for information on their API, and the legal division of PT took over three weeks to re-write the

agreement between the two entities, so that the NDA would also be extended to IT. When the OK

finally arrived, the focus was on building the Network Application and achieving an easy way to

control the Gateway and its sensors, which left the new devices implementation in stand-by.

4.6 Gateway Communication (GSCL <-> NSCL)

The communication between the Gateway and the NSCL focuses on the Scl resource, where

the Gateway is a type of Scl with certain capabilities, hence GSCL.

This communication is shown in Figure 4.1, and explained below.

GSCL->NSCL The first message sent by the Gateway is the POST to create an Scl resource (on

[nsclURI]/m2m/scls). The sclId of the Gateway reference to the device model and serial

number, to assure it is unique and there are no two equal IDs.

[NSCL->GSCL] If this smartphone was previously connected to the NSCL and the

resource already exists, the NSCL returns the HTTP code 405 (Method not Allowed), spec-

ifying that it was a Bad Request. The Gateway then retrieves a list of Scl’s registered on

the NSCL to generate a unique sclId by adding numbers in front, and registers it in a POST

request equal to the first, but with a different ID. This is less than ideal, but there still was not

an agreement with the PT Inovação partners on how to execute the Update of the existing

Scl resources.

4.6 Gateway Communication (GSCL <-> NSCL) 41

Figure 4.1: Sequence diagram of the communication held between the GSCL and the NSCL.

42 Development

[NSCL->GSCL] If the Gateway had never connected to the NSCL or the new uniquely

generated sclID was successfully recognized, the NSCL returns the HTTP code 200 (OK),

with the complete Scl resource in the message body. This happens because the NSCL is

responsible by creating some references that are then sent back to the entity that made the

request (GSCL).

NSCL->GSCL After the successful creation of the Scl resource, the NSCL uses the "link" at-

tribute to subscribe to the Applications collection of said Scl, by sending a POST message

with the Subscription resource to [gsclURI]/applications/subscriptions. This subscription is

stored in the memory of the Gateway, in order to later notify the subscribers, and the next

step of the Gateway registration is triggered.

GSCL->NSCL After the subscription on the Applications collection, the Gateway registers its

Application resources (one or more) on the NSCL Applications collection, by sending a

POST message to [nsclURI/scls/[sclId]/applications, with the attributes needed to success-

fully create the application in the

NSCL->GSCL Creates the Application resource locally, and generates the specific NSCL at-

tributes, and returns 200/OK, with the marshalled resource.

GSCL->NSCL Notifies every subscriber of the Applications collection sending a POST request

with the Notify resource to the specific subscriptionURI, which is an attribute of the Sub-

scription resource.

NSCL->GSCL Returns the HTTP code 200 (OK) for the Notification of each subscriber.

NSCL->GSCL Subscribes each Application resource registered in the NSCL with a POST re-

quest to [gsclURI]/appId/subscriptions.

GSCL<->NSCL Stores the received subscriptions of the Application resources and executes a

Subscription Check procedure (which will be described in Section 4.6.1, with aid of Fig-

ure 4.2) to check if the current Scl (with the same URI) has already subscribed to the

[nsclURI]/m2m/applications/subscriptions collection, which holds the Network Applica-

tions.

GSCL->NSCL If there is no Subscription on the collection, the GSCL subscribes to it, in order

to receive updates on the Container’s associated with it.

4.6.1 Subscription Check

In progress.

4.7 Network Application Communication (NACL <-> NSCL)

In progress.

4.8 Local API (GSCL <-> NACL) 43

Figure 4.2: Procedure to check if Subscription created by this GSCL is present.

4.8 Local API (GSCL <-> NACL)

In progress.

4.9 Bandwidth Measurements

4.9.1 Communicating through the NSCL

In progress.

4.9.2 Communicating through the Local API

In progress.

4.10 Discussion

In progress.

4.10.1 Main Obstacles

In progress.

44 Development

Chapter 5

Conclusions and Future Work

In progress.

5.1 Conclusions

In progress.

5.2 Future Work

In progress.

