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Resumo

Na indústria multimilionária do futebol profissional, bem como noutros desportos de alta com-
petição, o planeamento estratégico levado por cada equipa é essencial na obtenção de resultados
desportivos e do respetivo retorno financeiro. Os sistemas automáticos de visão para análise de
eventos desportivos são, atualmente, ferramentas indispensáveis na preparação técnica e táticas
nas equipas de elite dos diversos desportos coletivos. A utilização de múltiplas câmaras e a neces-
sidade de operadores humanos facilitam o processamento de imagem necessário mas inflacionam
o custo destes sistemas tornando-os inacessíveis à grande maioria das equipas de nível médio.

Nos últimos anos, os mais recentes desenvolvimentos em diversas tecnologias, tais como:
sistema de sensorização, estabilidade, controlo, comunicações, armazenamento energético ou dos
materiais, tornaram os veículos aéreos não tripulados, nomeadamente os Quadcopters, cada vez
mais acessíveis para um vasto número de aplicações.

Neste trabalho é apresentado um sistema de visão automático para a extração de informação
relevante de jogos de Futsal a partir de imagens capturadas por um AR. Drone 2.0. A utilização
de um drone para adquirir imagens apresenta-se como uma solução de baixo custo, portátil e com
uma grande flexibilidade de utilização. Contudo, este tipo de veículos sofre muitas vibrações e
perturbações tornando a imagem pouco estática o que irá resultar num conjunto de problemas
pouco usuais neste tipo de sistemas de visão. Estabilização da imagem é conseguida a partir de
correspondência de características entre frames consecutivas. Para mapear a posição dos jogadores
no campo é utilizado um método de calibração baseado na deteção e correspondência das linhas
do campo com a de um modelo virtual. A posição dos jogadores na imagem é conseguida a partir
da deteção a partir de descritores HOG e do tracking a curto prazo com o algoritmo Mean Shift.

A partir dos dados recolhidos é realizada uma análise de alto nível a algumas vertentes do
jogo nomeadamente: mapas de ocupação, atitude das equipas e formação tática. Este trabalho
apresentou resultados positivos quer quantitativamente quer qualitativamente contudo quase todas
as tarefas apresentadas têm espaço para melhoramentos.
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Abstract

In the billionaire industry of football as in many other sports the strategic planning taken by each
team is essential to achieve the desired results and the respective financial return. Automatic vision
systems for analysis of sports events are currently indispensable tools in technical and tactical
preparation in the elite teams of the various collective sports. The use of multiple cameras and the
need for human operators facilitate image processing but inflate the cost of these systems making
them inaccessible to the majority of mid-level teams.

In recent years, the latest developments in various technologies, such as sensing system, sta-
bility control, communications, energy storage or materials, made unmanned aerial vehicles, in
particular Quadcopters increasingly accessible to a large number applications.

In this work an automatic vision system for extraction of relevant information on indoor soccer
games from images captured by an AR. Drone 2.0 is presented. The use of a drone to record
images from the game is presented as a low-cost, portable and flexible solution. However, this
kind of vehicles is subject to many vibrations and disturbances making image not static which will
result in a set of unusual problems in this type of vision systems.

Video stabilization is achieved using features matching between two adjacent frames. To map
the position of the players on the field is used, a camera calibration method based on the detection
and matching of the field lines on a virtual model. The position of the players in the image is
obtained with HOG detector and short term tracking with Mean Shift algorithm.

From the collected data an analysis of high-level aspects of the game, namely: occupation
maps, team attitude and defensive tactic formation. This study showed positive results both quan-
titatively and qualitatively yet almost all the tasks presented have room for improvement.
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’Chaos is merely order waiting to be deciphered’
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Chapter 1

Introduction

In the billionaire industry of football as in many other sports the strategic planning taken by each

team is essential to achieve the desired results and the respective financial return. On this planning

information regarding the position and trajectories of the players during one or more games is

often used. These data once interpreted can be used to set the strategy for a team before or during

the game. However, the current systems are not accessible to the big majority of the teams so the

study of low cost solutions with high reliability is required.

1.1 Context

Football is without question one of the most popular sports worldwide. All the monetary amounts

related to this sport justify the millionaire budget of the teams, not only in the acquisition of play-

ers, but also technical staff. They have the responsibility to prepare the team and help the coach in

order to achieve the best results. In the strategic planning for the games, information about position

and movement of the player on the pitch is used by the coach and other technical staff. Initially,

statistics on collective and individual performance were calculated manually with low reliability

and precision.Currently, the solutions used to provide this information clearly have high acquisi-

tion and license prices because of high complex installation with multiple fixed cameras around

the stadium and excessive human intervention in the video analysis. The unmanned aerial vehi-

cles have been gaining relevance in different areas of use: as the war, the recreational and also the

sport. These vehicles normally equipped with high definition cameras, can be used autonomously

to obtain images in a stadium or other sports hall. It assumes as a reliable, portable and low cost

solution to capture images to be later processed in order to finally extract useful information about

individual and collective performance during soccer matches.

However, the unique features and particularities of this system architecture for image recording

bring about difficulties that have not been considered in some of the previous works, such as the

camera motion, camera calibration and the need of complex methods for players’ detection. In

this project is intended to develop a system that overcomes these problems to extract and map the

player positions and trajectories from the image to the world coordinates.

1



2 Introduction

1.2 Objectives

This project aims to study a video analysis framework for a low cost image acquisition system of

indoor soccer games using a Quadcopter. The main goal of this project is to study and implement

an automatic video analysis framework in order to get complex information about the game from

image sequences shot by an AR. Drone 2.0. It intended to automatically extract the position of

the player from the image and map it in the world coordinates. From these low-level data high-

level information can be extracted such as occupational heatmaps, offensive and defensive trends,

tactics interpretation, among others.

An initial framework will be set up using common methods found in the literature. The main

stages of this frame work will be:

• Video Stabilization using Features Matching

• Camera Calibration using Hough Transform and homography estimation

• Player Detection with HOG detector

• Short term Player tracking using mean shift algorithm

This framework will include an image stabilization module to handle the movement and insta-

bility of the unmanned air vehicle. Camera Calibration module is needed to map the players on

the world coordinates dynamically. Different player detection methods will be studied and opti-

mized to achieve the best results. After getting reliable low-level data on players’ positions and

team identification, complex information about team performance and the game will be obtained

and shown to the user.The different methods will be evaluated qualitatively and also quantitatively

comparing results with hand-annotated data.

This project aims to be a starting point from an automatic vision system to collecting informa-

tion on sports events with an image acquisition system based on unmanned air vehicles. The main

problems common to these systems will be identified and some methods will be experimented to

solve them. In the end a complete framework based on common methods will be available setting

a base for future works to improve the results.

1.3 Contributions

From the work developed on the scope of this dissertation resulted various important contributions

as:

• Development of computer vision system framework for indoor soccer analysis based on

image capturing with a quadcopter.

• Simple and robust camera calibration method based on the detection and matching of the

several different lines of indoor sports venues.
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• Study and implementation of player detection and short tracking method based on the fusion

of HOG detector with mean shift tracking.

• Other two important contributions lie on the recording of video sequences from indoor soc-

cer games with an Ar.Drone 2.0 and corresponding ground truth annotation data.

1.4 Structure

This dissertation is composed by seven chapters. After this introductory one follows a review of the

literature and an analysis of the solutions found in the market about the subject of computer vision

systems in sports analyses in chapter 2. In chapter 3 is presented an overview of the framework

of the system and identified the major problems that it will face. Chapter 4 describes the first

two stages of the framework related to video stabilization and camera calibration. Preliminary

results are also presented at this stage. In chapter 5 players’ detection methodology is presented

and discussed. Quantitative results of the different stages of the method are also presented in this

chapter. In chapter 6 the results of High Level interpretation are presented and discussed. Finally,

in the last chapter the work developed is discussed and the main conclusions are presented.
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Chapter 2

State of the Art

In this chapter some of the works found in literature about computer vision systems for extraction

of sports data as well as some of the commercial solutions in the market will be analysed and

discussed. The research developed on quadcopters will be shown and the choice used in this

project substantiated.

2.1 Computer Vision in Sports Analysis

In the last few decades player tracking and automatic performance evaluation during soccer games

as in many other sports became an interesting subject of study. The resulting data is important not

only for team strategic planning but also for broadcasting information. Many of the algorithms

and methods developed for these systems can be applied in many different areas of interest as:

surveillance, healthcare, among others.

Is possible to divide automatic player tracking systems in two categories [3] : intrusive and not-

intrusive. Currently, intrusive systems rely on Global Positioning System (GPS) or other wireless

signal-based position detection and can achieve highly accurate data. However, these systems

require a hard and expensive implementation. Besides they are not allowed during matches in

most of the official tournaments. Non-invasive systems normally use automatic or semi-automatic

video analysis. From image sequences collected from one or more camera it is possible to extract

players positions and trajectories. Player’s tracking is very challenging due to the competitive

nature of the game: occlusion, overcrowded scenes players disappearing image plane or camera

motion are undesired but usual situations found in literature that still maintain inaccurate results.

A computer vision system can be modelled by the different stages of the process that differ

from one another in terms of input, function and output. The system model can be divided in the

following main stages: Image Acquisition, Pre-Processing, Image Segmentation, Object Recogni-

tion, Tracking.

5



6 State of the Art

Image Acquisition

Image Acquisition is, as expected, the first stage of a computer vision system but also a critical

one. The methods used to collect the images from the game will strongly influence the following

stages of the system. Image acquisition architectures normally differ on the number of cameras

and in how they are located on the sports venue. Multiple fixed cameras allow to cover all the field

and ease the segmentation methods to apply afterwords. [4, 5, 6, 7]. Simpler image acquisition

architectures such as with a single camera [8, 9] or using TV broadcasting sequences [10, 11, 12]

will require more complex processing on the following stages, mainly on player detection and

camera calibration.

Pre-Processing

Pre-Processing is a required step after collecting the images. It is used to filter, correct and

enhance some aspects of the image. On sports analysis the main functions of pre-processing stage

are associated with the relation between the camera and the world.

Video Stabilization is often performed to compensate undesired camera motion which is im-

portant when spatial image coherence is required.

Camera Calibration is an indispensable step of sports analysis since it is necessary to find

the relation between image coordinates and world coordinates. For instance, finding the camera

parameters it is possible to relate the position of the player in the image with their actual position

on the field [4, 13]. When fixed cameras are used, this stage is trivial and can be performed

manually, otherwise, when image camera moves, dynamic automatic methods are required.

Image Segmentation

Image segmentation is the process to divide the image in different regions with common fea-

tures. In sports analysis these regions are usually associated to players, ball or other interesting

regions as field lines while simultaneously other undesired regions have to ignore: spectators,

strange objects, bad illumination among others.

The most usual techniques are based on background subtraction since using a background

model created from initial frames [7] to more complex dynamic model using its representation on

a specific colorspace taking advantage of a dominant and homogeneous color field. [4, 5, 10].

However, when neither background is static nor there is a dominant field color as in indoor

sports, the basic methods presented above are not suitable for players’ segmentation.
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Object Detection

More complex methods can be used to perform player detection. Some of these methods lie

on the extraction of features and posterior classification [8, 14].

Features can be extracted from points or regions on the image considering their distinctiveness

and invariance to image transformation and illumination changes. These can be related to pixel

intensities or other feature space as shape, orientation, textures among others.

Classifiers compare the features extracted from the image with those used to train it. A clas-

sifier can be trained from a set of positive and negative samples and corresponding extracted

features. Different methods can then use the training data to categorize a features vector into one

of the trained classes and updating them.

Sliding window detectors extracts features from the window region on the image and catego-

rize it using the classifier previously trained as detection and non detection.

These group of methods are widely used on sport analysis when basic segmentation methods

are not suitable.

Tracking

From the position of the detection is possible to extract the trajectories of the players in the

field, however the detections along the frames contains noise and are always available. Tracking

an object through image sequences can be performed using different approaches. Methods based

on the apparent motion of objects on the image (optical flow [15]). Similarity measurement can

be used to predict the position of a object on following frames [16]. Using dynamic models to

describe players movement and corresponding measurements, is possible to predict player position

and smooth measured data. Assuming linear model and Gaussian error, Kalman Filter [17] is a

very popular solution to object tracking. Particle Filter [18] can assume non linear dynamic model

and non Gaussian error approximating it to reality but also expanding computational requirements.

2.2 Related Work

Ekin et. al [10] research was one of the first relevant works on the subject. From images captured

from TV broadcasting, the proposed system processed an adaptive and robust field extraction.

Different events were automatically detected in the presented framework such as: goals, referee

appearances and penalty box. The results presented showed an accuracy around 80% on shot

classification, and around 90% to referee and penalty box detection.

