
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Mobile Healthcare on a M2M Mobile
Gateway

Ricardo Morgado

PREPARAÇÃO DA DISSERTAÇÃO

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE
COMPUTADORES

Supervisor: Ana Aguiar

February 16, 2014

© Ricardo Morgado, 2014

Mobile Healthcare on a M2M Mobile Gateway

Ricardo Morgado

MESTRADO INTEGRADO EM ENGENHARIA ELECTROTÉCNICA E DE
COMPUTADORES

February 16, 2014

Contents

1 Introduction 1
1.1 Context of Project . 1
1.2 Motivation . 2
1.3 Objectives . 3
1.4 Structure . 3

2 State of the Art 5
2.1 M2M Communications . 5

2.1.1 M2M Architecture . 6
2.1.2 Mobile Gateway . 9
2.1.3 Marshalling . 10

2.2 Publish-Subscribe Paradigm . 12
2.3 Smart2M Architecture Revision . 13
2.4 M2M Communication Protocols . 13

2.4.1 CoAP . 13
2.4.2 MQTT . 15
2.4.3 AMQP . 15

2.5 E-Health application technologies . 16
2.5.1 ISO/IEEE 11073 . 16
2.5.2 Continua Alliance . 17

2.6 Conclusion . 17

3 M2M Gateway and Proof-of-Concept Application 19
3.1 Approach . 19
3.2 M2M Gateway Design . 20
3.3 Use Cases . 22

3.3.1 Sensor Procurement . 24
3.4 Proof-of-concept Application . 25
3.5 Technologies . 25
3.6 Evaluation . 26

4 Planning 27
4.1 Tasks . 27
4.2 Scaling . 28
4.3 Conclusion . 30

5 Conclusion 31

i

ii CONTENTS

Chapter 1

Introduction

In a society irreversibly marked by the everyday use of technology, new ways to automatically

share this data and automate systems and decisions are constantly emerging. Machine-to-Machine

(M2M) solutions are becoming increasingly popular, for the great scalability they provide, and

because they generally make people’s lives easier. A quick M2M example is GPS systems [1].

There is no human interaction, and yet by gathering and processing data from satellites, it is able

to compute the user’s current position. The ease of use of these systems grant them the massive

adoption they hold in today’s society.

This dissertation is going to study the use of a smartphone as an enabler of M2M services,

in an health-care scenario, aiming to allow the user to effortlessly make blood pressure or weight

measurements and store them in the Cloud. This will allow the user, for example, to conveniently

search his medical measurements history. The use cases and scenario in study are detailed in

Section 3.3.

The context of the project in which this dissertation is inserted, is explained in Section 1.1,

followed by the motivation for studying the subject at hand, in Section 1.2. The objectives this

dissertation aims to achieve are stated in Section 1.3, before a brief explanation of the document’s

structure, in Section 1.4.

1.1 Context of Project

This dissertation is integrated in a joint project between the Instituto de Telecomunicações

(IT Porto) and Portugal Telecomunicações Inovação (PT Inovação). It involves the creation of

a Mobile M2M Gateway (explained in greater detail in Section 2.1) as an Android application.

This gateway will aggregate sensor data (either internal or external) and manage the communi-

cation with the M2M network domain, as a proxy for the sensors. The Gateway was designed

to be multi-protocol, and originally implemented with MQTT (Message Queue Telemetry Trans-

port [2]). CoAP (Constrained Application Protocol [3, 4]) support is currently in development, and

AMQP [5] remains a possibility for later addition. All these protocols are described in Section 2.4.

1

2 Introduction

Back when the project started in May 2013, it focused in the architectural design and imple-

mentation of the M2M Gateway, with MQTT. The aim was to develop it as modularly as possible,

to ease the addition of protocols and sensors. At the beginning of this dissertation (September

2013), version 0 of the Gateway had been released with the MQTT protocol working (sending

data to PT’s Broker), as well as the Gateways base architecture, which had the ability to gather

the internal sensors data, store it and then send in defined intervals or when the buffer got full. It

also featured the modularity which was desired, having each significant module running in its own

thread, to improve parallel processing and thus overall performance.

1.2 Motivation

Nowadays, the ascension of technology is a given fact, as evident by the well-known Moore’s

Law [6], which has been fairly accurate since the paper was published back in 1965. As today’s

trends focus on the ubiquity of smartphones, there is a massification of applications that aim to

ease people’s lives. Despite this, there are not many applications focused on M2M systems, let

alone mobile M2M scenarios, which inspired this dissertation’s theme.

M2M communications, which will be further explained in Section 2.1, have an important role

in interconnecting sensors and services, providing the means to allow data to be seamlessly stored

and then available to applications authorized to access it. As an example, cities are starting to

explore the possibility of using M2M Smart Grids [7, 8], that allow meter measurements to be

automatically uploaded to the service provider, either it is water, electricity or gas. There are

also other scenarios in smart homes, where M2M communication can be used to autonomously

optimize and manage energy consumption of any applicable appliance that runs on electricity [9].

These and many other scenarios are becoming a reality every day, but the lack of mobile

solutions for the M2M architecture limits its possibilities. Evaluating an health-care scenario, it

should be possible for someone who suddenly felt bad to make a blood pressure measurement,

with a friend’s or pharmacy’s sphygmomanometer, and upload for his doctor’s assessment, storing

it in the service for future reference in his medical history.

These needs provided the proper motivation for the study of this subject, since it will only

be possible if the M2M modules are mobile. Smartphones are then an excellent choice, since

they are permanently around the user, possess the necessary processing, battery, and connectivity

power needed for a Gateway, while retaining the mobility necessary to fulfill a new wider range

of scenarios.

Having a smartphone working as an M2M Gateway has its advantages, but since users usually

do their best to save battery power, the smartphone in this dissertation’s scenario is being consid-

ered constrained, so that the application working as the M2M Gateway uses the absolute minimum

resources possible, to fulfill this requirement.

1.3 Objectives 3

1.3 Objectives

This dissertation’s first objective is the conclusion of the mobile M2M Gateway, with the abil-

ity to communicate in MQTT and CoAP with PT’s Broker, using ETSI’s M2M communication

standard, explained in Section 2.1.1. The Gateway will also feature the versatile modular archi-

tecture explained in greater detail in Section 3.2, which aims to provide the flexibility necessary

for adding new sensors or protocols, without the need to re-write the entire application.d

Thereafter, in sequence of the M2M Gateway development, an Application that is works as

proof-of-concept in the mobile health-care scenario described in Section 3.3, is also going to be

developed.

Given the constrained nature of smartphones, there is a special interest in saving its scarce

resources, and so one of the objectives is also to evaluate the performance of the M2M Gateway

with each protocol, specifically in terms of battery drain, and network usage on both cellular and

Wi-Fi. This could be accomplished by sending the same amount of information though each

protocol for the same duration, monitor the behavior of the smartphone and the network. The goal

of this study is to make a real scenario comparison between the protocols, that may end up with the

suggestion of a smart algorithm to control the communication channels, to both improve battery

life and reduce network traffic.

1.4 Structure

This document is structured in 5 Chapters. After this introduction to the subject of this disser-

tation, Chapter 2 is focused on the bibliographic revision focusing on picturing the current state

of the art of the topics related to this dissertation. On Chapter 3 the complete scenario in study

is explained, explaining the importance of each part to the project’s goal. Then, in Chapter 4, the

future tasks and the work plan for the upcoming semester is detailed, followed by Chapter 5 which

concludes this document with some final remarks about the dissertation.

4 Introduction

Chapter 2

State of the Art

In this Chapter there is going to be a closer study of M2M communications, explaining its

importance in the evolution of information technology. This Chapter aims to help the reader fully

understand the technologies involved in the development of this dissertation’s project.

First, in Section 2.1, there is going to be a wider approach into machine-to-machine commu-

nications, followed by the ETSI proposed general architecture in Section 2.1.1. Then we will take

a deeper look into the role of the mobile M2M Gateways in the general M2M architecture (2.1.2),

with focus on the GSCL interface to be developed (2.1.2.1), followed by the most common mar-

shalling techniques such as XML and JSON in Section 2.1.3.