45

46 Conclusions and Future Work

Appendix A

ETSI classes changes

This appendix will document the changes executed on the classes automatically generated

from the ETSI standard schemas.

A.1 XML Imports

As mentioned in Section 4.4, all the classes were stripped of the "javax.xml.*" imports, as

Android OS does not implement them.

A.2 Jackson Annotations

On some cases (specially when there were JSON Arrays), the removal of the XML imports,

caused errors during serialization an de-serialization, because the Class variable names were dif-

ferent than they should. To fix this, some Jackson annotations had to be done, most of them to

force the variable name into the specified in the documents. The classes that now have Jackson

annotations are:

• AnyURIList.java

• APocHandling.java

• Application.java

• Applications.java

• Container.java

• ContentInstanceCollection.java

• ContentTypes.java

• CreateRequestIndication.java

• NamedReferenceCollection.java

• Scl.java

47

48 ETSI classes changes

• SearchStrings.java

• Subscription.java

• SubscriptionType.java

A.3 Custom Serializers and De-Serializers

Even with the annotations, some classes could only be fully compliant with the ETSI speci-

fications after they had a custom Jackson serializer and/or de-serializer made for them. Only the

class SearchStrings needed a custom serializer. The following list enumerates the ones that needed

a custom de-serializer:

• Application.java

• Container.java

• ContentTypes.java

• Scl.java

• SearchStrings.java

• Subscription.java

These custom made classes are located in the common module of the project, under "pt.ptinovacao.mtom.common.marshallers".

Bibliography

[1] ETSI TS 102 690 V2.1.1 (2013-10) Machine-to-Machine communications (M2M); Func-

tional architecture, 2013.

[2] Chonggang Wang. M2M Service Architecture: Delivering M2M Services Over Heteroge-

neous Networks. IEEE Communications Quality & Reliability 2012 International Workshop,

2012.

[3] Lightweight Internet protocols for web enablement of sensors using constrained gate-

way devices, 2013 International Conference on Computing, Networking and Communica-

tions (ICNC 2013). IEEE, 2013. URL: http://dx.doi.org/10.1109/ICCNC.2013.

6504105.

[4] RabbitMQ. Amqp 0.9.1 model explained. https://www.rabbitmq.com/tutorials/

amqp-concepts.html. Online; accessed 11-02-2014.

[5] Malcolm Clarke, Joost de Folter, Charles Palmer, and Vivek Verma. Building point

of care health technologies on the IEEE 11073 health device standards. In 2013

IEEE Point-of-Care Healthcare Technologies (PHT), pages 117–119. IEEE, January

2013. URL: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=

6461298, doi:10.1109/PHT.2013.6461298.

[6] Aeronautics and National Research Council Space Engineering Board. The Global Po-

sitioning System:A Shared National Asset. The National Academies Press, 1995. URL:

http://www.nap.edu/openbook.php?record_id=4920.

[7] Rongxing Lu, Xu Li, Xiaohui Liang, Xuemin Shen, and Xiaodong Lin. GRS: the green,

reliability, and security of emerging machine to machine communications. IEEE Commu-

nications Magazine, 49(4):28–35, April 2011. URL: http://dx.doi.org/10.1109/

MCOM.2011.5741143, doi:10.1109/MCOM.2011.5741143.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.

Computer Networks, 54(15):2787–2805, 2010. URL: http://dx.doi.org/10.1016/

j.comnet.2010.05.010, doi:10.1016/j.comnet.2010.05.010.

49

http://dx.doi.org/10.1109/ICCNC.2013.6504105
http://dx.doi.org/10.1109/ICCNC.2013.6504105
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6461298
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6461298
http://dx.doi.org/10.1109/PHT.2013.6461298
http://www.nap.edu/openbook.php?record_id=4920
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1109/MCOM.2011.5741143
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010

50 BIBLIOGRAPHY

[9] IBM. Mqtt v3.1 protocol specification. http://public.dhe.ibm.com/software/

dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf, 2010. Online;

accessed 31-01-2014.