Saito et. al [7] proposed a multi camera system for player tracking. In each one of the fixed

and hand-calibrated camera players were detected using background removal. All detections were

projected and clustered on ground coordinates. A Kalman Filter was used to estimate players
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positions and smooth results. Results were then backprojected to image coordinate for user vi-

sualization. The clustering on ground coordinates allowed to solve cases of occlusion and get a

perfect track of 16 players over 100 frames.

Ren et al. [5] presented a work for ball tracking using multiple fixed cameras. Detection is

based on an adaptive background model using a pixel Gaussian Mixture Model. Tracking is made

on image plan using a Kalman Filter and different observation states for each object. Tracking

correction is applied to deal with merged objects by a matching process and forward filtering to

unify different tracked objects to get the real trajectory.

Dearden et al. [9] work is based on particle filter for player tracking using images from a

single camera of TV broadcasting. Players regions segmentation was carried out by a background

histogram backprojection that allows dynamic upgrading of field model. The observation model

of the filter includes the blob’s positions and sizes as well color information. A particle filter is

processed for each player being tracked on image plan allowing deleting and creating new tracks

when players leave and get in image. This approach can also solve solve cases of occlusions

especially when players are from different teams.

A different approach to solve occlusions and player identification was presented by Figueroa

et al [4]. Once more, using multiple fixed cameras segmentation was realized using background

subtraction resulting in blobs of one or more players. Authors used a graph to represent the blobs

and minimal path searching to track the players. Each node stores information about the geometry

of the blob, color, number of players, velocity of the object and the distance to the linked nodes. To

identify cases of occlusions, this algorithm estimates the number of objects in a blob by grouping

the nodes with common edges and the relation between blob area and position of nodes of the

same group allows the estimation of the number of players segmented on the same region. The

process of splitting the blobs works on the way as the occlusion identification. The results showed

the accuracy of the process with 82% of the occlusions being solved automatically and only 6%

of the frames needed manual tracking.

ASPOGAMO system [12] presented highly accurate results for extraction of player’s trajec-

tories from images of TV broadcasting of FIFA World Cup 2006. The system is capable to work

with one or more uncalibrated moving cameras. Automatic dynamic calibration is achieved with a

model based localization for estimating the missing extrinsic camera parameters on each frame. In

order to overtake most of the difficulties of player detection the system used a set of probabilistic

clues to calculate likelihood-maps for player locations. Candidate regions containing players are

extracted using an usual background extraction with a grass color model. Then these regions are

analysed in terms of color, compactness and height constraints. This allows to split players merged

in the same blob, identify player’s team and delete false positives. In the end, the observations are

compared with a multiple hypothesis tracker’s estimations. ASPOGAMO reaches 90% detection

rate on not crowded scenes and 70% for overcrowded scenes. With just one camera, occlusions

are difficult to solve and left on a post posterior module for data fusing with other camera source.

One of the most impressive and complete work is by Okuma et al. [8]. The area of research

is the tracking and action recognition of ice hockey players from video images of a single not
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fixed camera. For the tracking the authors used an boosted particle filter whose observation model

included Histogram of Oriented Gradients (HOG) for shape classification and Hue-Saturation-

Value (HSV) color histogram for color classification. Since the shape of the players changes over

the time, a template updating is executed to increase the accuracy of the method. The particle

filter beside the prediction model based on the players dynamics includes also the detections of an

Adaboost Cascated algorithm [19] trained with a large amount of samples (around 6000). Results

showed that the combination of the methods (HOG+HSV+Adaboost) performed better with an

average error of tracking of less than 0.2 meters.

One of the most relevant works on the area of indoor soccer is the one from Morais et al. [20].

Using multiple fixed cameras around the pavilion this system fuses the detections in each camera

to locate the player position in the field using a particle filter. The detection is realized with a

Viola and Jones [19] detector trained with 16.000 samples of Futsal players and 19.000 negative

samples. Then, using the homography of each camera, each detection is projected into world

coordinates. The last step of the observation model of the filter is to fuse the data from different

cameras. An appearance model using HSV and Gradients histograms is used to reinforce the

detection and dismiss false positives. The systems failed in cases of occlusions and overcrowded

scenes of players of the same team. Quantitative results showed an average error of 0.6 meters.

In Santiago et al. [21] handball players’ tracking is achieved using an acquisition system

composed by two static cameras on the top of the sports hall. Player detection is performed by

background subtraction and an a posteriori color analysis for team identification and false positive

handling. The authors presented a dynamic color calibration process based on region growing

and a set of fuzzy rules to categorize the teams colors subspace. The detections were used as

measurements in a Kalman Filter for each player after projected into ground coordinates. The

tracking rate achieved was around 95% showing the reliability of this system.

One of the last and most promising works in the area of players tracking in indoor sports was

carried by Lu et al. [13].The system uses only one moving camera. Basketball player detection is

realized by a Deformable Part Model (DPM) with a RGB color classification for team identifica-

tion and delete false positives. Tracking is performed by Kalman Filter and results are combined in

a Conditional Random Field with weak visual cues as Maximally stable extremal regions (MSER),

Scale Invariant Feature Transform (SIFT) and other features to improve player identification. Au-

tomatic camera to court homography is achieved using frame-to-frame homography combined

with an optimization of the model fitting into a filtered edge map. The results presented were

outstanding comparing to the rest of the work and considering the acquisition system: Tracking

had a precision of 92% and a recall of 80%. Player Identification method reached an accuracy of

80% and the automatic homography had an error of less than 14cm on the basketball court.

2.2.1 Summary

First systems used multiple fixed cameras around the stadium or sports hall covering all the play-

field to overtake some of the segmentation and tracking problems. In these cases segmentation can
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be easily obtained by background removal. The background model shall be updated due to exter-

nal conditions and lighting changes. Camera calibration is necessary to map players in the world

coordinates. When cameras are fixed, calibration can be easily estimated picking correspondent

points between image and the field model.

Advanced methods on image processing and tracking allowed to decrease the number of cam-

eras used in image acquisition and in some cases only one camera is used, in the most of the times

the TV Broadcast one.

Tracking process must consider the noise on detection process and that measurements are not

always available. Usually the dynamics of the players are modelized and complex observation

models are taken into account. Kalman Filter and Particle Filters are the most common imple-

mentations but more works are using Optimization and Linear Programming to perform player

tracking.

Most of the works found in literature focus mainly on players position and trajectories and

barely include ball detection. Also, high level and collective performance information is extracted

as well action as goals, passes or set pieces are excluded from the goals of most researches. From

the technological point of view, relevant aspects are left out. Computation time and real time

constraints are barely considered. Finally, all the image acquisition architectures use one or more

fixed cameras and there’s no relevant work using portable or moving systems for image capture.

2.3 Commercial Solutions

In this section will be analysed some of the products found in the market of evaluation of sport

events. It is intended to evaluate these solutions in terms of functionalities, complexity of the

system and the cost of implementation and license.

2.3.1 Prozone

Prozone1 is a British company and one of the pioneers in the market of individual and collec-

tive performance evaluation in many sport events with a main focus on football. Among their

clients list one can find some of the coaches with highest reputation worldwide. The variety of the

provided services include real-time game analysis, performance evaluation and also scouting and

opponent advising.

Prozone3 is the most reliable and expensive product of Prozone. A set of 8 to 12 cameras

placed around the stadium captures the game action in entire field and from different perspectives.

The players, ball and referees are detected in a semi-automatic procedure. Despite using automatic

image analysis in player detection, human intervention is required to correct the tracking and also

for game events annotation such as: goals, passes, tackles, set pieces, etc.

1www.prozonesports.com
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The product provides relevant data about players position and trajectories from the entire game,

individual and collective performance statistics and also trends and usual behaviours associated to

players and teams.

All the image acquisition system installation has a cost of 120,000 euros and each game anal-

ysis has an independent cost.

2.3.2 Amisco

Amisco2 a multinational company founded in 1995 that claim themselves as the leaders and main

pioneers in player tracking technology. They work next to biggest professional teams worldwide

and provide services of player recruitment, deep game analysis and live game advising.

This service provides real-time data about movement of all players and their interaction with

the ball. More than 4 million data are collected from each game and are inserted in a global

database. This information is obtained through image processing of sequences collected from an

acquisition architecture composed by 6 to 8 HD cameras. TV broadcast records can be used to

process a less set of data. All the process is supervised by a human operator to ensure the accuracy

of the results.

2.3.3 STATS

STATS3 is one of the biggest companies providing information about sports events. The main

clients are Media and Broadcasting companies as well some basketball and soccer professional

teams.

2.3.3.1 STATS SportVU Tracking Technology-Football/Soccer

This system acquires in real-time the position of players and ball on the playfield. It provides a

big variety of relevant information, as per example, distance ran, average velocity, ball possession

time, etc.

The service has two distinct configurations. SportVU SV uses three HD cameras placed on a

single place of the stadium. The other configuration is SportVU MV and includes 6 HD cameras

placed on 2 places of the stadium. The first configuration detects only players and the ball while

the second one provides a more robust localization and tracking as well catching 3D animations.

Data are processed in real-time for TV Broadcasting and showed by graphics and 2D/3D

animations.

2.3.3.2 STATS SportVU Tracking Technology-Basketball

The product of STATS targeted to basket uses a 6 HD cameras configuration placed around the

sports hall. It detects the position of the players and ball in at a rate of 25Hz. Human intervention

2www.sport-universal.com
3www.stats.com
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in this process is residual and data about ball possession, dribbles, shots is processed in every 60

seconds in an automatic procedure. This system costs around 75,000 euros per year and it was

acquired almost exclusively by NBA teams.4

2.3.4 OptaPro

OptaPro5 sees itself as world leader on sports data providing. They include services of game

analysis, opponent scouting and player recruitment.

The service of data acquisition and processing from OptaPro uses images from TV broadcast-

ing to annotate all the relevant data during a football match. Each game is analysed by 3 people,

each person for each team and the third one supervising all the process. All the processed data is

inserted into a database that currently counts with more than 30,000 matches each one with more

than 2000 events, including position, trajectories and ball interactions.

2.3.5 ChyronHego

ChyronHego6 is a company for multimedia contents providing from Sweden. Its services include

tv broadcasting support such as collecting and displaying data of sport events.

Tracab from ChyronHego is currently the only solution on the market capable of automatic

and real-time of all players during an entire soccer match. The acquisition system is composed

by two sets of stereo HD cameras placed on the top of the stadium in order to capture all the

pitch.The system can extract the 3D position of all players and ball in real-time under different

environmental conditions. Information about prices is not publicly available and recently all the

stadiums of English Premier League were equipped with this product.

2.3.6 Summary

Existing solutions in the market have presented a high innovated technology and high reliability

in their results, however, there’s lack of robustness on their automatic procedures. Human in-

tervention is still necessary in some of the procedures of detection and tracking. Almost all the

solutions covered use multiple fixed HD cameras. The complexity of implementation and the cost

associated with human operators make these systems expensive and not reachable to the majority

of teams.

2.4 Quadcopters

The latest developments in several technologies such as sensorization, stability, control, commu-

nication, energy storage or materials, well as its mechanic simplicity and easy manoeuvrability,

led to unmanned aerial vehicles as per example Quadcopters have won great renown in several

4National League of Basketball-www.nba.com
5www.optasportpro.com
6www.chyronhego.com
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Table 2.1: Comparative Analysis of Commercial Solutions

Review Criteria
Products Image Acquisition Human Intervention Real-Time Price (euros)
Prozone Playback 3 8-12 Cameras Needed No >100,000
Amisco Match Analysis 6-8 Cameras Needed No >100,000
SportVU - Soccer 3/6 cameras Almost unnecessary Yes(1̃-60s) 70-100,000
SportVU- Basketball 4-6 cameras Unnecessary Yes(1̃-60s) 70-100,000
OptaPro DataScout TV Broadcast Exclusive No ?
Tracab 2 sets of stereo cameras Unnecessary Yes ?

applications. In this section the comparative analysis of different Quadcopters and other UAV’s

will be presented in order to justify which one would be suitable to the scope of the project.

2.4.1 Dynamics and Control

Quadcopters are systems naturally unstable [22] therefore, they are impossible to be handled with-

out any auxiliary control system. Several sensors located in the vehicle or outside it provide in-

formation on pose and position to a processing unit. This unit will process a control algorithm so

that each propeller supplies the necessary torque to achieve a certain position or trajectory.

The most usual configuration and the one will be used on this research is the 4 rotors mounted

on a cross structure. Each pair of non-adjacent rotors spin in the same direction and the speed of

each one will determine the direction and velocity of the Quadcopter.

The vehicle has 4 rotors so the its control has 4 degrees of freedom, namely: Vertical acceler-

ation, Pitch, Roll and Yaw. The structure allows to decouple the control of each of these variables.

2.4.2 Commercial Solutions

Currently, there’s a big variety of UAV in the market. For this research is pretended a relatively

cheap, small Quadcopter equipped with a camera capable of live streaming. The criteria in this

selection will be: price, robustness,

2.4.2.1 Ar.Drone 2.0

This Quadcopter from Parrot7 is one of the best sellers on the market due to its price, facility of

use and also easy repairing of all the components.