Then, there will be a study of PT Inovação’s Smart2M specifics, in Section 2.3, in sequence

with an explanation of the publish-subscribe paradigm in Section 2.2. This will pave the way

for a deeper look into the more commonly discussed protocols to provide M2M communications,

namely CoAP, MQTT and AMQP, respectively in Sections 2.4.1, 2.4.2 and 2.4.3.

Then, in Sections 2.5.1 and 2.5.2, the IEEE 11073 standard and the Continua Alliance pro-

tocol will be detailed, followed by an application revision of the systems currently using these

technologies in health-care scenarios.

Last but not least, the conclusion of this Chapter will be detailed in Section 2.6.

2.1 M2M Communications

"The exponential growth of wireless communication devices and the ubiquity of wire-

less communication networks have recently led to the emergence of wireless machine-

to-machine (M2M) communications as the most promising solution for revolutioniz-

ing the future “intelligent” pervasive applications", [1]

As technology advances, machine-to-machine (M2M), which can also be called machine-type

communications (MTC), will continue to increasingly replace the traditional human-to-machine

(H2M) operations [9]. By definition, M2M communications is a term used to refer to data com-

munications without or with limited human intervention amongst various terminal devices such

as computers, embedded processors, smart sensors/actuators and mobile devices, etc. [10]. Since

5

6 State of the Art

M2M, as opposed to H2M, does not need user interaction to provide their service, the devices com-

municating with each other have some degree of decision making, and thus the services provided

can be at some extent considered intelligent, as the quote above, from [1], suggests.

The journey towards having a wide range of devices using M2M to communicate each other

converges into the Internet of Things (IoT) paradigm, which in essence states that if devices (tags,

sensors, actuators, mobile phones, etc.) can be uniquely addressed, they will be able to interact

with each other and cooperate to reach common goals [11].

This raising interest in M2M communications arises due to the impact possibilities for both

domestic (e.g. domotics, assisted living, e-health, etc.) or working (e.g. automation, industrial

manufacturing, logistics, business/process management, etc.) fields [11]. In mobile scenarios

M2M communications can allow for resource optimization, optimizing the usage of energy, net-

work resources, computational cost, etc., allowing for more efficient and cheaper solutions for

the consumers [1, 12]. Some interesting statistics are shown in [9], stating that the number of

M2M-enabled devices (terminals) is increasing exponentially, forecasted to grow from 50 million

in 2008 to well over 200 million in 2014, and up to 50 billion by 2020.

As the growing interest in M2M communications increased, so did the need to standardize it,

so that the roughly 50 billion devices to exist in 2020 can have the ability to communicate with

each other. The standardization and currently accepted M2M architecture are going to be detailed

in the next Section.

2.1.1 M2M Architecture

In 2005 3GPP started with the standardization of M2M in the Global System for Mobile

(GSM) and the Universal Mobile Telecommunications Systems (UMTS). In 2007 the technical

report (TR) 22.868 (release 8) [13] completed the study on facilitating Machine-to-Machine com-

munications in 3GPP systems, after which the 3GPP working group for M2M standardization was

organized.

In January 2009 the European Telecommunications Standards Institute (ETSI), which is the in-

dependent and non-profit standardization organization in the telecommunications industry, picked

up where 3GPP left of and continued the standardizing process of M2M, defining entities and func-

tions to provide efficient end-to-end information delivery. ETSI published the Technical Specifi-

cation (TS) 102 689 [14] with the M2M service requirements, and TS 102 690 [15] with the

functional architecture for M2M.

The system architecture is based on current Network and Applications Domain standards, and

it is extended with M2M Applications, and with the Service Capability Layer (SCL) as a key

functionality in the M2M service platform. This layer provides the different elements in the M2M

architecture with a consistent resource tree, allowing information to be shared between them. The

elements of that resource tree are called Service Capabilities (SCs), which is where the information

is kept.

2.1 M2M Communications 7

Figure 2.1: Machine-to-Machine high level architecture. From [15].

Figure 2.1 presents the high level view of the ETSI M2M system architecture within the scope

of [14, 15]. Two domains are depicted: The M2M Device domain and the Network and Applica-

tion domain.

The elements present in the Device and Gateway domain are:

• M2M Device: Device that runs M2M Applications using M2M Service Capabilities (SCs).

Devices can connect to the Network Domain in two ways:

Direct Connectivity: Directly connects to the Network Domain, performing all the

procedures such as registration, authentication, authorization, management and provisioning

with the Network Domain.

Gateway as a Network Proxy: Using the M2M Area Network, the device connects to

a M2M Gateway that acts as a proxy, handling all the procedures mentioned above. Devices

can connect to the Network Domains via multiple M2M Gateways.

• M2M Area Network: Provides connectivity between the M2M Devices and M2M Gate-

ways. Area Networks can use technologies such as IEEE 802.15.1, Bluetooth®, ZigBee®,

IETF ROLL, ISA100.11a, etc., or local networks such as the PLC, M-BUS and Wireless

M-BUS and KNX.

• M2M Gateway: The Gateway runs M2M Application(s) using M2M SCs. It acts as a proxy

between the M2M Devices and the Network Domain, and it may provide a legacy service

to other devices that are hidden from the Network Domain.

The elements present in the Network Domain are:

8 State of the Art

• Access Network: Allows the M2M Device and Gateway Domain to communicate with

the Core Network. For this Network xDSL, HFC, satellite, GERAN, UTRAN, eUTRAN,

W-LAN and WiMAX can be used.

• M2M Core: The M2M Core is composed by the Core Network (CN) and the M2M Service

Capabilities (SCs):

Core Network: provides IP connectivity, interconnections, and roaming capabilities

within the M2M core. This Network may use 3GPP CNs, ETSI TISPAN CN and 3GPP2

CN.

M2M Service Capabilities: The SCs provide M2M functions that are to be shared by

different Applications, exposing thos functions through a set of open interfaces. It simplifies

and optimizes application development and deployment through hiding network specifici-

ties.

• M2M Applications: Applications that run the service logic and use M2M Service Capabil-

ities accessible via an open interface.

• Network Management Functions: Consists of all the functions required to manage the

Access and Core networks. These include Provisioning, Supervision, Fault Management,

etc.

• M2M Management Functions: Consists of all the functions required to manage M2M

Service Capabilities in the Network Domain. The management of the M2M Devices and

Gateways uses a specific M2M Service Capability, such as the M2M Service Bootstrap

Function (MSBF) or the M2M Authentication Server (MAS).

See Figure 2.2. The interface between a M2M application in the M2M Device Domain and

the M2M Service Capability (SC) in the Network and Application Domain is termed mIa; the

interface mId is between a M2M device or M2M gateway and the M2M SC in the Network and

Application Domain; and the dIa interface is between a M2M device or M2M gateway and the

M2M at the same device.

Representational State Transfer (REST) is the dominant approach in client-server communica-

tions, that allows for stateless communication, cacheable resources and Resource operations. The

latter allows the use of CRUD verbs (Create, Retrieve, Update, Delete), which can largely reduce

implementation efforts. Since REST is widely adopted and can be easily applied to M2M com-

munications, RESTful protocols that allow for stateless communications are encouraged [15, 16].

2.1 M2M Communications 9

Figure 2.2: M2M Service Capabilities functional architecture framework. From [15].

Next Sections will focus on the role of a mobile M2M Gateway, with focus on the GSCL

interface it will implement, because of the importance it holds on this project.

2.1.2 Mobile Gateway

Given the importance of being transparent to the user about the use of their hardware, the

most important resources of a mobile M2M Gateway are energy and data transmission efficiency,

reliability and security [1, 12], so that the impact of the running Gateway does not affect the normal

use of the device. It is also critical that only someone with ownership of the Gateway can trigger

its functionalities, so that personal data is not misused.

Using the smartphone to implement a M2M Gateway stresses the issues just mentioned. Users

tend to be self-aware of the battery power of their phones, as they need it to be able to commu-

nicate, so a M2M Gateway needs to be considered constrained, keeping the footprint as low as

possible, and work unnoticed by the user.

2.1.2.1 GSCL

The Gateway Service Capability Layer implements ETSI’s Service Capabilities (SCs) allow-

ing the M2M Gateway to communicate with the other entities of the ETSI M2M architecture. The

base Resource tree of the SCL in pictured in Figure 2.3.

Given the real possibility that the specification may not need to be entirely implemented for

this project’s purpose, together with PT Inovação the following Resources show in Figure 2.4 were

considered critical, because of the mapping intended to them.