[10] R. Fielding, UC Irvine, J. Gettys, Compaq/W3C, J. Mogul, Compaq, H. Frystyk, W3C/MIT,

L. Masinter, Xerox, P. Leach, Microsoft, T. Berners-Lee, and W3C/MIT. Hypertext Transfer

Protocol – HTTP/1.1. RFC 2616, Network Working Group, June 1999. URL: http://

tools.ietf.org/pdf/rfc2616.pdf.

[11] Z. Shelby, Sensinode, K. Hartke, C. Bormann, and Universitaet Bremen TZI. Con-

strained Application Protocol (CoAP) draft-ietf-core-coap-18. IETF Internet Draft, http:

//tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf, August 2013. Online;

accessed 07-02-2014.

[12] C. Bormann, Universitaet Bremen TZI, Ed. Z. Shelby, and Sensinode. Blockwise transfers

in CoAP draft-ietf-core-block-14. IETF Internet Draft, http://tools.ietf.org/pdf/

draft-ietf-core-block-14.pdf, October 2013. Online; accessed 07-02-2014.

[13] S Vinoski. Advanced Message Queuing Protocol. Internet Computing, IEEE, pages 87–

89, 2006. URL: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=

4012603.

[14] GE Moore. Cramming more components onto integrated circuits. Electronics, 38(8),

1965. URL: http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_

Article.pdf.

[15] ETSI TR 102 935 V2.1.1 (2012-09) Machine-to-Machine communications (M2M); Applica-

bility of M2M architecture to Smart Grid Networks; Impact of Smart Grids on M2M platform,

2012.

[16] ETSI TR 102 691 V1.1.1 (2010-05) Machine-to-Machine communications (M2M); Smart

Metering Use Cases, 2010.

[17] Min Chen, Jiafu Wan, Sergio Gonzalez, Xiaofei Liao, and Victor C.M. Leung. A

Survey of Recent Developments in Home M2M Networks. IEEE Communica-

tions Surveys & Tutorials, pages 1–17, 2014. URL: http://www.scopus.com/

inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156,

doi:10.1109/SURV.2013.110113.00249.

[18] Jon Tong-Seng Quah and Guey Long Lim. Push selling—Multicast messages to wireless

devices based on the publish/subscribe model. Electronic Commerce Research and Appli-

cations, 1(3-4):235–246, September 2002. URL: http://www.sciencedirect.com/

science/article/pii/S1567422302000194, doi:10.1016/S1567-4223(02)

00019-4.

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://tools.ietf.org/pdf/rfc2616.pdf
http://tools.ietf.org/pdf/rfc2616.pdf
http://tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf
http://tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf
http://tools.ietf.org/pdf/draft-ietf-core-block-14.pdf
http://tools.ietf.org/pdf/draft-ietf-core-block-14.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4012603
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4012603
http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_Article.pdf
http://web.eng.fiu.edu/npala/EEE5425/Gordon_Moore_1965_Article.pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://www.scopus.com/inward/record.url?eid=2-s2.0-84888162287&partnerID=tZOtx3y1 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6674156
http://dx.doi.org/10.1109/SURV.2013.110113.00249
http://www.sciencedirect.com/science/article/pii/S1567422302000194
http://www.sciencedirect.com/science/article/pii/S1567422302000194
http://dx.doi.org/10.1016/S1567-4223(02)00019-4
http://dx.doi.org/10.1016/S1567-4223(02)00019-4

BIBLIOGRAPHY 51

[19] ISO/IEC. Information technology - open systems interconnection - basic reference model:

The basic model. International Standard 7498-1, ISO/IEC, 1994.

[20] Microsoft. The osi model’s seven layers defined and functions explained. http://

support.microsoft.com/kb/103884, 2002. Online; accessed 06-06-2014.

[21] 3GPP. Service requirements for Machine-Type Communications (MTC); stage 1, release 12.

Technical Report TS 22.368 V12.3.0, 3GPP, 2013.

[22] 3GPP. Technical Specification Group Services and System Aspects; Study on Facilitating

Machine to Machine Communication in 3GPP Systems. Technical Report TR 22.868, 3GPP,

2007.

[23] ETSI TS 102 689 V2.1.1 (2013-07) Machine-to-Machine communications (M2M); M2M ser-

vice requirements, 2013.