This is a widely popular solution on the market because it can be controlled easily through

mobile devices with Wi-Fi. This is an important feature as it will allow the usage of its communi-

cations protocol fully documented from any computer.

7ardrone2.parrot.com
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Table 2.2: Ar.Drone 2.0 Technical Specifications

Structure Carbon Fiber and Outdoor Hull
Weight 400 g

Autonomy 18 min
Sensors Gyroscope,Accelerometer,Magnetometer,Pressure Sensor, Ultassounds,

Vertical Camera for ground velocity
Communications Wi-Fi

Camera 720p 30fps. Low latency Wi-Fi Transmission
Observations Fully Repairable. Open and documented communcations protocol

Price 300 euros

2.4.2.2 Dji Phantom

This Quadcopter8 is widely used in cultural and sports events because of its easy control and great

stability with GPS localization. Despite not having a camera, it allows a stabilization mount for a

GoPro9.

Table 2.3: Dji Phantom Technical Specifications

Structure Carbon Fiber
Weight 600g

Autonomy 10 min
Sensors GPS, Gyroscope,Accelerometer,Magnetometer,Pressure Sensor

Communications Radio
Camera -

Price 500 euros
Observations Possibility to equip with a gopro

One of the big advantages of this vehicle is based on the use of GPS localization. However, in

indoor places that’s not possible and Dji Phantom will not use most of its features.

2.4.2.3 AscTec Firefly

Firefly is the last product of AscTec10 and it’s considered one of the most advanced on the market.

This Hexacopter (patented system with 6 rotors instead of the usual 4) is a product focused on

autonomous flights using its HD camera. But its greatest obstacle is undoubtedly the price. This

system is modular and allows to add and remove different components according to the goal of the

flight.

8www.dji.com
9gopro.com

10http://www.asctec.de/uav-applications/research/products/asctec-firefly/
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Table 2.4: Firefly Technical Specifications

Structure Modular Structure
Weight 500g

Autonomy 10 min
Sensors GPS, Gyroscope,Accelerometer,Magnetometer,Pressure Sensor

Communications Xbee, 2.4GHz
Camera 752x480-90fps

Price 6.000 euros
Observation Matlab/Simulink programmed

2.4.2.4 Choice

The products presented were evaluated taking as critera: Price, Contrability, Robustness/Modularity

and Camera Table2.5 shows briefly the evaluation performed.

Table 2.5: Quadcopters Evaluation . ’++’ -Quite Positive. ’–’ -Quite Negative

Criteria

Product Price Control. Robust./Modular. Camera
Ar.Drone 2.0 ++ + - +

Phantom(+GoPro) + - - +
Firefly - - ++ + +

Having regard the the criteria presented above, the chosen solution was the Parrot’s Ar.Drone

2.0 due to its low price, open communications protocol that lets you explore numerous possibilities

as autonomous flights and even the HD camera with high quality and transmission rate.

Phantom was excluded because of its control system that difficults future implementations of

autonomous flights on indoor environments.

Despite of its lack of robustness, Ar.Drone is fully repairable. This can not be neglected since

this will be a testing platform and falls and impacts are expected.

2.5 Conclusions

Computational vision systems for sports analysis are currently indispensable tools for tactical and

technical preparation of elite teams in many collective and individual sports. The usage of multiple

cameras for image acquisition and the necessity of human intervention in some of the procedure

inflate the prices of these system making them unreachable for the majority of the teams.

At scientific level, the optimization of segmentation, detection and tracking methods allowed

the achievement of positive results. Automatic systems are capable to solve cases of occlusions

and players leaving and entering the image plane with high accuracy. However, all the systems

reviewed are based on expensive and complex image acquisition architectures. There is lack of
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studies based on low cost image acquisition systems turning this study an important contribution

on this research area.

In the last few years, unmanned air vehicles, namely Quadcopters have become increasingly

available to a wide range of applications. Usually equipped with high definition cameras inboard,

these vehicles are suitable for capturing images of multiple events including sports. Their porta-

bility, easy manoeuvring and also a possibility for automatic flights make this low cost solution

tempting for capturing images for automatic vision systems for performance extraction on sports.



Chapter 3

System Overview

In this chapter we present an overview of the system. From the technological point of view will be

explained how images sequences from the games are acquired and processed. Conceptually, the

framework with the different stages to extract the information of the game automatically will be

described briefly.

3.1 Image Acquisition

The images from indoor soccer games used in this project are shot by the Ar.Drone’s frontal

camera. The Drone is controlled using Parrot’s commercial application for mobile devices1. For

the purpose of this research the drone is hovering on a static position 5 to 7 meters above floor

close to the side line of the pitch (figure 3.1). After a little modification on Ar.Drone’s structure, its

frontal camera is pointing 30o down in order to capture the game action and simultaneously avoid

cases of occlusions. The sequences used in system development and testing are covering only

one half field. This approach would require other image sources to shoot the entire field. On the

other hand this solution will facilitate some hard tasks, namely: automatic camera calibration and

motion compensation. Other approaches like multiple drones or automatic game action tracking

were not included taking into account the aim of this project.

The videos recorded by Ar.Drone’s camera have 1280x720 resolution and a rate of 30 frames

per second (fps). The sequences were shot in Pavilhão Luis Falcão 2 and Pavilhão Desportivo

Politécnico do Porto 3 during official amateur tournaments. In both tournaments different shirt

colors were used to identify the teams. Referees as well as spectators can appear during the

sequences.

1https://play.google.com/store/apps/details?id=com.parrot.free flight
2https://sigarra.up.pt/cdup/pt/
3http://www.ipp.pt/cde/index.php?id=60

17
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Figure 3.1: Representation of Quadcopter’s position while recording the image sequences from
indoor soccer games

3.2 Image Processing

Image analysis was performed offline using MATLAB4 including Computer Vision5 and Image

Processing6 toolboxes.

Sequences of 30 seconds to 1 minute were previously cut considering the sudden movements

of the air vehicle but including some other undesired but usual situations in this kind of systems,

namely: players moving in and out of the image, occlusions, camera motion among others.

Different methods are used in the various stages of the process. The following framework

represents conceptually each one of these stages in terms of the input, output and the main reason

of its utilization.

3.2.1 System Framework

In order to extract relevant information about the game from the image sequences captured by

Ar.Drone’s frontal camera a series of steps are carried out. Inevitably, the quadcopter used to

collect images will suffer oscillations inherent to its own dynamic and external conditions. The

first stage of the framework is motion compensation and image stabilization in which the frame-

to-frame transformation will be estimated in order to compensate the motion caused by the drone

instability.

The next step is camera calibration, this means how to relate image to world coordinates. This

is a necessary step since all the information extracted from the image is only meaningful in world

coordinates. Despite the image stabilization step, image-to-world homography will vary over time

and there’s a need for a dynamic automatic re-calibration procedure. This step will provide the

homography matrix that relates players position in image to the world coordinates in each frame.

4http://www.mathworks.com/products/matlab/
5http://www.mathworks.com/products/computer-vision/
6http://www.mathworks.com/products/image/
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Player detection is undoubtedly a critical step for the whole system. Basic segmentation meth-

ods commonly used are not suitable for this research due to camera motion and non existence

of a dominant background color. Instead, detection based on histogram of oriented gradients is

used to detect people in upright position. Detections will not be always available and there will

be also some false positives. Consequently, the next stage of the process is to filter the results of

the detection and estimate the position of the players when detections are not available. Different

information can be used to predict that, as color, movement or player’s dynamics.

Since there are reliable results of player’s positions and trajectories, high level information can

be interpreted from the data as for example: heatmaps, offensive/defensive trends, among others.

others. This system framework is illustrated in the figure 3.2 representing the main stages and also

the input and output of each one.

Figure 3.2: Schematic of the system framework

3.3 Methods Evaluation

The different methods and the different stages of each one will be evaluated using quantitative and

qualitative criteria regarding the nature of the problem. Taking in account the criteria used on the

evaluation the following the division can be presented:

• Quantitative Evaluation:

– Camera Calibration

– Player detection

• Qualitative Evaluation:
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– Video Stabilization

– High level data

3.3.1 Quantitative Evaluation

"Camera Calibration" and "Player detection" are stages of the framework in which a metric evalu-

ation can be used. The results of different methods will be compared to manual annotated ground

truth data in both cases. Ground truth annotation was carried out using a MATLAB script that

allows to annotate at a pre-determined frame rate the position and team of the players and also

the four points needed to define the homography between the field and the image plane. Then the

data are interpolated in all the frames. Manual annotation in each 10th frame performed visual

acceptable results. At this stage it is important to refer that manual data annotation will have noise

that will appear on the final results.

3.3.1.1 Camera Calibration Evaluation

The metric used to evaluate the calibration method will be the distance in pixels of the four corner

points of the half field rectangle. These four points are used since they usually appear in all

sequences and are enough to define the world-to-image homography. Let us define Xi = (xi,yi)

with i ∈ [1,2,3,4] as the four points manually annotated in a frame t and X̃i = (x̃i, ỹi) as the four

points resulting of the camera calibration method on the same frame. The error of the calibration

method can then be expressed as:

errort = ∑
i

√
(xi− x̃i)

2 +(yi− ỹi)
2 (3.1)

3.3.1.2 Player Detection Evaluation

In computer vision bounding boxes are commonly used to represent the location of a certain object

on the image. In this project the same representation is used. The different methods for player

detection will be evaluated in terms of precision and recall, defined next:

precision =
detections

detections+ f alsepositives
(3.2)

recall =
detections

detections+misseddetections
(3.3)

Since in this research there is no focus on player identification there will not be a direct link

between each detection and the ground truth equivalent. To solve this problem Munkres algorithm

is applied [23] to assign detections to ground truth data. The cost calculation is based on the

distance and size between bounding boxes.
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To be assigned as a correct detections different rules can be used, in this study one rule gener-

ally used in computer vision problems will be applied: let us define A as a detected bounding box

and B the assigned ground truth annotation, then the detection is classified as correct if:

Area(A∩B)
Area(A∪B)

> 0.5 (3.4)

Team classification will be evaluated comparing the teams between the detections assigned

and the corresponding annotated players.

In this process it is possible to a player be misclassified due to the ground annotation method,

since the interpolation and assignment are automatic and not controlled by the user. But decreasing

by ten the number of ground annotated data, visual interpolated results seemed reliable.

3.3.2 Qualitative Evaluation

Video stabilization in computer vision is hard to evaluate quantitatively so in this project the results

of this stage will be evaluated qualitatively and with subjective criteria such as motion compensa-

tion, long term accuracy and efficiency.

High level data interpretation is a very subjective topic and requires highly expert knowledge

about the different aspects of the game to have an accurate evaluation. In this project evaluation is

kept basic and based in common knowledge about indoor soccer tactical and technical aspects.

3.3.3 Test Sequences

To test the methods and their robustness it was recorded sequences on indoor soccer venues during

games or warm ups of official amateur tournaments. It was intended to cover different circum-

stances and deal with usual difficulties on this kind of systems. It will be used four different video

sequences to test the different stages of the methods, which will be described next:

• Sequence number 17: Shot in Pavilhão Luis Falcão during team warm up. In the field

there are eight players from white team and three from the black’s. At the 5th second drone

suffers a strong oscillation.

Figure 3.3: Frame 1,100 and 500 of original sequence number 1.

7https://www.youtube.com/watch?v=3VDAR10wqDM
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• Sequence number 28: Shot in Pavilhão Luis Falcão on a non game situation. Only two

players on the field without wearing a team kit.

Figure 3.4: Frame 1,100 and 500 of original sequence number 2.

• Sequence number 39: Shot in Pavilhão Desportivo Politécnico do Porto during an official

game. Two different teams of four field players wearing black and white equipments. This

sequence suffers from bad illumination reflection of the floor.

Figure 3.5: Frame 1,100 and 500 of original sequence number 3.

• Sequence number 410: Shot in Pavilhão Desportivo Politécnico do Porto during an official

game. Two different teams of four field players wearing yellow and orange equipments.

Some players from different teams wear similar shirt colors.

Figure 3.6: Frame 1,100 and 500 of original sequence number 4.

3.4 Conclusions

For the purpose of this research a simple approach is chosen to capture images from indoor soccer

games. The drone will be hovering a static location capturing the game action in only half of the

field. To get the action of the entire field more complex approaches would be required namely

the use of multiple drones or an automatic ball tracking system where the drone would rotate to

8https://www.youtube.com/watch?v=v90UmhYzCAo
9https://www.youtube.com/watch?v=tUpY8VHWWaw

10https://www.youtube.com/watch?v=TNCkiUTyqIk



3.4 Conclusions 23

follow the ball. A Drone will be hovering on a high location to simultaneously increase the visible

area and avoid cases of occlusions, otherwise, some players will be too distant from the camera

making their detection difficult.