This mapping will allow to have one Application entity for each kind of sensor (internal and

external), while maintaining another reserved for Gateway control, allowing the reception of com-

mands. The latter will not have devices under Container, but commands instead, allowing for

proper remote control of the M2M Gateway.

The SCL concept is, in essence, a marshalling technique. The more common marshalling

techniques will be addressed in the next Section.

10 State of the Art

Figure 2.3: Base SCL on ETSI’s standard. From [17]

Figure 2.4: GSCL approach to ETSI standard.

2.1.3 Marshalling

Marshalling, or Serializing, is the nomenclature given to the process of packaging data for

storage or transport, in order to be easily processed by different systems, which can built with use

of any language. This allows for interoperability of services by using standards readable by both

machines and humans [18].

The most common types of marshalling languages are XML and JSON, and both will be

explained in the next Sections.

2.1.3.1 XML

The eXtensible Markup Language, commonly known as XML, was first released in a World

Wide Web (W3C) draft in 1996 [19] as a derivation from the Standard Generalized Markup Lan-

guage (SGML), which had been standardized in the International Organization for Standardization

2.1 M2M Communications 11

(ISO) in ISO 8879 [20]. XML 1.0 was originally submitted for standardization on an RFC (Re-

quest for Comments) in 1998 [21] and has since become one of the most widely used markup

languages. It is, for instance being used in Android OS for detailing the layout specifications and

the permissions needed to run the application.

An XML example is below:

<person>

<firstName>John</firstName>

<lastName>Smith</lastName>

<age>25</age>

<address>

<streetAddress>21 2nd Street</streetAddress>

<city>New York</city>

</address>

<phoneNumbers>

<phoneNumber type="home">212 555-1234</phoneNumber>

<phoneNumber type="fax">646 555-4567</phoneNumber>

</phoneNumbers>

<gender>

<type>male</type>

</gender>

</person>

After parsing, the variables would be:

<person firstName="John" lastName="Smith" age="25">

<address streetAddress="21 2nd Street" city="New York"/>

<phoneNumbers>

<phoneNumber type="home" number="212 555-1234"/>

<phoneNumber type="fax" number="646 555-4567"/>

</phoneNumbers>

<gender type="male">

</person>

2.1.3.2 JSON

JavaScript Object Notation (JSON), was originally specified in [22] as a less verbose alter-

native to XML, featuring pairs of attribute-value, and it is currently in use in the many server-

application communication systems. It is used primarily to transmit data between a server and

web application, as an alternative to XML. Its official and most widely used MIME type is "appli-

cation/json".
A JSON schema example from [23] is below. As intended it is very readable, while maintain-

ing the ability to be parsed automatically.

{

"title": "Example Schema",As wireless grew, by 2002, the author of~\cite{pub-sub} stated that: "Wireless has experienced explosive growth in recent years, and ’push’ will be the predominant wireless service delivery paradigm of the future". Push is another term for the publish subscribe paradigm that basically refers to systems that have the architecture necessary for users to subscribe to a topic, message, publisher, etc., and receive all the subsequent updates about it. The usual web paradigm needs a request if information is desired (polling), but this is inefficient as it overloads the servers with unnecessary requests, slowing down the response times.

12 State of the Art

"type": "object",

"properties": {

"firstName": {

"type": "string"

},

"lastName": {

"type": "string"

},

"age": {

"description": "Age in years",

"type": "integer",

"minimum": 0

}

},

"required": ["firstName", "lastName"]

}

2.2 Publish-Subscribe Paradigm

As wireless grew, by 2002, the author of [24] stated that: "Wireless has experienced explosive

growth in recent years, and ’push’ will be the predominant wireless service delivery paradigm

of the future". Push is another term for the publish subscribe paradigm that basically refers to

systems that have the architecture necessary for users to subscribe to a topic, message, publisher,

etc., and receive all the subsequent updates about it. The usual web paradigm needs a request if

information is desired (polling), but this is inefficient as it overloads the servers with unnecessary

requests, slowing down the response times.

Please note Figure 2.5, for the exact same interaction. In 2.5a the client is polling the server

for the publisher’s content, having the need to re-poll whenever there is new content. On the other

hand, in Figure 2.5a, the client only has the need to subscribe once, to receive notifications for the

following publications, until the subscription is canceled.

(a) Request-Response model (b) Publish-Subscribe model

Figure 2.5: Model comparison

2.3 Smart2M Architecture Revision 13

Publishers and subscribers do not need to be actively participating in the interaction at the

same time, or even know about each other. They can both produce and consume events in an

asynchronous way (i.e. not online at the same time), which allows for very flexible scenarios.

2.3 Smart2M Architecture Revision

The Smart2M API is PT Inovação’s API to access the data that is stored by the NSCL. It is an

M2M Application, and as such has no direct contact with the M2M Gateway, besides through the

M2M Service Capabilities and Core Network path (see Figure 2.1).

The details of the architecture are in Appendix A, since they are important to the project, but

are not be the focus of this state of the art research.

2.4 M2M Communication Protocols

Given the ascension of M2M demand, protocols started to shift their focus onto M2M scenar-

ios. In this Section, the protocols most commonly used for M2M will be studied.

2.4.1 CoAP

The Constrained Application Protocol (CoAP) [3] is a lightweight protocol designed for con-

strained devices (with low memory, processing power, etc) and constrained networks (e.g low

power, lossy), and specially fulfilling M2M requirements. It is currently a final IETF draft (ver-

sion 18), and awaiting the RFC standardization in the near future.

Its simple interface and applicability was demonstrated in the 2013 ETSI plug-tests where it

was shown that in an event with eight companies with several different CoAP implementations of

clients and servers, the interoperability rate was 94.1% [25].

CoAP derives from Representational State Transfer (REST) [26] paradigm, focused for the use

in constrained networks and nodes in M2M applications [12]. REST architectures conventionally

consist of clients and servers, where the clients perform operations on resources stored on a server

by means of request and responses exchanges. There are four types of requests for the clients:

GET Retrieves the content of an existing resource;

POST Creates an new resource;

PUT Changes or updates the content of an existing resource;

DELETE Deletes/removes an existing resource.

To identify resources Uniform Resource Identifier (URI) [27] are used, just like in HTTP [28].

Also CoAP easily translates to HTTP for integration with the Web while accomplishing special-

ized requirements, such as multicast support, built-in resource discovery, block-wise transfer, ob-

servation, and simplicity for constrained environments [29]. This allows for compatibility with

existing systems.

14 State of the Art

In HTTP, transactions are always client-initiated, and the client must perform GET operations

again and again (polling) if it wants to stay up-to-date about a resource’s status. This pull model

becomes expensive in an environment with limited power, and CoAP uses an asynchronous ap-

proach to support pushing information from servers to clients: observation (see Figure 2.6). When

performing a GET request, a client can indicate its interest in further updates from a resource by

specifying the “Observe” option. If the server accepts this option, the client becomes an observer

of this resource and receives an asynchronous notification message each time it changes. Each

such notification message is identical in structure to the response to the initial GET request [29].

This model is an attempt to achieve stateless publish-subscribe communication, ideal for devices

with fewer resources.

Figure 2.6: CoAP resource-observe. From [12].

The clients do not need to maintain state, i.e., the client can be stateless. Furthermore, in order

to implement CoAP in constrained small devices (memory available, computational and power

consumption restrictions), the transport protocol is User Datagram Protocol (UDP) [30] and the

protocol overhead in the header can be up to 4 bytes. Reliability can be implemented by an

optional stop-and-wait protocol, and security by the use of Internet Protocol Security (IPsec) [31]

or Datagram Transport Layer Security (DTLS) [32]. CoAP also supports TCP [33] connections,

which add reliability of delivery, but increases the overhead of each message, which is not ideal

for constrained situations.

The CoAP packet is illustrated in Figure 2.7.

2.4 M2M Communication Protocols 15

Figure 2.7: CoAP packet size

2.4.2 MQTT

MQ Telemetry Transport (MQTT) [2] is a lightweight broker-based publish/subscribe messag-

ing protocol designed to be open, simple, lightweight and easy to implement.

These characteristics make it ideal for use in constrained environments just like a smartphone.

It is a protocol developed by IBM to address the issue of reliable M2M communications [2].