[24] Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architec-

ture. http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf,

2002. Online; accessed 07-06-2014.

[25] Guang Lu. Overview of ETSI M2M Release 1 Stage 3 – API and Resource usage, 2011.

[26] ETSI TS 102 921 V2.1.1 (2013-12) Machine-to-Machine communications (M2M); mIa, dIa

and mId interfaces, 2013.

[27] V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. The Base16, Base32, and Base64

Data Encodings. RFC 4648, Network Working Group, October 2006. URL: http://

tools.ietf.org/pdf/rfc4648.pdf.

[28] V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. Schema for Representing Java(tm)

Objects in an LDAP Directory. RFC 2713, Network Working Group, October 1999. URL:

http://tools.ietf.org/pdf/rfc2713.pdf.

[29] W3C. Extensible markup language (xml). http://www.w3.org/TR/WD-xml-961114.

html, November 1996. Online; accessed 31-01-2014.

[30] ISO 8879. Information Processing - Text and Office Systems - Standard Generalized Markup

Language (SGML). ISO Standard, 1986.

[31] M. Murata E. Whitehead, UC Irvine. XML Media Types. RFC 2376, Fuji Xerox Info.

Systems, July 1998. URL: http://tools.ietf.org/html/rfc2376.

[32] Douglas Crockford. The application/json Media Type for JavaScript Object Notation

(JSON). RFC 4627, JSON.org, July 2006. URL: http://tools.ietf.org/html/

rfc4627.

http://support.microsoft.com/kb/103884
http://support.microsoft.com/kb/103884
http://www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
http://tools.ietf.org/pdf/rfc4648.pdf
http://tools.ietf.org/pdf/rfc4648.pdf
http://tools.ietf.org/pdf/rfc2713.pdf
http://www.w3.org/TR/WD-xml-961114.html
http://www.w3.org/TR/WD-xml-961114.html
http://tools.ietf.org/html/rfc2376
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627

52 BIBLIOGRAPHY

[33] json schema.org. JSON Schema. http://json-schema.org/documentation.html.

Online; accessed 10-02-2014.

[34] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Se-

cret. The World-Wide Web. Communications of the ACM, 37(8):76–82, August 1994.

URL: http://dl.acm.org/citation.cfm?id=179606.179671, doi:10.1145/

179606.179671.

[35] T. Dierks, Certicom, and C. Allen. The TLS Protocol, Version 1.0. RFC 2246, Network

Working Group, January 1999. URL: http://www.ietf.org/rfc/rfc2246.txt.

[36] R. Fielding, UC Irvine, J. Gettys, J. Mogul, DEC, H. Frystyk, T. Berners-Lee, and MIT/LCS.

Hypertext Transfer Protocol – HTTP/1.1. RFC 2068, Network Working Group, January

1997. URL: http://tools.ietf.org/pdf/rfc2068.pdf.

[37] Jon Postel. Transmission Control Protocol. RFC 793, Information Sciences Institute, Uni-

versity of Southern California, September 1981. URL: http://www.ietf.org/rfc/

rfc793.txt.

[38] J Postel. User Datagram Protocol. RFC 768, Information Sciences Institute, University

of Southern California, August 1980. URL: http://tools.ietf.org/pdf/rfc768.

pdf.

[39] T. Berners-Lee, MIT/LCS, R. Fielding, U.C. Irvine, L. Masinter, and Xerox Corporation.

Transmission Control Protocol. RFC 2396, Network Working Group, August 1998. URL:

http://www.ietf.org/rfc/rfc2396.txt.

[40] ETSI, IPSO Alliance, and OMA. CoAP 3 & OMA Lightweight M2M

Plugtest. http://www.etsi.org/news-events/past-events/

693-coap-oma-lightweight-m2m, November 2013. Online; accessed 07-02-2014.

[41] N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web Revisited. IEEE Intelligent

Systems, 21(3):96–101, May 2006. URL: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1637364, doi:10.1109/MIS.2006.62.

[42] Carsten Bormann, Angelo P. Castellani, and Zach Shelby. CoAP: An Application Pro-

tocol for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62–67,

March 2012. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=6159216, doi:10.1109/MIC.2012.29.