First image sequences collected showed immediately an undesired image jittering due to mo-

tion of the drone. This will difficult posterior processing specially camera calibration and player

tracking since they use spatial coherence on the image. An important aspect is that players from

different teams are wearing different colors which be useful to team identification. Still, since

not the entire field is being covered by drone’s camera, players will be continuously entering and

leaving the image plane, what will bring more challenges to players detection and tracking.

Next chapters will describe in detail the various challenges and stages of the framework and

show some of the methods proposed to solve them.
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Chapter 4

Video Stabilization and Camera
Calibration

In this chapter the methods developed to achieve video stabilization and estimate camera cali-

bration parameters and the corresponding preliminary results will be presented. Briefly, the rela-

tionship between the camera and the world will be studied. As seen previously, due to unavoid-

able drone’s motion the image sequences will have undesired motion noise. In our system video

stabilization is especially important since calibration and player tracking methods will be using

information of pixel’s intensities values but also pixel’s position, so is important to keep spatial

consistency among the image sequences. The transformation between camera and world coordi-

nates can be described by the intrinsic and extrinsic camera parameters. This transformation is

important to relate the position of the players on image coordinates to their real location on the

field. Even with image stabilization procedure, not all the motion noise is removed so dynamic

calibration method is required to update the transformation between coordinate systems in each

frame.

4.1 Video Stabilization

Image stabilization lies on the process of compensating undesired motion of the camera. First

stabilization system was presented by Canon 1 in 1995 and was based on a moving lens with a

16-bit microcomputer controlling an ultrasonic motor. This approach is quite expensive and not

suitable for the majority the cameras.

Instead, digital image stabilization is widely used due to development of computational power

and image registration methods. Generally, the digital video stabilization process is split in 3 main

stages [24] : motion estimation, motion compensation and image composition.

1cpn.canon-europe.com/content/education/infobank/lenses

25
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4.1.1 Motion Estimation

The first stage of video stabilization is to estimate frame-to-frame motion also denominated global

motion [25]. Two main approaches are used in this step: feature-based and global intensity align-

ment. The last one is usually slower and less accurate because it does not take advantage of

important visual clues between frames since it uses global pixel-to-pixel comparison. By collect-

ing several interesting and invariant points or regions it is possible to match them on different

frames.

4.1.1.1 Features Detection

Feature-based methods use detection of distinctive key points and posterior matching between

frames to estimate their transformation[26]. A local feature is an interest point or region and it is

associated to a change on a certain image property [27], some features detectors are invariant to

the most of transformations, this means that their location does not vary over time or perspective

(repeatability) [26]. Local features can also be evaluated in terms of informativeness, locality,

quantity,accuracy and efficiency but repeatability can be defined as the most important of them all

[27]. Local features can be divided in three main classes: corners, blob and region detectors.

Corner points are widely used as features in video stabilization because they are very sensitive

to changes in both directions of image but they also provide a large set of stable and repeatable

features. [27]. Blob detectors are other kind of features widely used. They are commonly applied

complementary with corner points. Salient regions can provide useful information about frames

transformations but they are not so accurately located on image as corners[27]. Since a blob is

located by its boundaries that makes it less accurate and consequently less suitable for frames

comparison or camera calibration application. Region detectors are suitable to represent homoge-

neous regions but they lack accuracy in matching and description despite being quite acceptable

on detection. To increase matching accuracy, region descriptors usually include information on

its boundaries and capture the shape of the region. These detectors work well in a reasonable

structured image with well defined objects, otherwise, they lack repeatability. They are often used

to ease computation analysing using similar areas instead of single pixels.

All the features detectors presented above are computationally complex and barely respect

real time constraints. However, there are some implementations that stand out with their compu-

tational efficiency.[27]. Difference-of-Gaussians detector (DoG) implements an approximation of

the Laplacian based on the difference of the image at different scales avoiding the second-order

derivatives which are computationally expensive. The image is smoothed with a Gaussian filter

several times and then Laplacian is approximated by the difference of the smoothed images. [27].

The regions extracted are the local maxima in the difference of Gaussian maps. This process can

extract interest regions with an interesting frame rate, useful then to video processing.

Speeded Up Robust Features or SURF [28] is another example of a robust detector. It uses an

approximation of Gaussian derivative kernels by box filters based on Haar wavelets. These filters
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are used to calculate the Hessian matrix (partial second derivatives). The determinant of this ma-

trix represents blob response at a certain location. Local maxima responses are then interpolated

resulting on the detected features. This method presented results five times faster than DoG [27].

FAST detector is an efficient corner detector [29] based on the analysis of the neighbour pixels

around a central location. It considers a circle of fixed radius and compares opposite pixels above

that circle. Those pixels are classified taking in account their similarity. Measuring the entropy of

negative and positive responses it is possible to create recursively a subset of null entropy. These

will be the best candidates to be corner features. This detector can achieve a speed up to 30 times

faster than DoG [27] despite not being invariant to scale changes.

In brief, feature detection is an essential step of motion estimation. Using interesting points

or regions invariant to rotation or other transformations it is possible to detect them in different

images as adjacent frames. Repeatability, location accuracy and quantity are, probably, the most

important qualities of a feature detector to video stabilization. Point features as corner detector

usually perform better on this kind of application even being not invariant to scale change but

their repeatability and location accuracy stand out comparing to region or blob detectors. Feature

extraction is a very complex process in terms of computational effort, so recent methods try to

approximate some of the calculations behind the process speeding up the detections without losing

accuracy. After detecting the interesting points/regions in different images is then necessary to

match them to extract the geometric relation between them.

4.1.1.2 Features Matching

The process of matching two or more sets of features collected from different images is a hard task

once there is neither prior knowledge about the correspondence pairs of point nor the geometric

transformation that relates both sets. Moreover, the features collected will have inliers and outliers,

this means that there are features that do not have a reasonable correspondence in another set. This

happens because different images cover different interesting points/regions and features detectors

are not perfectly repeatable or accurate. Once there is the match between the sets, finding the

geometric transformation is easy, however finding all the inliers matches can be an expensive task

in terms of computational power so efficient methods are required in this step. RANdom SAmple

Consensus (RANSAC) is an iterative method for fitting of data sets containing many outliers [30].

Since it is a non deterministic method there is no certainty to find the optimal result. However with

enough iterations there is an high probability for a good fitting. The algorithm can be expressed

in three steps: 1) N points are randomly selected and model parameters are estimated from them ;

2)The other points are compared to the model parametrized before. The points that fit the model

are included in the consensus set; 3) If this set is large enough the fitting is concluded, if not, step

1) is applied including the consensus set in the initial estimation. The big limitation of this method

is the inexistence of a computation time limit. However this is a very robust method for fitting

models with many outliers (<50%).

Another method to fit a given model is Least Median Squares (LMS). The goal of this algo-

rithm is to minimize the median of the squared residuals (difference of the points to the model
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Table 4.1: 2D transformations hierarchy [2]

fitted). The first step of this method is to pick a fixed number of subsets with different points.

Then, for each subset model parameters are estimated. Next, the median of the residuals is cal-

culated based on the estimated parameters. The parameters with minimum median of the squared

residual are chosen. The fundamental issue in this method is how to guess the number of initial

subsets and usually it is estimated in terms of the probability of outliers.

Once there is a match between the two sets of features, the next step is estimate the geometric

transformation that relates both group of points.

4.1.1.3 Geometric Registration

The final step of motion estimation is to find the geometric relation that relate the features matched

between the two image sources. Transformation can be defined by a 3x3 matrix and classified in

terms of its degrees of freedom. The most general transformation is the perspective and relates the

homogeneous coordinates x̃′ and x̃ :

x̃′ = k ∗

h00 h01 h02

h10 h11 h12

h20 h21 1

∗ x̃ (4.1)

All the transformation between 2D coordinate systems can be described with the matrix above:

k is the scale factor and hi j the parameters to estimate. However, other transformations can be con-

sidered as subsets of the one above with decreasing degrees of freedom. For instance, affine (4

degrees of freedom) transformations are widely used in video stabilization instead of perspective

because of its model complexity and descriptive capability [31]. Table 4.1 shows the 2D transfor-

mations hierarchy.

Once a transformation model is chosen, the parameters can be estimated with the features

matched previously. Linear regression methods as least squares can be performed to minimize the
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sum of squared residuals [26]. Most robust methods can be performed assuming that not all the

points are matched with same accuracy, which is true most of the times. In this case, the goal is

to minimize the weighted least squares, where each point match has a variance associated [26]. In

the case of a perspective transformation as the relation is non linear numerical methods have to be

performed iteratively to find the parameters.

4.1.2 Motion Compensation

Several methods can be found to long term motion compensation from inter-frame estimated mo-

tion. Usually it is intended to eliminate or smooth high frequency jitter from estimated camera

motion [32]. The model transformations presented above are approximations to modelize the

camera movement. However, due to its lack precision there will be always noise in the process of

estimation and also in the model itself.

The most simple method is to consider that the transformation at frame=i is the chain of inter-

frames transformation from frame=1 to frame=i-1. The biggest problem with this approach is

that the error will accumulate over time. A solution to smooth this undesired effect is to use a

fixed number of previous frame on the transformation chain [25]. Other more robust methods

can be found in literature as Kalman Filter [31] or parabolic fitting [33] that will deal better with

the cumulative error well as high frequency jitter from camera motion turning video reproduction

softer and visually pleasant [33].

4.1.3 Image Composition

Image composition is the final step on video stabilization process and it resumes to how to present

the compensated frame on the image plane. The most primitive method is to apply the inverse

of estimated motion transformation in the image and fit the result on the coordinates of the first

frame (blending). This results on the loose visible area over time. Other primitive method is to

overlap the resulted compensated frame on the previous frames. This works well only on planar

images, otherwise there will be a big degradation on the boarders between frames. Robust methods

were developed to deal with image degradation and stabilization as dynamic programming[33] or

motion in painting [25]. The first method performs minimizing the energy of overlapped frames

and weighting the contribution of boarder pixels resulting on a mosaicking with pleasant boarder

fitting. The second method fills the missing area of compensated images after blending with local

motion estimation relative to the previous frame.

4.2 Results of Video Stabilization

Due to external factor and its own dynamics, Drone’s camera has an undesired motion that needs

to be compensated to ease some of the procedures to be carried out later. The stabilization process

was implemented using common functions found in Matlab library and adapted to this application.
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The method developed was based on feature matching. Corner points detected by the FAST

algorithm were used because of its efficiency even though in this project time constraints are not

considered. Other features detectors as SURF or Harris corner detector were tested with visible

worse results. The detectors were performed on the grayscale map because of computational

simplicity (figure4.1).

M-estimator SAmple Consensus (MSAC) a variant of the RANSAC method was used to match

the features among the frames and exclude the outliers from the model fitting. As expected, most

of the inliers are features from the pitch lines or walls draws. Some of the features were located

on players and most of then considered as outliers.

(a) Corners Features in Frame 1 (b) Corners Features in Frame 2

Figure 4.1: Result of FAST corner detection in Frame 1 and Frame 2 of video sequence nr.4.

Figure 4.2: Result of Features Matching using RANSAC

After the features matching the transformation between the two sets of inliers was estimated

using least squares method.On the first experiments,an affine transformation was chosen to model

this transformation because it was descriptive enough of the general distortion between two 2D

frames from a 3D scene frames. Thereafter it was noticed that if the model of the transforma-

tion was reduced in terms of degree of freedom to a Similarity (sRT) model (see table 4.1), the

stabilization process would be more stable and more simple computationally. In a sRT there are

only four parameters instead of the six of an affine transformation. Between adjacent frames the
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difference could not be noticed and in long term the video would be smoother because noise of

features detection and matching process was not replied on the transformation parameters.

Video stabilization of the video over time is performed with the chain of transformations until

then. Let us define Hi as the affine transformation that models the distortion between frames i and

i+1 so that:

Hcumulative = ∏
i−1
j=0Hi (4.2)

This is a very simple approach for motion smoothing because there is error being accumulated

over time but the proposed method performed well enough for video sequences of 30 to 60 seconds

and the main purpose of the stabilization is to eliminate high-frequency jitter because of local

player tracking and camera calibration procedure . Low-frequency camera motion is not important

in this system.

Finally, image composition is achieved warping the currently frame using the cumulative trans-

formation Hcumulative and using the coordinate system of the initial frame. It causes a decreasing

of visible area during the time.

(a) Mean of non-stabilized sequence (1 second) (b) Mean of stabilized sequence (1 second)

Figure 4.3: Comparative analysis of the stabilization method. On a) the mean of the first 30 frames
of the sequence nr.1. b) The stabilized version of the same sequence

The method developed allowed to eliminate high frequency jittering and to compensate almost

all of the short term camera movement. However, low-frequency movement is not compensated

since using a cascade approach, error is being accumulated over time. The main cause of this

error is the geometric transformation chosen to model the frame-to-frame movement. A similarity

model that allows to reduce the influence of the noise and also smooth image composition is used

but it does not represent exactly the real transformation. The method developed fails also in cases

of strong drone’s oscillations because of the reduction of visible image area loosing visual relevant

information which is very prejudicial to player tracking and camera calibration.
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Figure 4.4: Mean of stabilized sequence nr. 1 for the first 8 seconds.