It is Based on publish/subscribe paradigm associated with topics. It is connection oriented,

used over TCP and features 3 quality of service (QoS) levels for assuring delivery (no retransmis-

sion, re-transmit once and re-transmit until received). Can be used for PUSH applications, to save

the constrained device to have to answer to requests, saving messages, and thus processing power

and battery.

The underlying TCP connection causes MQTT to have a bigger overhead than other protocols

such as CoAP, which in evidenced in the protocol comparison tests done in [12].

The CoAP packet is illustrated in Figure 2.8.

Figure 2.8: MQTT packet size

2.4.3 AMQP

The Advances Message Queue Protocol (AMQP) [34] is an open standard application layer

asynchronous protocol for message oriented middleware. It uses the publish-subscribe model

defined earlier in Section 2.2

AMQP uses brokers to receive messages from publishers, and route them to consumers. Figure

2.9 gives a high level perspective of the protocol. [35] has a simple explanation of the functionality

of the protocol: "Messages are published to exchanges, which are often compared to post offices

or mailboxes. Exchanges then distribute message copies to queues using rules called bindings.

Then AMQP brokers either deliver messages to consumers subscribed to queues, or consumers

fetch/pull messages from queues on demand".

16 State of the Art

Figure 2.9: AMQP functionality overview. From [35]

In terms of security, AMQP implements SASL [36] and TLS [37]. Figure 2.8 illustrates the

AMQP packet size.

Figure 2.10: AMQP packet size

2.5 E-Health application technologies

In this Section, current health-care standards and solutions are going to be presented, as the

scenario of this dissertation’s project is focused on this subject.

2.5.1 ISO/IEEE 11073

The ISO/IEEE 11073 is the family of standards for medical devices that was originally called

IEEE 1073, or just X73 [38]. It arose in 1982 with the need for easy to use (plug-and-play) medical

grade equipment for operating rooms or bedside monitoring in intensive care units (ICU), aiming

for real-time and efficient exchange of data [39]. In the past decade, the IEEE 11073 has focused

on developing Personal Health Devices (PHD) standards, standardizing functions for each of the

Open Systems Interconnection (OSI [40]) layers.

Figure 2.11 shows the IEEE 11073 Framework as of 2012, where several device specializa-

tions can be depicted. The main goal of all these standardizations is to facilitate the development

of equipment to monitor people’s well-being inside or outside of hospitals and provide interoper-

ability on medical grade equipments. These standards are not available for public scrutiny, causing

details on them to be scarce.

2.6 Conclusion 17

Figure 2.11: IEEE 11073 Framework. From [41].

On Android OS version 4.0 (API 14), a Bluetooth Health API was introduced, facilitating the

integration with devices following the IEEE 11073 specifications [42].

2.5.2 Continua Alliance

The Continua Health Alliance [43] is a profile of standards built on top of the IEEE 11073

family. Its goal is to provide the application layers with semantic interoperability, to further allow

communication between devices and services. Figure 2.12 shows how the protocol builds around

IEEE 11073 to allow for greater interoperability with a wider range of devices [41].

Figure 2.12: Continua Alliance profile of standards. From [41].

Currently the Continua Alliance has a set of guidelines for manufacturers to follow, to provide

them with the proper certification, ensuring the compatibility of all Continua certified devices. The

details of these guidelines and of the resulting communication protocol are proprietary, and thus

not available for deeper discussion in this dissertation.

2.6 Conclusion

Given this Chapter’s study, it becomes clear that this dissertation’s project will support ETSI’s

M2M standard by implementing the GSCL for proper mId communication with the NSCL, which

18 State of the Art

could then be executed by any of the protocols studied. The devices chosen to be integrated in

the Gateway will most likely implement a protocol that is based on the IEEE 11073, or even the

Continua Alliance guidelines.

Chapter 3

M2M Gateway and Proof-of-Concept
Application

This Chapter describes in detail the M2M Gateway and the proof-of-concept application that

will demonstrate its potential. In Section 3.1, this dissertation’s approach to the issues raised in

Section 1.2 is described. Afterward, the mobile M2M Gateway is detailed in Section 3.2. The use

cases being considered to study the health-care scenario are disclosed in Section 3.3, along with the

sensor procurement which aimed to fulfill its requirements. In Section 3.4, the proof-of-concept

application’s design is detailed, followed in Section 3.5 by the description of the technologies

used in the project. Finally, Section 3.6 states the standards by which the M2M Gateway and

proof-of-concept application will be evaluated.

3.1 Approach

To tackle the M2M mobility issue explained in Section 1.2, this dissertation’s approach relies

on a versatile mobile Gateway, that will have to accommodate the following functional and non-

functional requirements.

Functional requirements:

• Support disconnection and save any unsent data for next connection.

• Support a Web Server that allows the reception of requests and subscriptions from the

Server.

• Support health-care external sensors:

Sphygmomanometer.

Scale.

• Support API for local access.

Non-functional requirements:

• Support a modular design.

19

20 M2M Gateway and Proof-of-Concept Application

• Multi protocol support:

CoAP.

MQTT.

AMQP (Low Priority).

• ETSI M2M standard compliant.

• Support a modular design.

These requirements will then be demonstrated by the proof-of-concept application, in a health-

care scenario that fits the

3.2 M2M Gateway Design

In this section, this dissertation’s approach to the problem is explained. First of all the modus

operandi of the M2M Gateway under development is described. The original architecture that

was present in Version 0 of the Gateway (mentioned in section 1.1) has suffered some changes

to accommodate all the requirements. This section will reflect the latest approach and decisions

made.

The overall design of the gateway is based on the concept of services and threads to run entirely

in the background. Together, they manage the connectivity to the Broker and the Sensors, as shown

in Figure 3.1. The design’s main guideline was to build a Gateway as modular as possible, easing

the addition of features, external sensors, protocol implementations so that as the gateway becomes

more complex, there is no need to change the whole code to accommodate small changes.

Figure 3.1: Mobile M2M Gateway’s Architecture

The gateway application is built with one service and it starts when the phone boots or when

a specific Intent (Android inter-process communication mechanism) is sent to "wake" it up. Upon

initialization, it automatically initializes the Internet, Protocol and Memory Managers as well as

3.2 M2M Gateway Design 21

GPS and the Marshalling modules in separate threads. Having their own threads and handlers

is effective in reducing race conditions and delay of processing, as the messages are stored and

handled in a first-in first-out (FIFO) pile.

The Internet Manager is responsible for knowing the status of the network connectivity at

all times. Upon creation it also starts the database, so that data is not lost when connection is

unavailable. This module will also manage the commands, subscriptions or sensor configurations,

so that there is no lost information if a request is made and connection is lost before it is answered.

As for the Protocol Handler, it manages the data to be sent and the messages received. It has

default protocol used for the communications, and at start-up it attempts to establish connection via

that protocol. If at some point, the phone loses connectivity, when it is regained, it automatically

reconnects using the same protocol, and sends order to the Internet Manager to start re-sending the

data. Security is always an important issue, and this is handled by the Protocol Manager since, as

seen in the previous Chapter, a different security mechanism is required by each protocol. This is

also the module responsible by a critical part of the functionality which is the marshalling and de-

marshalling, which takes place according to the mId interface that connects the Gateway domain

to the NSCL, as seen in Figure 2.2.

At start-up there is still the initialization of the Memory Manager, which besides creating its

own thread, triggers the GPS to start collecting location information in predefined intervals. This

module’s job is to store the sensor’s information in buffers, until it is passed on to the Internet

Manager to be sent to the NSCL.

After all the necessary configurations are completed, the Gateway registers itself and the avail-

able sensors at that moment in the NSCL. It is important to state that no data is collected before

there is a subscription from the NSCL, assuring that no resources are wasted. Every active sensor

has remotely configurable parameters:

Reading Granularity : Maximum interval between two sensor readings.

Minimum Transmission Granularity : Maximum interval between two sensor transmissions.

Maximum Buffer Size : Maximum amount of phone space that is occupied storing data from

this sensor for later processing.

The data on the buffers stays stored until the transmission granularity is reached or the buffer

gets full. Once this data is "flushed", it is sent to the Internet Manager for dispatch. As mentioned

before, a connectivity test is then done determine if the connection has been lost, in which case

the data will get stored on the smartphone’s internal memory. If there is still connectivity or it has

since returned, the data flows to the Protocol Manager for marshalling.