[43] J Postel and ISI. User Datagram Protocol. RFC 768, ISI, August 1980. URL: http:

//tools.ietf.org/pdf/rfc768.pdf.

[44] Suresh Krishnan and Sheila Frankel. IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap. RFC 6071, IETF, February 2011. URL: http://tools.ietf.

org/html/rfc6071.

http://json-schema.org/documentation.html
http://dl.acm.org/citation.cfm?id=179606.179671
http://dx.doi.org/10.1145/179606.179671
http://dx.doi.org/10.1145/179606.179671
http://www.ietf.org/rfc/rfc2246.txt
http://tools.ietf.org/pdf/rfc2068.pdf
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://www.ietf.org/rfc/rfc2396.txt
http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1637364
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1637364
http://dx.doi.org/10.1109/MIS.2006.62
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6159216
http://dx.doi.org/10.1109/MIC.2012.29
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/pdf/rfc768.pdf
http://tools.ietf.org/html/rfc6071
http://tools.ietf.org/html/rfc6071

BIBLIOGRAPHY 53

[45] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347, IETF, January 2012. URL: http://tools.ietf.org/search/rfc6347.

[46] Jon Postel. Transmission Control Protocol. RFC 793, Information Sciences Institute, Uni-

versity of Southern California, September 1981. URL: http://www.ietf.org/rfc/

rfc793.txt.

[47] OASIS Standard. Oasis advanced message queuing protocol (amqp) version 1.0. http:

//docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.

0-os.pdf. Online; accessed 11-02-2014.

[48] Ed. A. Melnikov, Isode Limited, Ed. K. Zeilenga, and OpenLDAP Foundation. Simple Au-

thentication and Security Layer (SASL). RFC 4422, Network Working Group, June 2006.

URL: http://www.ietf.org/rfc/rfc4422.txt.

[49] S. Blake-Wilson, BCI, M. Nystrom, RSA Security, D. Hopwood, Independent Consultant,

J. Mikkelsen, Transactionware, T. Wright, and Vodafone. Transport Layer Security (TLS)

Extensions. RFC 4366, Network Working Group, June 2006. URL: http://www.ietf.

org/rfc/rfc4366.txt.

[50] D. Cooper, S. Santesson, Microsoft, S. Farrell, Trinity College Dublin, S. Boeyen, Entrust,

R. Housley, Vigil Security, and W. Polk. Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile. RFC 5280, NIST, May 2008. URL: http:

//tools.ietf.org/pdf/rfc5280.pdf.

[51] B. Kaliski and J. Staddon. PKCS 1: RSA Cryptography Specifications Version 2.0. RFC

2437, RSA Laboratories, October 1998. URL: http://www.ietf.org/rfc/rfc2437.

txt.

[52] Jianchu Yao and Steve Warren. Applying the ISO/IEEE 11073 standards to wearable home

health monitoring systems. Journal of clinical monitoring and computing, 19(6):427–36,

December 2005. URL: http://www.ncbi.nlm.nih.gov/pubmed/16437294, doi:

10.1007/s10877-005-2033-7.

[53] Malcolm Clarke, Douglas Bogia, Kai Hassing, Lars Steubesand, Tony Chan, and Deepak

Ayyagari. Developing a standard for personal health devices based on 11073. Con-

ference proceedings : ... Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Con-

ference, 2007(Dim):6175–7, January 2007. URL: http://www.ncbi.nlm.nih.gov/

pubmed/18003430, doi:10.1109/IEMBS.2007.4353764.

[54] Google Inc. Android BluetoothHealth API. http://developer.android.com/

reference/android/bluetooth/BluetoothHealth.html.