On figure 4.4 is possible to observe that over time the method proposed can not compensate all

the camera motion. This will lead to necessaty of automatic camera calibration since the relation

between field and image coordinates will not be static.

Figure 4.5: Response of video stabilization to a strong oscillation

Figure 4.5 is an example of an usual result of video stabilization method in case of strong

oscillation. The use of a simple image composition method is not suitable when big movement

is compensated. The disadvantage is the lost of relevant visible area which will lead to loose of

player tracking and camera calibration method.
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4.3 Camera Calibration

Camera Calibration is the process of finding the transformation parameters of a point in the world

M = [X ,Y,Z] to the correspondent one in the image plane m = [u,v]. This is a necessary step when

is intended to extract information from the image plane in the world coordinate context[34]. In

our research this will be especially important once there is the necessity to extract the position of

the players on the pitch from the image sequences.

The relation between a point in the world and its image projection can be expressed by:

sm̃ = A
[
R t

]
M̃ (4.3)

where, m̃ =
[
m 1

]′
=
[
u v 1

]′
(4.4)

and,M̃ =
[
M 1

]′
=
[
X Y Z 1

]′
(4.5)

This relation is taken from the pinhole model and s is a scale factor, [R, t] represent the extrinsic

parameters of the camera that is the rotation and translation which relate the camera to the world

coordinates. A is the intrinsic camera matrix:

A =

α γ u0

0 β v0

0 0 1

 (4.6)

where α and β represent the focal length in pixels unit, γ is the skew factor between the two

axis and u0 and v0 are the centre of image.

4.3.1 Lens Distortion

Lens or radial distortion is a non negligible aspect of camera calibration and model the deviation

of point in the image from the its rectilinear projection. It causes that a straight line on the world

does not be it on the image. The most common model for lens distortion assumes a non linear

relation parametrized by the radial components [34]. Let us assume a point (x,y) a coordinate of

the undistorted image and (x′,y′) the corresponding for the distorted image. They can be related

by:
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x′ = x+ x[k1(x2 + y2)+ k2(x2 + y2)2] (4.7)

y′ = y+ y[k1(x2 + y2)+ k2(x2 + y2)2] (4.8)

(4.9)

where k1 and k2 are the coefficients of the radial distortion. For this research we will keep the

expression for the lens distortion to its quadratic form. More parameters could be required but for

this project it will only be used k1 and k2.

In all, there are 13 parameters (5 extrinsic , 6 intrinsic and 2 radial parameters) to relate two

points in the world and image plane. Several different approaches to estimate these parameters can

be found. The most simple on is Direct Linear Transformation (DLT) and it is performed where

points location on world model and its correspondent location in the image is known. Usually

the pair points are located manually in different images. Tsai proposed a two stages method for

camera calibration [35]. It also uses known correspondent points in world and image coordinates

and firstly, estimate position and orientation of the camera and then the internal parameters of the

camera. An automatic camera calibration method was proposed by Zhang [34] it uses different

3D, 2D or 1D objects to be shot and estimate camera parameters from different images. The most

usual technique is to shot a planar pattern on, at least, two different orientations.

Returning to the particular problem of this research as the relation between players position

on image and pitch, we can assume the our model plane is on Z=0 and:

s

u

v

1

= A
[
r1 r2 t

]X

Y

1

 (4.10)

with,H =
[
r1 r2 t

]
(4.11)

H is the homography matrix and represents the perspective transformation of the 2D plane

in the world coordinates to the image. As seen previously, this transformation model has eight

degrees of freedom and it is defined by a 3x3 matrix for a scale factor.

4.3.2 Solving Field-to-Image Homography

As seen previously, to find the relation of players’ position in the image and in the field it is just

needed to find the eight parameters of the homography matrix that model the geometric transfor-

mation of the plane field in the world and the plane of the image.

Several methods to solve Field-to-image homography can be found in literature and differ in

terms of complexity attending to the architecture of image acquisition system. When fixed cameras



4.3 Camera Calibration 35

are used the homography in each camera is static and can be estimated using corresponding points

usually picked manually (at least four pairs of points) [7, 4] and then solve the homography by

least squares method. When moving cameras are used more complex methods are required to solve

the homography. After a manual initialization solving the initial field-to-image homography the

solution for the posterior frames can be estimated using the chain of frame-to-frame homography

using some of the methods described in the previous section [12, 36, 13]. Over time, frame-

to-frame homography tends to accumulate error and field-to-image homography starts drifting.

Usually models of the field using the lines and other visual clues are utilized to fit them in the

image using edge detectors or other borders enhancement methods [12, 36, 13] and with ICP or

Lavenberg-Marquardt algorithms for point matching and homography estimation.

A simple but still robust group of methods lie on identification of particular points both in

image and model [37, 38, 39]. In many sports the court is identified by multiple lines which

intersect each other in different points. These lines can be easily identified using algorithms as

Hough transform [40] and then calculate the intersection points between a group of two pairs of

parallel lines and orthogonal between them on the world even though in image this relation is not

achieved due to perspective transformation. This will give four pairs of corresponding points in

image and model, enough to calculate the image-to-model homography.

4.3.2.1 Hough Transform

Hough transform is usually used for line detection, such as straight lines or circles and ellipses.

Even being computationally expensive it is a very robust method for line detection, working in

cases of occlusions and noise[41].

Taking Hough transform to the particular case of analytical shapes as straight lines, let us

define a point [xi,yi] in Hough space:

xicosθ + yisinθ = ρ (4.12)

This means that a point in the image is described by the N lines passing through it (depends

on the resolution of the accumulator) and it corresponds to a sinusoid in the Hough space. In

the Hough space a line is defined by its polar parameters (ρ,θ) instead of the usual Cartesian

parameters (m,b):

y = mx+b,

y =
−cosθ

sinθ
x+

ρ

sinθ
,

re−arranging, ρ = xcosθ + ysinθ (4.13)

In Hough space the intersection point of multiple sinusoids corresponds to a line in the image.

To achieve robust results the algorithm to detect lines uses an array of discretized intervals of the
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parameters ρ and θ . The resolution of these parameters is important: higher resolution allows to

distinguish lines while lower resolution performs better in case of noise in the image. For each

pixel on a binary image the array of the Hough parameters is incremented taking in account the

expression previously described. Finally the algorithm needs to find the local maxima higher than

a certain threshold, so that they correspond to all relevant lines on the image.

Figure 4.6: Transformation of line and points from image to Hough space. Points in image corre-
sponds to sinusoids in Hough Space and Points in Hough Space to lines in image [1]

4.4 Results of Camera Calibration

In this section the method developed to perform camera calibration and the corresponding results

will be presented. The homography between the field plane and the image that will relate players

position on the image to their actual position in the world coordinates are intended in the specific

case of this research.

In our method an image of field scheme will be used to represent the world model. In this

image we will only be interested in the ratio height/width of the field, other lines as penalty box or

circles will be neglected. In this process manual initialization is required and then the algorithm

automatically processes the image-to-world homography using line matching in Hough space.

Radial distortion is compensated using the radial distortion parameters available on the Ar.Drone’s

documentation2. Actually, this step is performed before the stabilization procedure and it allows to

use straight lines on the calibration stage. However, visible are is highly reduced with this process.

On the further stages of the system these calibrated images will be used as input but it can be

discussed if it is favourable or not.

4.4.1 Initialization

In the beginning of the process is required to the user a manual intervention to estimate the initial

image-to-field perspective and the creation of the virtual field model.

2https://projects.ardrone.org/
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In the beginning of the process the user’ s manual intervention is required to estimate the initial

image-to-field perspective and the creation of the virtual field model. Posteriorly, least squares

algorithm is performed to calculate the eight parameters of the perspective transformation. Since

Drone’s camera is covering only half of the field the points to pick can correspond to the corners

of half field (figure 4.9).

(a) The four corners on the model of the half field used
in calibration initialization

(b) The four corners on the image of the half field used
in calibration initialization

Figure 4.7: Example of the 4 pairs of corresponding points to calibration initialization

Back with the notation used before let us define the point in the image represented in homo-

geneous coordinates m̃ = [x,y,1]T and the corresponding point in the field plane M̃ = [X ,Y,1]T .

They are related by the following expression:

m̃ = HM̃ (4.14)

where, H =

h00 h01 h02

h10 h11 h12

h20 h21 1

 (4.15)

This relation can be written as:
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x =
h11X +h12Y +h13

h31X +h32Y +1
(4.16)

y =
h21X +h22Y +h23

h31X +h32Y +1
(4.17)

Now, for the case of four pairs of corresponding points the relation can be expressed alge-

braically:



X1 Y1 1 0 0 0 −x1X1 −x1Y1

0 0 0 X1 Y1 1 −y1X1 −y1Y1

X2 Y2 1 0 0 0 −x2X2 −x2Y2

0 0 0 X2 Y2 1 −y2X2 −y2Y2

X3 Y3 1 0 0 0 −x3X3 −x3Y3

0 0 0 X3 Y3 1 −y3X3 −y3Y3

X4 Y4 1 0 0 0 −x4X4 −x4Y4

0 0 0 X4 Y4 1 −y4X4 −y4Y4


∗



h11

h12

h13

h21

h22

h23

h31

h32


=



x1

y1

x2

y2

x3

y3

x4

y4


(4.18)

simpli f ying : A∗h = b (4.19)

The solution is given by least square method and can be expressed as:

h = (AT A)
−1
(AT b) (4.20)

Another initialization step required to the user is the creation of the virtual model of the field

which will be marked all the lines in the field. In this research we will assume that most of the

indoor sports venues are used for multiple sports so that all the lines of the courts are painted in the

floor. In this research all the lines will be using to estimate automatically the camera calibration,

even if they do not belong to indoor soccer court’s lines. Because the line detector presented next

cannot detect all the lines over the frames this step must be manual. This process could be done

automatically with an iterative updating model; however, in order to keep simplicity in this process

it was preferred to manually introduce all the detectable lines in the field identifying the horizontal

and vertical lines. Lines selected are posteriorly extended until image boarders to extract more

intersection points.

4.4.2 Line Detection and Matching

To estimate automatically the image-to-world homography our algorithm will detect lines on the

current frame and match them to the lines of the virtual model created on the beginning of the
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Figure 4.8: Model of the field projected on the first frame using the initial homography

Figure 4.9: Example of virtual model created manually

process. Then, two pairs of lines orthogonal to each other in world coordinates will be picked and

their intersection points will be calculated. These four points will be used then to calculate the

homography between the current frame and the model.

Line detection is performed using Hough transform as described before. The detector per-

forms over a binary image obtained with a morphological gradient transformation (result of the

subtraction of the result of opening operation by the result of closing on the current frame) enhanc-

ing the edges of the image. Posteriorly, image binarization is performed using Otsu’s method [42].

This method performed better than other usual edge detectors as Canny or Laplacian of Gaussian.
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These being more immune to noise and false detections, detection rate will be otherwise smaller.

(a) Result of the Morphological Gradient (b) Result of the binarization using Otsu’s Method

Figure 4.10: Example the pre-processing method to obtain a binary image to be used in line
detection

After binarizing the image, Hough transform is performed with a MATLAB implementation

over all the white pixels and the parameters accumulator updated taking in account the process

described on the previous section. In this procedure both θ and ρ use a accumulator with unitary

resolution. Then Local Maxima algorithm implemented also in MATLAB is performed to extract

the most relevant points of the Hough transform accumulator. In this implementation ten local

maxima are extracted if they are not on the neighbourhood of 51×51 positions of other maximum.

This allows to delete duplicate detections and collect enough lines to run the algorithm. Next, is

extracted the image boarder points which correspond to line limit points used to represent the

detected lines on the image. In this stage the lines are also classified as vertical or horizontal

taking in account the θ value of Hough transform. Empirically, it was defined that vertical lines

correspond to θ < 0 and consequently horizontal to θ > 0.

On image 4.13 it is possible to observe the results of the algorithm in different frames and that

not the same lines of the field are detected in different moments.

(a) Result of the line detector on frame 450 of se-
quence nr.4

(b) Result of the line detector on frame 850 of se-
quence nr.4

Figure 4.11: Two examples of line detection on different frames.
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Since the line detector presented above performs with a detection rate not so favourable and

there is also some false detection, is not possible to compare directly the results of the detection

with the model. So the next step of the automatic calibration procedure is to match the lines

detected into the model.