The marshalling process starts with the packaging of the sensors data into a JSON object. The

basic output, shown below, has one or more data entries, as there can be multiple sensors’ data

in each packet. The data object is filled with entries with a timestamp and the sensor reading,

which depends on the number of variables of interest, as shown below. It also has a GPS array

22 M2M Gateway and Proof-of-Concept Application

with latitude, longitude and accuracy, that only exists once per packet. The structure of the JSON

output after this first marshalling operation is as follows1:

{"data":{

"sensor_type":"sensor",

{"timestamp":"12345678","BPM":"89.02"}, -> (1)

{"timestamp":"12345678","A":"0.123","B":"0.123"}, -> (2)

{"timestamp":"12345678","Var1":"123",(...),"VarN":"123"}, -> (N)

}

"gps": [

"latitude",

"longitude",

"accuracy"

]

}

The first package is encoded in Base64 and then goes through the second part of the mar-

shalling process involves the creation of the Gateway Service Capability Layer (GSCL) Resource

tree, as described in Section 2.1.2.1, with focus on the mId communication.

Then the package is ready to be sent to the Broker, and this can be done with one of the

available protocols.

The Gateway is also going to support a local API module, so that the demonstration application

can be able to access its functionalities locally, as described in the scenario in Section 3.3. The

Smart2M API is described in Section 2.3.

3.3 Use Cases

The overall project design is shown in Figure 3.2. The purpose of this system is to allow the

user to take advantage of the smartphone’s connectivity abilities to easily use bluetooth capable

health-care devices to store information related to himself.

1Inside brackets is the number of variables each sensor has

3.3 Use Cases 23

Figure 3.2: Architectural overview of integrated solution

In a scenario of proximity to supported devices, the user will be able, through the application,

to use the phone’s bluetooth capabilities to search and to connect to supported devices. If the

device is not yet paired, the user will be prompted to do so, as it is a requirement to establish the

connection.

Once connected, the user will be able to start reading data from that device, and those readings

will be shown to him within the application. This will allow the user to choose the reading(s) he

desires to store online, in a Smart2M health-care application that provides this service. As soon as

the recordings start, the user will be allowed to stop them.

After logging in to the Smart2M API, a token will be stored to allow for local connection

to the Gateway. The token will only be used if the proof-of-concept application is in the same

smartphone as the M2M Gateway, allowing for a bilateral access capability that aims to save

the limited smartphone’s resources such as battery and mobile data bandwidth, while being fully

transparent to the user.

All the above mechanisms allow the user’s data to be stored in Smart2M applications the

user logged in to, providing him with the capability to search for any information associated with

himself.

The UML Use Case diagram for the scenario just described is present in Figure 3.3, explicitly

defining the users possible actions.

24 M2M Gateway and Proof-of-Concept Application

Figure 3.3: Use Case UML 2.0 Diagram for the study scenario

In Section 3.4, the architecture of the Proof-of-Concept Application is going to be detailed, as

well as the sequence diagrams that take place between all the modules present in this scenario.

3.3.1 Sensor Procurement

One of the strengths of the M2M Gateway is its modular design, which aims to ease the

support of new internal and external sensors and protocols. Given this and since the development

is focused on the health care scenario described in Section 3.3, there was the need to procure

medical sensors that could be integrated in the Gateway. This integration is necessary so that the

sensors can be controlled by the Gateway, and thus remotely by the proof-of-concept application.

Discussion of the use-case scenario led to the choice of 2 sensors: a sphygmomanometer and a

scale, both bluetooth capable.

The first approach was to search for sensors certified by the Continua Alliance (detailed in

Section 2.5.2), and from its extensive list, the ones more suited to our project were selected

for price and availability inquiry2. After some further research and with the surprisingly scarce

information about the protocol and sale points, it was confirmed that this is in fact a proprietary

protocol.

Recently the ForaCare P20 Sphygmomanometer3 was chosen, and despite the proprietary pro-

tocol, there is a non disclosure agreement in place that provides access to all the necessary details.

As for scales, the Withings WS-30 is a strong possibility since is already available at Instituto de

Telecomunicações, and supports the project’s requirements of Bluetooth connections. A decision

has not yet been made since the Android compatibility is still being studied. There should be a

decision on this matter in mid February.

2The final list is available in Appendix B.
3More information in http://www.foracare.com/Blood-Pressure-P20.html.

http://www.foracare.com/Blood-Pressure-P20.html

3.4 Proof-of-concept Application 25

3.4 Proof-of-concept Application

The demonstration application is still in early development, since it needs a functional Gate-

way to operate, but the general architecture is detailed in Figure 3.4.

Figure 3.4: Demonstration Application Architecture

The development so far has been focused on detailing the message exchanges in UML 2.0,

allowing for easier iterations of the concept, before coding is involved. The in-depth message

diagrams are available in Appendix C, along with an explanation of their meaning.

3.5 Technologies

First off, the mobile M2M Gateway is being built as an Android Operating System application.

This choice was made given the open source nature of the operating system, which provides the

easy integration with the external sensors, and because the programming language is in Java,

which was already known. The wide range of devices currently running Android OS was also an

important factor since if this dissertation yields a good M2M Gateway, there may be interest in

further development on existing services.

For this to be accomplished, one needs to have the Android Software Development Kit (SDK)4

configured. The configuration currently in use takes advantage of the Android Development Tools

(ADT)5 for Eclipse6, which is an Integrated Development Environment, to use the Android SDK

and compile the code. This allows for easier development and testing. As mentioned in Sec-

tion 3.2, the application will take advantage of the phone’s connectivity, namely Bluetooth, cel-

lular (2G/3G) capabilities, and Wi-Fi to communicate with the Broker’s NSCL module. This

communication is going to be executed using MQTT and CoAP, which have been described in

4Available in http://developer.android.com/sdk/index.html?utm_source=weibolife
5Available in http://developer.android.com/sdk/installing/installing-adt.html
6Available in http://www.eclipse.org/downloads/

http://developer.android.com/sdk/index.html?utm_source=weibolife
http://developer.android.com/sdk/installing/installing-adt.html
http://www.eclipse.org/downloads/

26 M2M Gateway and Proof-of-Concept Application

Sections 2.4.2 and 2.4.1 respectively. Base64 [44] is going to be used to encode the payload to be

sent.

The MQTT communications are done with aid of the paho-mqtt library (Release 0.4.0)7, which

implements the protocol’s version 3. This is a very versatile library that provides control over

several option for the connection.

The CoAP implementation is being implemented with Californium CoAP framework8.

The Demonstration Application, it will also be fully developed as a native Android OS appli-

cation, to take full advantage of the situations where the Gateway and Application are running in

the same device.

The sensors chosen in the previous Section may9 the connection protocol to the devices, pro-

prietary or not will need to be used, depending on the device.

3.6 Evaluation

The work executed during this dissertation is going to be evaluated according to its goals,

enumerated in Section 1.3.

To show that the M2M Gateway and proof-of-concept application are fully functional, the

following tests will be performed:

• Test communication ability of the mobile M2M Gateway on CoAP and MQTT, connecting

to the NSCL.

• Test subscriptions/commands sent to the Gateway, checking if the results are as expected

(e.g. Search Sensors).

• Test M2M Gateway network robustness, storing data when the connection breaks for later

re-send.

• M2M Gateway ability to be controlled by both NSCL and local API, with aid of the proof-

of-concept application.

• Test the proof-of-concept application ability to fulfill the proposed use cases.

• Gather protocol comparison information on the M2M Gateway:

Battery drain test;

Network traffic test;

7Available in http://www.eclipse.org/paho/
8Available in http://people.inf.ethz.ch/mkovatsc/californium.php
9The final choice has not been done yet

http://www.eclipse.org/paho/
http://people.inf.ethz.ch/mkovatsc/californium.php

Chapter 4

Planning

In this Chapter the work to be done during this semester, regarding this dissertation is ex-

plained. First off all, the thorough list of upcoming tasks is shown in Section 4.1. Then, the

scaling of those tasks, with the accompanying Gantt chart is present in Section 4.2. Then, to finish

this Chapter, the Conclusions are present in Section 4.3.