[55] Continua Health Alliance. www.continuaalliance.org/.

http://tools.ietf.org/search/rfc6347
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc793.txt
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4366.txt
http://www.ietf.org/rfc/rfc4366.txt
http://tools.ietf.org/pdf/rfc5280.pdf
http://tools.ietf.org/pdf/rfc5280.pdf
http://www.ietf.org/rfc/rfc2437.txt
http://www.ietf.org/rfc/rfc2437.txt
http://www.ncbi.nlm.nih.gov/pubmed/16437294
http://dx.doi.org/10.1007/s10877-005-2033-7
http://dx.doi.org/10.1007/s10877-005-2033-7
http://www.ncbi.nlm.nih.gov/pubmed/18003430
http://www.ncbi.nlm.nih.gov/pubmed/18003430
http://dx.doi.org/10.1109/IEMBS.2007.4353764
http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
www.continuaalliance.org/

54 BIBLIOGRAPHY

[56] Get the Android SDK. http://developer.android.com/sdk/index.html?utm_

source=weibolife. Online; accessed 09-06-2014.

[57] Jetbrains IntelliJ IDEA. http://www.jetbrains.com/idea/. Online; accessed 09-

06-2014.

[58] Apache maven. http://maven.apache.org/. Online; accessed 09-06-2014.

[59] Apache subversion. http://subversion.apache.org/. Online; accessed 09-06-

2014.

[60] Californium (Cf) CoAP framework. http://people.inf.ethz.ch/mkovatsc/

californium.php. Online; accessed 09-06-2014.

[61] Eclipse Paho MQTT. http://www.eclipse.org/paho/. Online; accessed 09-06-

2014.

[62] Performance Comparison of JSON frameworks for Android OS. https://github.com/

martinadamek/json-android-compare. Online; accessed 09-06-2014.

[63] Android Dashboard - Version Statistics. http://subversion.apache.org/. Online;

accessed 09-06-2014.

[64] Android Dashboard - Version Statistics. https://github.com/NanoHttpd/

nanohttpd. Online; accessed 09-06-2014.

http://developer.android.com/sdk/index.html?utm_source=weibolife
http://developer.android.com/sdk/index.html?utm_source=weibolife
http://www.jetbrains.com/idea/
http://maven.apache.org/
http://subversion.apache.org/
http://people.inf.ethz.ch/mkovatsc/californium.php
http://people.inf.ethz.ch/mkovatsc/californium.php
http://www.eclipse.org/paho/
https://github.com/martinadamek/json-android-compare
https://github.com/martinadamek/json-android-compare
http://subversion.apache.org/
https://github.com/NanoHttpd/nanohttpd
https://github.com/NanoHttpd/nanohttpd

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context of Project
	1.2 Motivation
	1.3 Objectives
	1.4 Structure

	2 State of the Art
	2.1 Publish-Subscribe Paradigm
	2.2 Networking Layers - OSI Model
	2.3 M2M Communications
	2.3.1 ETSI M2M Standard

	2.4 Marshalling
	2.4.1 XML
	2.4.2 JSON

	2.5 M2M Protocols
	2.5.1 HTTP
	2.5.2 CoAP
	2.5.3 MQTT
	2.5.4 AMQP

	2.6 Security Mechanisms
	2.6.1 X.509 Certificates
	2.6.2 RSA Criptography

	2.7 E-Health Technologies
	2.7.1 ISO/IEEE 11073
	2.7.2 Continua Alliance

	2.8 Conclusion

	3 Mobile M2M System
	3.1 Proposed Use Cases
	3.2 Approach
	3.3 Mobile Gateway
	3.4 Mobile Network Application
	3.5 ETSI Interpretation
	3.5.1 ETSI mapping
	3.5.2 Send commands to the Gateway

	3.6 Local API
	3.7 Technologies
	3.8 Evaluation

	4 Development
	4.1 Bootstrap
	4.2 ETSI Protocol Implementation
	4.3 Web-server
	4.4 ETSI Resource Structure Implementation
	4.5 Sensor Integration
	4.6 Gateway Communication (GSCL <-> NSCL)
	4.6.1 Subscription Check

	4.7 Network Application Communication (NACL <-> NSCL)
	4.8 Local API (GSCL <-> NACL)
	4.9 Bandwidth Measurements
	4.9.1 Communicating through the NSCL
	4.9.2 Communicating through the Local API

	4.10 Discussion
	4.10.1 Main Obstacles

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	A ETSI classes changes
	A.1 XML Imports
	A.2 Jackson Annotations
	A.3 Custom Serializers and De-Serializers