This matching problem will be modelized as an assignment problem and solved using Munkres

algorithm [23] assuming that one detected line can be assigned to a single model line and a model

line can be assigned to only on detection line. This method is performed minimizing the total cost

of assignment. The cost of assigning a detected line to a model line will be calculated using the

distance between their parameters in Hough Space:

cost i j =

√
(θi−θ j)

2 +(ρi−ρ j)
2 (4.21)

This assignment is performed separately for vertical and horizontal lines.The use of the line

parameters in Hough space was preferred since the cost calculation is simpler and more robust

than in the cartesian line parameters [m,b] case.

(a) Result of the line assignment on the model (b) Result of the line assignment on detected lines

Figure 4.12: Example of line matching using an assignment problem. Horizontal lines detected
(right) are matched to the lines on the virtual model(left). Each color represents an assignment

After all the horizontal and vertical detected lines on current frame are matched to the model

the next step is to select the four pairs of corresponding points which will be used to calculate the

homography. A good criterion to this selection is that the points shall be dispersed on the image.

So horizontal and vertical lines will be sorted by their ρ parameter and allow to select the top,

bottom, most-right and most-left line and consequently calculate their intersection points which

will be the most dispersed point selection available.

From the intersection points of the selected lines both in image and in model will be calculated

the homography from the current frame to the model.

First step is to backproject the four intersection points to the world coordinates using the

initial homography. Then the image-to-field homography of the current frame is calculated using

the same method of the initialization and using the four points of the intersection of the selected



42 Video Stabilization and Camera Calibration

(a) Detection of the top,bottom,most right and most
left of the assigned lines

(b) Corresponding assigned model lines of
top,bottom,most-right and most-left lines detected

Figure 4.13: Example of line selection for picking the best intersection points. Note that in left
image there is a right line on the right of the selected as the most-right. That happens because that
line is not in the model.

detected lines and the four points projected on world coordinates using the model and homography

initialized by the user.

(a) Frame 850 of sequence nr.4 with the model pro-
jected using initial Homography

(b) Frame 850 of sequence nr.4 with the model pro-
jected using automatic calibration method.

Figure 4.14: Example of the final result of the automatic calibration method. On the left it is
possible to observe the non calibrated projection of the field model. On the right the model is
correctly projected using the calibration method presented above.

Figure 4.14 allows to observe the final result of the automatic calibration method. This method

is very robust for the circumstances of this research in which we assume that the Drone is recording

always the same area of the field with undesired camera motion even with a previous stabilization

process that can eliminate high-frequency jitter. In this procedure we must notice that Hough

Transform is very expensive computationally so this calibration step shall not be performed in

every frame.

Camera calibration method was tested on sequences 1 and 4 and the the estimated calibration

in each frame is compared to ground truth annotated data using the error equation presented on
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chapter 3. The method was performed with different correction rates, namely: 1
5 , 1

50 , 1
100 corrections

per frame. The error evolution will be also compared with the initial and static homography.

Figure 4.15: Error of camera calibration method with different correction rates on sequence 4.

Figure 4.15 shows the efficiency of the method under different correction rates. While initial

homography starts to drift, the proposed method stabilize the error over time. Is also possible to

observe that with the decrease of correction rate, maximum calibration error increases as expected.

Figure 4.16: Error of camera calibration method with different correction rates on sequence 1.

On figure 4.16 is possible to observe the influence of detection rate and position of the drone

to have an efficient calibration. The sequence 1 is shot with low altitude and far from the covered

half field (figure 4.17). This causes that almost all the lines detected are not well sparse on the

field increasing the probability of bad lines matching and consequent calibration drift. Low cal-

ibration rates can also lead to loose the correct assignment of the lines. In this specific case the

method performed with a rate of 1
50 do not assign correctly the lines and consequently estimate the

homography wrongly.
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Figure 4.17: In sequence 1 almost all the detected lines are not in the expected half field increasing
the probability of bad assignment and wrong calibration.

The proposed method works well on more and less static views but the use of Hough transfor-

mation to line detection is very expensive computationally so it shall not be performed in every

frame. The results allowed to observe the importance of calibration rate on the efficiency of the

method and how this parameter shall be chosen carefully. It is also important to the aimed half

field cover almost all the image plane to lines be well detectable and sparse since final results will

be strongly dependent on the process of line detection and matching.

4.5 Conclusions

In this chapter the first two stages of the system framework - video stabilization and camera cal-

ibration - were presented. For both stages a small review of the literature about the subjects was

presented and also the methods developed with preliminary results. Video stabilization is re-

quired to compensate undesired drone’s motion and eliminate high-frequency jitter. The method

developed was based on FAST features matching on adjacent frames and affine transformation

estimation with outliers elimination performed by a variant algorithm of RANSAC. This method

performed well for compensating high-frequency motion, still not all the motion camera is com-

pensated and the background will move smoothly over time. Compared to other methods, this

approach is quite simple but it is suitable for this application since is assumed that drone must be

hovering the same location and covering the same area of the field getting a more and less static

view of the field. Another problem of this method is the decreasing of visible area over time, but

that can be neglected since the sequences are relatively short (30s to 1min).

Since not all the motion is compensated and thinking of further applications of the system that

won’t use a static perspective of the field, automatic calibration is required. Camera calibration is
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the process to relate image coordinates with the world. On the initialization the user is required to

mark manually four pairs of corresponding points both in the image and in the model which will

be used to directly estimate the homography between the image and the field plane. The creation

of a virtual model of the field using all the lines on the floor of the indoor sports venue that will

include the court’s lines of many sports is also required. These lines will be posteriorly be used to

compare with the lines automatically detected on the current frame using Hough transform. After

assigned the detected lines to the model four pairs of points corresponding to the intersection of

the lines are used to calculate the homography between the image and field plane. The method

proposed was robust and suitable for the application despite its simplicity keeping the calibration

of the camera during all the sequence. Calibration rate is an important parameter since Hough

transform is computationally expensive it shall not be performed in every frames, on other hand a

low correction rate can lead to loose of lines matching and consequently to loose the calibration.

Finally, is important to refer the influence of the correction of lens distortion on the rest of the

system framework. The method for automatic can only be performed if the lines of the field are

straight in the image. However, the reduction of the visible area is prejudicial for player detection

and others stages of the process. In this project it will be used the calibrated images on the further

steps of the framework but one can discuss if it is the best solution. Storing the transformations

expressions in each step would turn possible to use original steps in some of the stages preserving

useful information and also performing the necessary corrections.
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Chapter 5

Player Detection

The detection of the players on the image is a critical stage of the framework of this project. Having

been found in literature several methods to perform players detection, these approaches differ on

another mainly due to the image acquisition architecture, number of players and the format and

color of the playfield. In this chapter will be proposed a method for player detection and discussed

the different stages of the process. In the end of this chapter the proposed method and also some

preliminary results will also be presented.

5.1 Overview of Detection Methods

5.1.1 Basic Segmentation Methods

Image segmentation is the process capable to split the image in different regions with similar fea-

tures. These regions usually correspond to different objects, shapes, colors or textures presented

on the image. In the context of this project it is intended to segment the pixels corresponding to

the player’s location on the image and simultaneously deal with other objects as the lines of the

field or the spectators. Most of these techniques are performed when the image acquisition system

is composed by fixed cameras or the playfield is of the same color (i.e outdoor soccer grass field).

A background model can be created from initial frames without presence of players and poste-

riorly be subtracted to the current frames [7]. Updating models using Gaussian Mixture models

[4] or recursive algorithms with foreground and background pixels with weighted importance [5]

allow a segmentation more immune to changes on the illumination or other external conditions.

When non fixed cameras are used, another approach is required to background subtraction. Taking

advantage of a fairly similar background color and of prior knowledge about it is possible to cre-

ate background pixels detectors using efficient models through color information and posteriorly

identify pixels that are not similar to the background classifying them as foreground and conse-

quently probable players’ regions [12]. Using the histogram of the image is possible to detect the

dominant color with a certain deviation [11] and posteriorly subtract those pixels from the image.

Other more robust methods are needed when illumination changes over time or in different field

47
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zones, in that situation histogram backprojection and update can detect changes on the background

pixels colors [9].

This kind of methods are not suitable for our application since image acquisition is performed

with a moving camera that would cause much noise on the foreground pixels detection and there is

not a dominant color present on the field since indoor sports venues usually have the lines of many

sports courts painted which would also create noise on the process of foreground pixels detection.

5.1.2 Sliding Window Detection Methods

Some methods use special features and classifiers previously trained to detect objects on image

using shape or intensities information. In this section the HOG detector [43] and Viola and Jones

method [19] will be reviewed.

5.1.2.1 Viola and Jones

Viola and Jones detector was one of the first and is still a most used method for object detection

in real time. It is used in many applications such as face detection, pedestrian detection and also

players detection on soccer games depending on the dataset used to train it.

This detector uses a search window with a pre-defined size where a set of Haar-like features are

used to classify that region as object to detect or not. Haar-features calculate the sum of intensities

of the image pixels within a rectangle of the image and then compare it to the sum of adjacent

rectangle. These features are advantageous they run in constant time and integral image represen-

tation can be used decreasing time of computation considerably. Otherwise a single feature can’t

provide useful information and for instance in a 24×24 search window there are 162,336 possible

features being impossible to evaluate them all taking in account real time constraints. So the big

innovation of this method is its learning algorithm which uses a dataset of positive and negative

image samples to train features and evaluate those that are stronger and important than other on

the classification process by the AdaBoost method [44] where a set of "weak" features are com-

bined to get a robust classifier. In the end, the classifiers are rearranged in a cascade in order of

importance. In this procedure a feature is only evaluated if the previous ones were classified as

positive.

This method is more suitable for detection based on pixel intensities, for instance faces static

planar objects as road signs or logos. In case of objects with very distinctive colors as per example

people with different kinds of clothes it is the shape of the object that differentiates it better and

not the intensities difference on the object region as proposed by Viola and Jones.

5.1.2.2 HOG Detector

Histogram of Oriented Gradients is a feature descriptor used to object detection assuming that

objects’ shape can be identified by its distribution of gradients. It is used to detect the most varied

objects from people to cars or animals. The big assumption in this method is that an object shape
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can be described by its gradient’s intensities and orientation represented in a single features vector

instead of other approaches that use a collection of features to represent an object.

The first step to find the HOG descriptor is to calculate image gradient on entire image us-

ing simple discrete derivative kernels on both image directions. The second stage is orientation

binning that consists on the creation of small cell histograms of the gradients’ orientation where

each pixel contribution is weighted by its orientation magnitude or function of it. The next step

is essential to the robustness of the general descriptor and to avoid the influence of illumination:

the cell gradient’s histograms are normalized splitting the descriptor in overlapped blocks used to

normalize the cell histograms. Finally, the classifier must be trained using Support Vector Machine

(SVM) a supervised learning model which will be used to calculate an optimal decision function

based on a dataset of positive and negative samples. The output of this linear classifier will be

a vector of features coefficients, in common sense, it will select the most important cells of the

descriptor to classify a certain object, in this case as a person/non-person [43].

The detection is achieved by running the classifier in a sliding search window over the entire

image. This method is very popular in human detection and there is available multiple templates

of classifiers to people detection, namely one available in MATLAB for detection for people in

upright position.

The two examples of complex object detectors presented above were chosen because of being

widely used and both of the detector and classifier learning are implemented in most of computer

vision software as MATLAB or OpenCV. As referred previously to people detection, HOG clas-

sifier is more suitable to people detection, since it is more immune to external conditions and also

to the pose of the person.

5.1.3 Mean Shift and Camshift

Mean shift is an algorithm that iteratively moves a search window in the direction of its center of

mass until it coincides with the geometric centroid. Despite its simplicity this is a method widely

used for object tracking on the image sequences [45]. The calculation of the center of mass of the

search window can be performed using any feature space as per example color space, shape among

others. For an initial estimated location x and its neighbourhood N(x), for each x is possible to

calculate the density mean using a kernel function K(xi− x):

m(x) =
Σxi∈N(x)K(xi− x)xi

Σxi∈N(x)K(xi− x)
(5.1)

Iteratively, x will move to m(x) until m(x) = x reaching the convergence. Multiple Kernels can

be used to density mean calculation but usually it is usually expressed in function of ‖x‖2 [16]:

K(x) = k(‖x‖2) (5.2)

Where k is called the profile of K and must satisfy the following properties: be nonnegative, non

increasing and limited.
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In image tracking application k is usually a function of quantification in a given colorspace so

that the search window will follow the region of the image that maximizes the similarity to the

object color histogram.

Camshift [46] is a variant of mean shift that assumes that the object to track will not keep the

same size on the image over the sequences. In mean shift algorithm the search window has always

the same size which is not suitable for the last assumption. So Camshift uses an adaptive search

window changing the size properly. On a first iteration it uses normal meanshift until it converges

and then updates the size of the window and repeats the procedure until it reaches global size

convergence.

These methods are useful since they do not assume any prior shape and several models can

be used to calculate probability density for the kernel function. Otherwise in the case of fixed

size search window its choice is not trivial and in Camshift window size easily expands without

criteria.