4.1 Tasks

Below, are the future necessary tasks of this project:

For the mobile M2M Gateway:

• Complete CoAP implementation;

• Complete ETSI data-structure implementation;

• Add support for chosen external sensors;

• Complete Database implementation;

• Implement Smart2M mirror API;

• Implement specific Use Case requirements;

For the Demonstration Application:

• Implement basic application architecture;

• Implement communication with the Smart2M broker;

• Implement communication with the Gateway API;

• Implement specific Use Case requirements;

For the M2M protocol comparison, with the same set up:

• Test each protocol’s battery drain;

• Test each protocol’s network traffic;

27

28 Planning

• Analyze test results.

To successfully terminate this dissertation, there’s also some other tasks needed:

• Develop dissertation’s website;

• Update website with project’s progress;

• Write Master’s Thesis;

• Deliver document version for revision;

• Deliver final document, for jury appreciation;

4.2 Scaling

The first priority of the project is to complete the CoAP implementation and the ETSI data-

structure, as they are requirements for the proper communication with the Broker. CoAP is es-

timated to take one to two weeks opposed to four weeks for the ETSI data-structured, that has a

greater complexity. In the first two weeks the base website is also going to be started, and it will

continuously be updated for showcasing the progresses in the development throughout the project.

Then, after having the base communication established, the Gateway’s database is going to be

strengthened, followed by the implementation of the external sensors chosen to fulfill the e-Health

Use Cases. This implementation should take two weeks.

After this is completed, it is time to start implementing the base of the Demonstration Appli-

cation, which should take around 2/3 weeks. Afterward, the development focuses on achieving

communication between the Demonstration Application and the M2M Gateway, from both the

local API and the Smart2M API. This development is going to be in parallel with the implemen-

tation of the local API on the Gateway, given the knowledge needed for the tasks falls under the

same scope. It should however, take about 4 weeks, given the complexity of all the tasks involved.

Only after the communication between the Demonstration Application and the M2M Gateway

is solid, can the Use Case requirements be implemented and tested. This should take around two

weeks.

At this point, the "ecosystem" between the M2M Gateway and the Demo Application should

be stable enough to run a few performance tests with each protocol, to establish a comparison

between battery drain and bandwidth used. The beginning of these tests should coincide with the

start of the write process of the Master’s Thesis. The Revised Version should be delivered on

2014/06/16 and the final version on 2014/06/30.

4.2 Scaling 29

Fi
gu

re
4.

1:
Pr

oj
ec

t’s
G

an
tt

C
ha

rt

30 Planning

4.3 Conclusion

Even though there is a high work load associated with this project, there is a solid work plan

that aims to allow the project to be completed with success.

Chapter 5

Conclusion

This report as a whole introduces the preparation to the dissertation to be carried on in the

next Semester. In Chapter 1 the dissertation’s project context is introduced and the motivation and

objectives are defined. Then, in Chapter 2 the Bibliographic Revision is carried out, introducing

the concepts and technologies needed to understand this dissertation’s project. This is followed, in

Chapter 3 by the Approach and Methodology taken to tackle the challenges, and by next semester’s

work-plan in Chapter 4.

Given this, there’s a few important notes to take about this project:

• It is an innovative project, which involves the creation of two applications using technologies

still in development/standardization that have not yet been widely adopted, and never been

ported to a mobile application;

• It is a project that involves close collaboration with Industry, with two active departments

(health-care and M2M departments), which shows PT Inovação’s interest in this project;

• Given the Innovative nature of the project there are a few risks:

The project has a high dependency on the platform developed by the Industry partner,

and is subject to its delays;

The ETSI M2M Standard is fairly recent and since it has not yet been widely imple-

mented. This has caused some interpretation issues about the document, which will have to

be overcome together with the Industry partner.

This document’s conclusion is that even though it is an innovative project with some risks,

there is a solid work-plan with feasible tasks, that can be completed successfully by the end of the

Semester.

31

32 Conclusion

Appendix A

Smart2M API Details

In this Appendix, the architecture of the Smart2M API [45] is going to be detailed, with focus

on the important aspects to this project. First of all, the resources are going to be defined, to ease

the understanding of the remaining specifications.

User Represents a system user. The user can be a platform administrator, client user or developer.

Feature Features represent a permission, or a group of permissions. These will restrict the users in

the scope of a Commercial Service subscribed by the client. A Commercial Service is a

group of Features. It can be subscribed with a Service Level, which is just the subscription

of a sub-groups of Features within the Commercial Service. Users associated with a Com-

mercial Service will only have access to that sub-group of features, which can represent a

restricted account.

Session The API usage is an authenticated service, and this resource exists to allow the credentials

and realm of the user’s login to be stored and processed correctly.

Device The Device resource allows access to events, capabilities and acting power over the device.

It is also possible to subscribe events related to a devices from this resource.

Capability The Capability resource allows for categorization of devices capacities, on the Smart2M

platform. A subscription, to receive notifications, can be done to just a specific sub-group

of capabilities of a device, without the need to analyze all the data producing capabilities

of a device. It is also possible to subscribe capabilities irregardless of the producing de-

vice/system.

Application This resource allows for application management, since their creation to their termination

in the platform. Through this resource it is also possible to obtain additional information

that can be used, for instance, in contextual subscription of events directed to a specific

application.

Token This entity supports the authorization mechanisms based in the entities or resources that do

not support username/password authentication.

33

34 Appendix A

Figure 5.1 represents the API and Resources tree, together with the available RESTful request

for each element. Since REST APIs are based in HTTP, the answer success codes are in table 5.1,

while the error codes are in table 5.2.

Code Meaning Name
200 Undefined Success Ok
201 Created Indicates resource successfully

created
202 Accepted Asynchronous session started
204 Indicates the body is

purposefully empty
No content

301 Permanently moved Indicates a new URI was
permanently attributed to the
resource asked by the client

303 See other Sent to return results considered
optional

304 Not modified Sent to preserv bandwidth (with
conditional GET)

307 Temporary redirection Indicates a temporary resource
was attributed to the resource
required by the client

Table 5.1: Smart2M API Success Codes. From [45].

Code Meaning Name
400 Bad Request Unspecified client error
401 Not authorized Sent when the client sends

invalid credentials or no
credentials

402 Forbidden Sebt to deny access to protected
resource

404 Not found Sent when the client tries to
interact with an URI the REST
API can’t find.

405 Method forbidden Sent when the client tries to
interact with an unsupported
HTTP method

406 Not accepted Sent when the client tries to
request data in an unsupported
media format

409 Conflict Indicates that the client tried to
violate the resource state

412 Pre-condition failed Indicates that at least one of the
pre-conditions failed

415 Unsupported media type Sent when the client submits
data in an unsupported media
format

Table 5.2: Smart2M API Error Codes. From [45].

35

Figure 5.1: Smart2M API and Resources Tree. From [45].

36 Appendix A

The API is very complete, and this dissertation’s use cases don’t require implementing the con-

nection to the entire API. The Smart2M API calls required for the project’s use cases completion

are stated below.

Authentication
The authentication to the Smart2M is done through a the call on Table 5.3.

Resource URL Operation Description

Session /sessions @POST Allows for user
identification, creating
a session for him

Table 5.3: Authentication: login. From [45].

For the user login to be completed, the POST call must have the following key-value pairs:

{

"password" : "Password",

"login" : "Login",

"realm" : "realm"

}

Consult Features
To consult the permissions of each user, the call on Table 5.4 must be executed.

Resource URL Operation Description

Feature /users/{userId}/features @GET Returns the list of
features (permissions)
associated with the
userId queried

Table 5.4: Authentication: login. From [45].

To add permissions to a User, fist the call on Table 5.5 must be executed. It yields a JSON

answer as:

{

"name" : "featureName",

"id" : featureId,

"type" : "FeatureType"

}

Then, the call on Table 5.6 allows to add permissions to the User, using the featureId of the

desired permission.

37

Resource URL Operation Description

Feature users"/{userId}/features/
/schema

@GET Allows to consult a
Feature’s schema

Table 5.5: Get Feature Schema. From [45].

Resource URL Operation Description

Feature users/{userId}/features @POST Allows the attribution
of Features to a User

Table 5.6: Add Features. From [45].

Devices

To list the available devices, the call on Table 5.7 must be executed.

Resource URL Operation Description

Device /devices/ @GET Allows for the
consultation of the
devices to which the
user has at least
reading permissions

Table 5.7: List Devices. From [45].