This solution is suitable for short term player tracking once properly initiated. But in long

term it tends to fail since players appearance will change with the movement and multiple players

with same equipment color will confuse the automatic tracker.

5.2 Proposed Method

In this section the methodology developed in the stages of the system framework for player de-

tection, team identification and trajectories tracking will be presented. Some preliminary results

and a brief discussion on the methods utilized will also be presented. The methodology is based

on short-term tracking with mean shift algorithm corrected by detections of HOG classifier us-

ing generalized template for people detection for long term reliability and finally with histogram

comparison in RGB channel for team identification and false positives handling.

Due to the camera motion even after compensated and to the existence of simultaneously

multiple colored lines on the court basic segmentation methods based on background segmentation

and subtraction are not suitable for this application and some preliminary results showed poor

results with low detection rate and high number of false positive detections. In figure 5.1 is possible

to observe a demonstration of basic a method based on background modelization using Gaussian

Mixture Model with automatic upgrading.

These results could be improved through the application of some constraints or other comple-

mentary algorithms but it was assumed that another methodology was required in this application.

Sliding windows detectors are computationally efficient and presented robust results in different

external conditions. In this application the detector utilized was the one based on HOG descriptor

because of available templates for human detection and since it is based on the detection of object

shape by its gradients is more robust to change in intensities information as for example person

and equipment colors.
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(a) Result of background subtraction

(b) Detections based on the basic segmentation
method

Figure 5.1: Example of bad results from background subtraction using a Gaussian Mixture Model
for its representation and corresponding detections. This method produced a low rate of true
detections with an high percentage of false positives

5.2.1 HOG Detector Implementation

To detect the players on the image an implementation found in MATLAB Computer Vision toolbox

of a SVM classifier for HOG descriptors trained to detect people on upright position and based

in Dalal et. al[43] it was used. First, it is important to refer that the template used lies on the

detection of people standing statically or in smooth movement. However, in sports context players

are many times running, tackling, occluding each others and all these are propitious situations to

fail the detection. The alternative in this case would be to train our own SVM classifier but for that

would be necessary proper annotation software, a big variety of training sequences and samples

would be necessary besides the time needed to perform, which would not be appropriate for the

scope of this dissertation.

This classifier was trained with positive samples of people in upright position on different light

conditions, in several different places to make the detection reliable. The images size was 96×48

pixels this means the smallest search window will have that size. However, this implementation

re-scales the search window iteratively with a user-defined increasing rate. In this application the

default value of 1.05 performed properly. The biggest search window is also parametrized and it
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would be defined taking in account the samples collected on the initialization process. Another

parameter is the window stride and it defines the spatial frequency of the search window on the

image on both directions. A small value will lead to increase accuracy, otherwise the computation

time it will also increase. Since this project is not dealing with time constraints a small value was

specified, for instance 4× 4 pixels attain good results and smaller values did not improved the

results.

Figure 5.2 is representative of some common outputs of the HOG detector in terms of the ex-

pected precision and recall. The output of the detector is the bounding box of the region containing

a possible person. It is very accurate to detect players standing but it usually fails when the same

are running or shaking arms and legs (orange player). Other usual cases of false positives detec-

tions lie on vertical structures as goal post or in human body parts. Another common situation that

is not represented on the image are occlusions, players partially occluded will lead almost always

to miss the detection.

Figure 5.2: Representation of usual HOG detector results. Frame 450 of sequence nr.4

Preliminary results of the detection based on the available model for people in upright position

are satisfactory but both precision and recall need to be refined to extract useful information of

players positions and trajectories. Another stage of player detection is to identify the team by its

equipment color and discard other people appearing on the image namely the referees, goalkeepers

and spectators.
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5.2.2 Team Identification and False Positive Handling

The results obtained from the HOG detector will be verified taking in account the appearance of

the region detected represented by its color histogram in RGB colormap. It will allow to discard

false positive detections and also group the detection in two groups representing both teams in the

field.

Before the tracking process starts the user is asked for an initialization procedure in which

initial player positions will be annotated and a set of samples of players appearances also col-

lected. Annotation is carried out selecting the bounding box of the region containing the player

and identifying his team. Then the color histograms of two regions are extracted: one for the

entire bounding box and another for the region containing the t-shirt, since that team equipments

usually have different colors over the different parts (t-shirt, shorts and socks). On the last step

of the initialization procedure, the HOG detector is performed on a small number of frames and

posteriorly asked to the user to identify positive and negative samples. Once more, two histograms

are collected for each is sample and grouped in one of the following groups: "Team A; "Team B"

and "No Player". Each histogram is saved instead of averaging results since, specially in case of

negative samples, histogram distributions are very different and information would be lost with

that approach.

For each bounding box an histogram of pixels intensities on each channel of RGB colormap

is created and grouped using 256 bins. The number of bins will affect both the accuracy of the

model and the computation time. Since in this project time constraints are not the main criteria it

was used this large number of bins. For instance, in the example given if a small number of bins

were used "Yellow" and "Orange" team would be easily confused. Finally, all the histograms are

normalized according to bounding box size.

(a) Example of Region Detected (b) Histograms RGB channels of the region detected

Figure 5.3: Example of the histograms extracted from one output of the HOG detector

The classification method is based on the k-nearest neighbor classifier [47]. This is one of the

most simple classifiers with robust results but without computational efficiency, since all the train-

ing data must be stored and compared at each time. The method is performed in two steps: first

it is classified as "Player" or "Not Player" and then if first classification passes, it runs the second:

"Team A" or "Team B". The method used is a distance classifier where the tested histogram hi
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will be compared with all the histograms h j collected from the initialization process. The distance

between each channel of two histograms is calculated using the Bhattacharyya method [48]:

di. j =

√
1− 1√

hih jN2 ∑

√
hi(n)h j(n) (5.3)

The result of this expression is a value between 0 and 1 where 0 means a perfect match and 1 a

total mismatch between both histograms. The total distance between two image histograms is the

mean of the distances of each channel and the value is then stored in an array depending on the

class compared. The arrays are then sorted ascending by the value of the distances. Only the five

shortest distances to each class array will be considered to classify the histogram. The score is

then calculated as:

Di.classA =
5

∑
j=1

di. j , j ∈ classAsorted (5.4)

Di.classB =
5

∑
j=1

di. j , j ∈ classBsorted (5.5)

Classi = argmin(Di.classA,Di.classB) (5.6)

Scorei =
min(Di.classA,Di.classB)

max(Di.classA,Di.classB)
(5.7)

On figure 5.4 it is possible to observe some typical results for team identification and false pos-

itives deletion. The proposed method was simple and performed fairly well. However, the method

is neither computationally efficient nor robust for hard examples of similar teams identification,

like the example on image 5.4. More robust methods as Linear Regression, SVM or others could

be developed at this stage of the process.

5.2.3 Mean Shift and Short term tracking

The step explained above allowed to increase the precision of the detection but on the other hand,

the recall percentage decreased. With a low frequency rate of detection a complementary is nec-

essary method to predict players’ position on the field. Some works use a dynamic linear model

for players trajectories [13, 21] to predict player’s position when a new detection is unavailable.

But when image perspective strongly differs from the field plane, dynamical models lose their ac-

curacy leading to wrong predictions. Mean shift, as seen in the previous section, provides reliable

prediction of an object position based on its appearance but it fails over time once that player’s ap-

pearance and size change. At this stage, there are two sources of data available: one with an high

precision but not always available and another reliable only for short time periods. The method
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Figure 5.4: Example of the results of team identification and false positive handling. Red boxes
represents false positives deleted. Yellow boxes for players of Team A and Orange ones for player
of Team B. Must notice that a Team B player is wrongly classified as player of Team A. Frame
450 of sequence nr.4

will be performed by a Matlab implementation of Mean shift available. It performs the algorithm

using for probability density calculation the Bhattacharyya distance on indexed colormap between

the target and the model. The use of indexed colormap allow to use only one channel histogram

easing the calculations.

In this methodology, players’ positions are initialized by user interaction by selecting the

bounding box of the region containing the player and player’s team is also identified, each ini-

tialization will create a new track. For each track a sub-window is selected corresponding to the

the t-shirt from which the indexed colormap histogram will be extracted. Shirts usually have a dif-

ferent color from the rest of the equipment, decreasing the target region of the algorithm will also

decrease the range of indexed values to track increasing the robustness of the method. Finally, the

new bounding box position can be estimated applying the same translation as the regions contain-

ing the shirts obtained from mean shift algorithm. In this method we will assume that players’ size

will remain equal between consecutive frames. On figure 5.5 it is possible to observe a short-term

track based on mean shift for one player. The region used to extract the histogram and posteri-

orly perform the track is highlighted. These regions were chosen using the criterion previously

presented.

Over time, due to change on player appearance and size, mean shift tracking starts to drift

and lose the target. The next stage of the process is to correct and reboot the tracking using the

detections from the HOG detector, previously presented.
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Figure 5.5: Representation of mean shift algorithm on player position prediction on two consec-
utive frames. In this case only the track for one player is represented. On the left image player
initial position is represented by a green bounding box. The subregion of the box containing the
shirt is represented on the next image. This region will be used by mean shift algorithm to predict
the new location of the player, represented on the third image. Finally player position is predicted
applying the same translation of the mean shift algorithm to the initial bounding box.

5.2.4 Assigning detections to tracks

To achieve long term reliable tracking it is necessary to fuse HOG detection information with

the predictions of the mean shift algorithm. However, in every frame not all the players will be

detected and false positives will occur. Another situation that the system will have to deal is players

entering and leaving image plane, so that tracks must be added and deleted as players enter and

leave the image. Because of these reasons, assigning detections to the corresponding tracks is not

a trivial procedure. In this subsection will be presented the methodology of detections assigning

based on Munkres algorithm.

Let us define the set of tracks T = (t1, t2, ..., ti) and the set of new detections D = (d1,d2, ...,d j)

with j 6= i. Each track will contain the following data: bounding box; team; uncertainty. On the

other hand each new detection will have data of: bounding box; team; score of team classification.

On Munkres algorithm the assignment is performed so that it minimizes the total cost of assign-

ment. In our method, the cost of assigning a detection d j to a track ti will depend on the distance

between the coordinates of their bounding boxes but also team classification and the corresponding

score. Taking in consideration team classification in the cost function will help to solve cases of oc-

clusions from players of different teams and using the score is important not to exclude detections

with a wrong team classification. Let the bounding box be defined as boundingbox = [x,y,w,h]

where (x,y) is the upper-left corner of the box and (w,h) are the width and height of the box. Let

bboxi be the bounding box of track ti and bbox j the bounding box of detection d j on a given frame
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of image sequence. The Euclidean distance between these two bounding boxes is the defined by:

dbi j =

√
(x j− xi)

2 +(y j− yi)
2 +(w j−wi)

2 +(h j−hi)
2 (5.8)

We will define the cost of assigning a detection d j to a track ti as:

cost i j = dbi j.
escorek

i

escorei
(5.9)

where, k = 1 i f , team j = teami (5.10)

This expression allows to assign detections with tracks from another team since it’s score is

near one and otherwise, excludes detections with a different team classification and with low score.

In Munkres algorithm it is also possible to define the cost of non assignment Cn so that it will

find the assignment that minimizes the total cost and respecting cost i j <Cn.

The tracks with assigned detection will update their bounding boxes for the one of the detection

assigned and will reinitialize the histogram model for the mean shift algorithm. Since there are

players entering and leaving the image planes the system must automatically add and delete tracks.

5.2.4.1 Adding and Deleting Tracks

Detecting players leaving and entering the image is not a trivial task since the presence of false

positives and missed detection can lead to misclassification of new or lost tracks. To solve this it

is necessary to assume some rules based on empirical knowledge.

Tracks will be assumed lost taking in consideration the number of consecutive frames without

any detection assigned and also the current localization of the bounding box since it is more

probable that a track is lost when players are near the image border.

In this system it will be assumed that there are only four players from each team on the field

so a new track will be created only when one player from one team is missing. The new tracks

will be creating based on unassigned detections. A provisory track is created for each unassigned

detection since its score on team classification is lower than 0.5. This is an important rule to avoid

new tracks to be wrongly classified. A new track is created when a provisory track has more than R

assigned detections. Where R is a pre-defined fixed number, if this number is low false detections

can lead to wrong tracks and if it is high there is a possibility of players never being tracked.

On figure 5.6 is possible to observe an example of the accuracy of the proposed method. As

seen previously, resulting from the detection and team classification one player was not detected,

one was wrongly classified and, finally, a bounding box location was not well located.



58 Player Detection

Figure 5.6: Example of final output of player detection stage. Player position are represented by
its bounding box and the team by the color of the box.

5.2.5 Results

The different stages were evaluated using the criteria presented on chapter 3. The sequences tested

were the 3 and 4. These two deal with complex situations such as bad illumination, overcrowded

scenes, similar team equipments, among others.