To list the device capabilities, the call on Table 5.8 has to be executed.

Resource URL Operation Description

Device /devices/{deviceId}/
/capabilities

@GET Allows for the
consultation of the
capabilities (type of
events) that the device
supports and/or offers

Table 5.8: Get Device Capabilities. From [45].

Communication synchronously with the devices, to list the events of a capability, Table 5.9’s

call has to be executed.

38 Appendix A

Resource URL Operation Description

Capability /devices/{deviceId}/
/capabilities?from=
=timestamp&to=
=timestamp&
&timeUnit=day&
&eventType=2

@GET Allows the
consultation of events
the device supports

Table 5.9: List Event. From [45].

To send commands to the device, the Table 5.10’s call has to be executed. This is one of the

most important functions for this dissertation’s project, because it will allow the proof-of-concept

application to control the M2M Gateway and its sensors.

Resource URL Operation Description

Capability devices/{deviceId}/
/capabilities/
/{capabilityId}

@POST Allows the dispatch of
values (commands) for
a device’s capability

Table 5.10: Send Commands to Device. From [45].

To communicate asynchronously with the devices, Table 5.11’s call has to be executed.

Resource URL Operation Description

- /devices/{deviceId}/
/capabilities

@POST Creates a new
subscription for that
capability’s events on
the Smart2M platform

Table 5.11: Subscribe Event. From [45].

To check the active subscriptions for each user, the call on Table 5.12 has to be executed.

Resource URL Operation Description

Watch /users/{userId}/watches @GET Lists active
subscriptions

Table 5.12: List Subscriptions. From [45].

To remove event subscriptions, the call on Table 5.13 has to be executed.

Resource URL Operation Description

- /users/{userId}/watches/
/{watchId}

@DELETE Removes the
subscription

Table 5.13: List Subscriptions. From [45].

39

To receive event notifications, the call on Table 5.14 has to be executed. If there are no sub-

scriptions, there return code 204 will be received, signaling the absence of watches "No-body".

Resource URL Operation Description

Event /users/{userId}/watches/
/listen

@GET This channel does not
guarantee the delivery
of events that happened
before the connection

Table 5.14: List Subscriptions. From [45].

40 Appendix A

Appendix B

Continua Health Alliance sensor procurement

The Continua Health Alliance sensor procurement focused on yielding a sphygmomanometer

and a scale to be integrated with the mobile M2M Gateway. However, as explained in section 3.3.1,

the protocol is proprietary, and as such this procurement had no effect in the final sensor decision.

The results below were obtained after a selection from the Continua List, that had around 60

sensors.

Certification Date Manufacturer Name Price Open API for Android

2010-01-08 OMRON OMRON Bluetooth® Home
Blood Pressure Monitor

Unavailable Unavailable

2012-07-18 A&D Medical A&D Medical UA-767PBT-C
Blood Pressure Monitor

$158.90 + $16.95 (cuff) Yes - with signed NDA

2010-04-10 Freescale Freescale i.MX Linux AHD
Reference Platform running
LNI
HealthLink/OXP-Libraries
and Continua certified as a
Manager supporting the
Blood Pressure Cuf

Unavailable Unavailable

2011-11-14 TailDoc FORA D40 Blood Glucose
and Blood Pressure Monitor
with USB

$270.33 Unavailable

Table 5.15: Sphygmomanometer Procurement

Certification Date Manufacturer Name Price Open API for Android

2013-02-07 Robert Bosch Healthcare Inc. WS3000 BT Unavailable Unavailable

2010-01-06 OMRON Body Composition Monitor
BF-206BT

Unavailable Unavailable

2009-01-06 A&D Medical A&D Medical UC-321PBT-C
Weight Scale

$225.61 Yes - with signed NDA

2011-04-13 Stollmann GmbH BlueMod + P25/G2/IEEE/415 Unavailable Unavailable

Table 5.16: Scale Procurement

41

http://www.healthcare.omron.co.jp/bt/english/index.html
http://www.healthcare.omron.co.jp/bt/english/index.html
http://www.aandd.jp/products/medical/bluetooth/ua_767pbt_c.html
http://www.aandd.jp/products/medical/bluetooth/ua_767pbt_c.html
http://amzn.to/1fm5F9B
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.lampreynetworks.com/continua-telehealth/Continua_Remote_Health_Monitoring.html
http://www.foracare.com/Blood-Pressure-D40.html
http://www.foracare.com/Blood-Pressure-D40.html
http://www.foracare.com/Blood-Pressure-D40.html
http://www.provantage.com/foracare-3261400-003~9FRCR004.htm
http://www.bosch-telehealth.com/media/us/home/products/peripherals/Bosch_Weight_Scale_DS_F03D601547_Rev2.pdf
http://www.healthcare.omron.co.jp/bt/english/index.html
http://www.healthcare.omron.co.jp/bt/english/index.html
http://www.aandd.jp/products/medical/bluetooth/uc_321pbt_c.html
http://www.aandd.jp/products/medical/bluetooth/uc_321pbt_c.html
http://www.amazon.com/Bluetooth-Precision-Scale-Data-Output/dp/B0028Q4TR4

42 Appendix B

Appendix C

Message Diagrams

As stated in section 3.3, the Demonstration Application features the ability to communicate

with the M2M Gateway either through the Smart2M API or the local API present in the Gateway.

This appendix shows the message diagrams created, to better visualize the real needs of the M2M

Gateway and the Demo Application so that the scenario can be fulfilled.

First off, in figure 5.2, the login is represented. This is the only message that can only be

exchanged with the Smart2M API, since this communication yields the API token saved by the

application, which is necessary to communicate with the Gateway’s API. Then, in figures 5.3

and 5.4, the message exchanges between the Application and the Gateway, through the Smart2M

API, are shown. Then, in figures 5.5 and 5.6, the same exchanges are detailed, but through the

local Gateway API.

Finally, in figures 5.7 and 5.8, the messages occurring inside the gateway are shown. These

are triggered by all requests represented in the previous figures.

43

44 Appendix C

Figure 5.2: Login/Logout Sequence Diagram

45

Figure 5.3: Sequence diagram for listing and pairing sensors, through the Smart2M API

46 Appendix C

Figure 5.4: Sequence diagram for controlling sensors, through the Smart2M API

47

Figure 5.5: Sequence diagram for listing and pairing sensors, through the Gateway API

48 Appendix C

Figure 5.6: Sequence diagram for controlling sensors, through the Gateway API

49

Fi
gu

re
5.

7:
Se

qu
en

ce
di

ag
ra

m
s

in
si

de
th

e
M

2M
G

at
ew

ay
(P

ar
t1

)

50 Appendix C

Fi
gu

re
5.

8:
Se

qu
en

ce
di

ag
ra

m
s

in
si

de
th

e
M

2M
G

at
ew

ay
(P

ar
t2

)

Bibliography

[1] Rongxing Lu, Xu Li, Xiaohui Liang, Xuemin Shen, and Xiaodong Lin. GRS: the green,

reliability, and security of emerging machine to machine communications. IEEE Communi-

cations Magazine, 49(4):28–35, April 2011.

[2] IBM. Mqtt v3.1 protocol specification. http://public.dhe.ibm.com/software/

dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf, 2010. Online;

accessed 31-01-2014.

[3] Z. Shelby, Sensinode, K. Hartke, C. Bormann, and Universitaet Bremen TZI. Con-

strained Application Protocol (CoAP) draft-ietf-core-coap-18. IETF Internet Draft, http:

//tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf, August 2013. Online;

accessed 07-02-2014.

[4] C. Bormann, Universitaet Bremen TZI, Ed. Z. Shelby, and Sensinode. Blockwise transfers

in CoAP draft-ietf-core-block-14. IETF Internet Draft, http://tools.ietf.org/pdf/

draft-ietf-core-block-14.pdf, October 2013. Online; accessed 07-02-2014.

[5] S Vinoski. Advanced Message Queuing Protocol. Internet Computing, IEEE, pages 87–89,

2006.

[6] GE Moore. Cramming more components onto integrated circuits. Electronics, 38(8), 1965.

[7] ETSI TR 102 935 V2.1.1 (2012-09) Machine-to-Machine communications (M2M); Applica-

bility of M2M architecture to Smart Grid Networks; Impact of Smart Grids on M2M platform,

2012.

[8] ETSI TR 102 691 V1.1.1 (2010-05) Machine-to-Machine communications (M2M); Smart

Metering Use Cases, 2010.

[9] Min Chen, Jiafu Wan, Sergio Gonzalez, Xiaofei Liao, and Victor C.M. Leung. A Survey of

Recent Developments in Home M2M Networks. IEEE Communications Surveys & Tutorials,

pages 1–17, 2014.

[10] 3GPP. Service requirements for Machine-Type Communications (MTC); stage 1, release 12.

Technical Report TS 22.368 V12.3.0, 3GPP, 2013.

51

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/MQTT_V3.1_Protocol_Specific.pdf
http://tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf
http://tools.ietf.org/pdf/draft-ietf-core-coap-18.pdf
http://tools.ietf.org/pdf/draft-ietf-core-block-14.pdf
http://tools.ietf.org/pdf/draft-ietf-core-block-14.pdf

52 BIBLIOGRAPHY

[11] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A survey.

Computer Networks, 54(15):2787–2805, 2010.

[12] S Bandyopadhyay and A Bhattacharyya. Lightweight Internet protocols for web enablement

of sensors using constrained gateway devices. 2013 International Conference on Computing,

Networking and Communications (ICNC 2013), pages 334–340, Tata Consultancy Services,

Innovation Lab., Kolkata, India BT - 2013 International Conference on Computing, Net-

working and Communications (ICNC 2013), 28-31 Jan. 2013, 2013. IEEE.

[13] 3GPP. Technical Specification Group Services and System Aspects; Study on Facilitating

Machine to Machine Communication in 3GPP Systems. Technical Report TR 22.868, 3GPP,

2007.

[14] ETSI TS 102 689 V2.1.1 (2013-07) Machine-to-Machine communications (M2M); M2M ser-

vice requirements, 2013.

[15] ETSI TS 102 690 V2.1.1 (2013-10) Machine-to-Machine communications (M2M); Func-

tional architecture, 2013.

[16] Guang Lu. Overview of ETSI M2M Release 1 Stage 3 – API and Resource usage, 2011.

[17] Chonggang Wang. M2M Service Architecture: Delivering M2M Services Over Heteroge-

neous Networks. IEEE Communications Quality & Reliability 2012 International Workshop,

2012.

[18] V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. Schema for Representing Java(tm)

Objects in an LDAP Directory. RFC 2713, Network Working Group, October 1999.

[19] W3C. Extensible markup language (xml). http://www.w3.org/TR/WD-xml-961114.

html, November 1996. Online; accessed 31-01-2014.

[20] ISO 8879. Information Processing - Text and Office Systems - Standard Generalized Markup

Language (SGML). ISO Standard, 1986.

[21] M. Murata E. Whitehead, UC Irvine. XML Media Types. RFC 2376, Fuji Xerox Info.

Systems, July 1998.

[22] Douglas Crockford. The application/json Media Type for JavaScript Object Notation

(JSON). RFC 4627, JSON.org, July 2006.

[23] json schema.org. JSON Schema. http://json-schema.org/documentation.html.

Online; accessed 10-02-2014.

[24] Jon Tong-Seng Quah and Guey Long Lim. Push selling—Multicast messages to wireless

devices based on the publish/subscribe model. Electronic Commerce Research and Applica-

tions, 1(3-4):235–246, September 2002.

http://www.w3.org/TR/WD-xml-961114.html
http://www.w3.org/TR/WD-xml-961114.html
http://json-schema.org/documentation.html

BIBLIOGRAPHY 53

[25] ETSI, IPSO Alliance, and OMA. CoAP 3 & OMA Lightweight M2M

Plugtest. http://www.etsi.org/news-events/past-events/

693-coap-oma-lightweight-m2m, November 2013. Online; accessed 07-02-2014.

[26] Robert Battle and Edward Benson. Bridging the semantic Web and Web 2.0 with Represen-

tational State Transfer (REST). Web Semantics: Science, Services and Agents on the World

Wide Web, 6(1):61–69, February 2008.

[27] N. Shadbolt, T. Berners-Lee, and W. Hall. The Semantic Web Revisited. IEEE Intelligent

Systems, 21(3):96–101, May 2006.

[28] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk Nielsen, and Arthur Secret.

The World-Wide Web. Communications of the ACM, 37(8):76–82, August 1994.

[29] Carsten Bormann, Angelo P. Castellani, and Zach Shelby. CoAP: An Application Protocol

for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2):62–67, March 2012.

[30] J Postel and ISI. User Datagram Protocol. RFC 768, August 1980.

[31] Suresh Krishnan and Sheila Frankel. IP Security (IPsec) and Internet Key Exchange (IKE)

Document Roadmap. RFC 6071, February 2011.

[32] Eric Rescorla and Nagendra Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347, January 2012.

[33] Jon Postel. Transmission Control Protocol. RFC 793, September 1981.

[34] OASIS Standard. Oasis advanced message queuing protocol (amqp) version 1.0. http:

//docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.

0-os.pdf. Online; accessed 11-02-2014.

[35] RabbitMQ. Amqp 0.9.1 model explained. https://www.rabbitmq.com/tutorials/

amqp-concepts.html. Online; accessed 11-02-2014.

[36] Ed. A. Melnikov, Isode Limited, Ed. K. Zeilenga, and OpenLDAP Foundation. Simple Au-

thentication and Security Layer (SASL). RFC 4422, June 2006.

[37] S. Blake-Wilson, BCI, M. Nystrom, RSA Security, D. Hopwood, Independent Consultant,

J. Mikkelsen, Transactionware, T. Wright, and Vodafone. Transport Layer Security (TLS)

Extensions. RFC 4366, June 2006.

[38] Jianchu Yao and Steve Warren. Applying the ISO/IEEE 11073 standards to wearable home

health monitoring systems. Journal of clinical monitoring and computing, 19(6):427–36,

December 2005.

http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://www.etsi.org/news-events/past-events/693-coap-oma-lightweight-m2m
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-complete-v1.0-os.pdf
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html

54 BIBLIOGRAPHY

[39] Malcolm Clarke, Douglas Bogia, Kai Hassing, Lars Steubesand, Tony Chan, and Deepak

Ayyagari. Developing a standard for personal health devices based on 11073. Con-

ference proceedings : ... Annual International Conference of the IEEE Engineering in

Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Con-

ference, 2007(Dim):6175–7, January 2007.

[40] ITU. Information technology - Open Systems Interconnection (OSI). ITU Recommendation

X.200.

[41] Malcolm Clarke, Joost de Folter, Charles Palmer, and Vivek Verma. Building point of care

health technologies on the IEEE 11073 health device standards. In 2013 IEEE Point-of-Care

Healthcare Technologies (PHT), pages 117–119. IEEE, January 2013.

[42] Google Inc. Android BluetoothHealth API. http://developer.android.com/

reference/android/bluetooth/BluetoothHealth.html.

[43] Continua Health Alliance. www.continuaalliance.org/.

[44] V. Ryan, S. Seligman, R. Lee, and Inc. Sun Microsystems. The Base16, Base32, and Base64

Data Encodings. RFC 4648, Network Working Group, October 2006.

[45] PT Inovação. Smart2M Application Programming Interfaces, v0.3, 2013.

http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
http://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
www.continuaalliance.org/

	Front Page
	Table of Contents
	1 Introduction
	1.1 Context of Project
	1.2 Motivation
	1.3 Objectives
	1.4 Structure

	2 State of the Art
	2.1 M2M Communications
	2.1.1 M2M Architecture
	2.1.2 Mobile Gateway
	2.1.3 Marshalling

	2.2 Publish-Subscribe Paradigm
	2.3 Smart2M Architecture Revision
	2.4 M2M Communication Protocols
	2.4.1 CoAP
	2.4.2 MQTT
	2.4.3 AMQP

	2.5 E-Health application technologies
	2.5.1 ISO/IEEE 11073
	2.5.2 Continua Alliance

	2.6 Conclusion

	3 M2M Gateway and Proof-of-Concept Application
	3.1 Approach
	3.2 M2M Gateway Design
	3.3 Use Cases
	3.3.1 Sensor Procurement

	3.4 Proof-of-concept Application
	3.5 Technologies
	3.6 Evaluation

	4 Planning
	4.1 Tasks
	4.2 Scaling
	4.3 Conclusion

	5 Conclusion