Figure 5.7: Evolution of Player detection results through the different stages of the method on
sequence 3.
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Figure 5.8: Evolution of Player detection results through the different stages of the method on
sequence 4.

On figures 5.7 and 5.8 are presented the results of player detection on sequence 3 and 4 on

three different stages. It is presented the raw results from HOG detection (HOG), the results of the

detector after applying team identification and false positive handling (HOG+TI) and finally the

final results of the complete method based on HOG detection and mean shift tracking (HOG+MS).

The precision of the raw detector is very low producing too much false positives. Using informa-

tion of the players appearance is possible to delete a big part of these bad detections. The results

with false positive handling showed a notorious increase on the precision but on the other hand

the recall decreased. Finally with mean short term tracking is possible to estimate players position

in the case of missing detections increasing the recall. Otherwise, because of tracking and the

difficulty to deal with new and lost tracks the influence of false positives will be higher and that is

the reason why precision falls.

5.2.6 Failure Situations

Preliminary results showed a precision and recall of the proposed method around the 75%. The

use of an HOG detector not dedicated for this purpose, overcrowded scenes and bad illumination

makes player’s detection a hard task.

On figure 5.9a is possible to observe an overcrowded scena where player from different and

same team are closer to each other inside a small region of the field. Both detector and short

term track fails on this situation. For the first player occluded changes its shape on the image and

detector will not recognize it. Mean shift can also fail since it is highly probable to a player from

the same team be confused by the tracker.

Figure 5.9b illustrates one common and quite undesired situation for player’s detection. New

players entering the image are difficult to track since there is no prediction of when and where a

new track must be created. Because of this the algorithm has to be prepared to accept new tracks

at any time. This will increase the negative effect of false positives because they can be confused

as new players.
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(a) Overcrowded Scene (b) Player entering the image plane

(c) Confusion with equipment color

Figure 5.9: Examples of usual failure situations.

Finally, figure 5.9c shows a situation where team classification fails because orange and yellow

are similar colors on RGB colormap turning its classification not accurate.

5.3 Conclusion

Using the mean shift algorithm and keeping a short term tracking of players, missed detections

and wrong team classification will be neglected. However, this methodology has some difficulties

to deal with new and lost tracks and with detection of players near the goal line where they oc-

cupy a small region and colors models do not fit properly. Team classification uses a very simple

approach not being very robust in cases of teams using similar colors (as orange and yellow). A

more robust solution based on linear regression methods could be used taking advantage of more

characteristic features. Mean shift algorithm to perform short term track of player while detections

are unavailable is an intuitive and robust idea but other information could be included to improve

the accuracy of the method, as: Optical Flow estimator as KLT or Horn’s method. Features track-

ing or local segmentation would be interesting solutions to integrate in method taking in account
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this stage of the methodology. HOG detector was chosen to correct short-term tracking and also

detect new players on the image, this is a very robust method to detect an object shape on the im-

age being immune to lighting or even the colors of the object. However, the implementation used

was trained to detect people in upright position which was not the ideal since player are always

running, tackling as many other different poses. A better precision and recall can be achieved with

training of a dedicated classifier learned with samples of players in different positions and pavil-

ions. Finally, linear or non linear filtering can be performed to smooth the results and increase the

precision and recall of players’ tracking.



62 Player Detection



Chapter 6

High Level Interpretation

In this chapter the methods and results for high-level data interpretation will be presented. These

will use the results of automatic player detection and camera calibration methods described on the

previous chapters. The methods presented in this chapter are difficult to be evaluated objectively

so that only qualitative criteria will be used. The methods were developed considering just au-

thor’s common knowledge about the game rules and dynamics. Since images from the collected

sequences only cover one half of the field and the detection methods only regard team identifica-

tion and not individual recognition the information intended to extract is related to general teams
attitude, occupation zones and defensive team tactics.

6.1 Occupation Map

Occupation or Heat maps are an usual method to evaluate teams or player performance during

the game [13]. It shows how players occupied the field and can give important clues about teams

strategies and performance. In this process it will be used the position of the players mapped on

the world coordinates, then the field model is divided in a grid of 10×10 pixels in which it will be

projected the actual position of the players. Each grid cell will accumulate the number of players

there located and then it will use a spatial histogram to show the most occupied zones of the field

for each team.

63
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Figure 6.1: Occupation map of player on sequence 3. a) and b) relates do information extracted
from ground-truth data for each one of the teams, and c) and d) the proposed detection and cali-
bration methods.

In figure 6.1 is possible to observe the results of the occupation map. a) and b) illustrate

occupation from players of team 1 and 2 in the sequence 3, inferred from ground data annotation.

c) and d) are the analogous for the automatic player detection and camera calibration methods

developed in this project. In this sequence the defending team (team 1) were more compacted on

the field while the attacking one (team 2) were spread on the field exploring the sidelines.

The similarities between the two results are notorious but it is also possible to observe the

influence of precision and recall of players’ detection method.

6.2 Team Attitude

Team attitude or offensive/defensive trends can illustrate which team is being more dangerous or

more close to score a goal. Although football can be very unpredictable, it is possible infer which

team is being more aggressive and closer to the goal from the position of the players on the field.

In this research will not be possible to have the positions from all the players in each instant so

for this method we propose to deduct team attitude from partial information on players’ positions.

This means that with just only one player of each team is possible to predict an offensive/defensive

trend.

We will assume that in each frame will be available the position (xi,yi) on the field of one

to four players from each team and is known a priori which one is attacking and defending. For

each team the offensive trend is calculated taking in account the relative position of the rearmost

player on the ground to the midfield line and the relative position of the most advanced player to

the opponent goal line. The equation that give the offensive trend to a team is:
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O f ftrend =
xback

xmid f ield
+

x f ront

xgoal
(6.1)

where xback is the x coordinate from the rearmost player and x f ront is the analogous for the

most advanced player.

After each team trend is calculated they are normalized such that:

O f ftrend1 +O f ftrend2 = 1 (6.2)

Figure 6.2: Result of the method to extract information on teams attitude and offensive trend.
a) Illustrate the result for ground truth data and b) with the proposed detection and calibration
methods. At blue and red are highlighted two frames which will be shown on figure 6.3

Figure 6.2 illustrates the results of offensive trend of team 1 and team 2 generated both from

the ground truth data and the results of automatic player detection with short term tracking. In

the beginning of the sequence is where the recall and precision are lowest and it reflects on the

result of offensive trend profile. Figure 6.3 shows two examples of the results used to deduct the

offensive trend. In the first case is possible to observe that white team even without the control
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Figure 6.3: Example of two results of player detection on sequence 3:a)is the Frame 200 of se-
quence 3. b)is the Frame 800 of sequence 3.

of the ball is far from their goal line and that is the reason why white team has a bigger offensive

trend even without being with the possession of the ball. In the second case all the players of black

team are in the opposite midfield increasing their offensive trend.

This method lies only on partial information of players’ position. To achieve more robust

estimation of teams attitude during the game it would be necessary also include information about

ball possession.

6.3 Team Tactics

Since only one half of the field is being covered by drone’s camera only the defending team is

probable to have all the players appearing in the image. So it is possible to make an analysis to

team tactical behaviour and its evolution over time.

In indoor soccer there are two main defensive formations: "2-2" is based on two front player

making high pressure and two back players. Other usual formation is "1-2-1" where only on player

is making high pressure and a back player assumes most of the defensive tasks.

Our method intends to detect when a team is defending using one of these two formations

using the relative position of its players. The approach used is quite simple and it is based on the

spatial distribution relative to the most front and most rear players. A 3-bin histogram of players

x coordinates is created considering the distance to the most rear and most front players. Then the

histograms are compared to the model, for instance: if histogram is [1,2,1] we will assume that

the formation at that instant is the "1-2-1", if the histogram is [2− 0− 2] the formation "2-2" is

assumed. Finally each formation counter is accumulated and normalized being possible to observe

its evolution over time.

Figure 6.4 represents the evolution of the utilization of each one of the formations during the

game. These results illustrate the relative utilization of a defensive formation in smaller periods of

time (in this case around 100 frames). For this sequence is possible to observe that in the beginning

team 1 was using more the "1-2-1" formation and then changed to "2-2". Figure 6.5 illustrates two

examples of different results. In the figure 6.5a is possible to observe a correct detection of "1-2-1"
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Figure 6.4: Evolution of the tactics counter for the sequence 3. a) Results extracted from ground
truth data. b) Results from the proposed method.

occurrence. However, in the figure 6.5b because one of the players is not detected, the system does

not detect the occurrence of a "1-2-1" formation.

(a) Frame 200 of sequence nr.3 with the results of
player detection

(b) Frame 250 of sequence nr.3 with the results of
player detection

Figure 6.5: Two examples of how player detection results will influence the results of the tactic
analysis. If in the first image is possible to see that "1-2-1" is the formation used, in the second
image the system cannot detect because one player is not being detected.

The method presented is very simple and uses just simple relations between players’ positions.

A deeply analysis on the subject could be performed including more types of formations and more

data as distance between players and also the interaction of the opponent team.
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6.4 Conclusions

From partial information on player’s positions is possible to extract yet some useful information

about collective performance. The methods presented previously should give a general informa-

tion on game and teams attitudes with low precise results from players positions. The results

showed the similarities between the data inferred from ground-truth annotation and the results of

the methods presented on chapter 4 and 5. However, it is also possible to observe the influence of

missed detections and false positives.

To achieve more precise and reliable information on the game is required data with more

precision and recall on players’ positions.

The methods proposed for high level interpretation were evaluated qualitatively and most of

the results were suitable for what was happening during the games of the corresponding sequences.

It is important to remember that the methods proposed rely on common knowledge about the game.

For more robust interpretation it would be required the expert knowledge on the construction of

the methods and also more accurate low level data.



Chapter 7

Conclusions and Future Work

In this project was presented a new approach to capture images in indoor sports venues which will

be used extract valuable information about collective performance. Unmanned Air Vehicles as

Quadcopters allow a cheap, portable, flexible and reliable platform to acquire images from indoor

sports events, in the particular case of this research, indoor soccer. However, due to their own

dynamics and also external factors is impossible to avoid drone’s undesired motion which will

result in a series of problems not typically found neither in the literature nor in the commercial

solutions available on the market. In this work was set a framework to extract useful and reliable

information from indoor soccer games composed by different stages:

• Video Stabilization was required to maintain spatial coherence of pixels intensities despite

the drone’s motion. Using FAST features and RANSAC matching between adjacent frames

is possible to estimate the inter-frame motion and consequently compensate it. The method

proposed relied on its simplicity and efficiency on the test sequences. It can deal with the

high frequency jittering of the camera but over time error is being accumulated and not all

the movement is compensated. If longer sequences were tested or if it was intended camera

motion to cover all the action of the game, more complex methods for stabilization would

be required.

• Camera calibration is an essential stage of computer vision systems, in this project it is

essential to map the position of the players in the field from their coordinates on the image.

Since camera movement is not totally compensated is necessary an automatic and dynamic

method for calibration. In this project is proposed a simple method based on detection of the

lines marked on indoor sports venues and the posterior match with the lines of the virtual

model created manually. The results proved that calibration does not drift. Correction rate

is an important parameter to be set.If it is high, it will demand huge computational power

and if it is low lines matching can fail and consequently the calibration too.

• Since most of the common methods to player detection are not suitable to this project due to

nature of the image acquisition system it is proposed a methodology based on HOG people

detector with short term position estimation with mean shift tracking. The detection is based

69
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on HOG descriptor and a classifier trained with a dataset of people on upright position. This

detector has low precision to detect players in sports scenes. False positive handling and

team identification was carried using histogram comparison in the RGB colormap and with

a classifier based on k-Nearest Neighbour. This is presented as an simple and robust solution

for histogram comparison but not efficient computationally. After this stage precision in-

creased notoriously, on the other hand recall decreased on the same proportion. To estimate

players’ position while HOG detections are not available it is performed mean shift tracking

which will find on the posterior frame the location of the image that maximizes the similar-

ity with the current appearance. Final results presented a precision and recall rounding the

75%. The algorithm shown difficulties to deal with players entering and leaving the image

since is there non prediction of where and when a new track must be created. This was the

main cause to precision decrease from the HOG detection with false positive handling.

• Finally some methods are proposed to extract high level information from the data corre-

sponding to players’ positions on the field. These methods were based on the common

knowledge of the authors about the game and evaluated considering only subjective criteria.

Even with a not totally precise low-level information it was possible to infer some high level

interpretation related to field occupancy, offensive trends and defensive tactics.

Considering the final results presented is possible to assume that the proposed goals for this

work were achieved despite most of the methods presented can be upgraded and refined to achieve

most accurate results mainly on players’ detection and tracking. In order to extract robust and truly

useful information, drone’s camera has to be able to cover the entire field. This can be achieved

using multiple drones or with an automatic flight control such that it could follow game action

based on ball or players’ position.

7.1 Future Work

Among the main goals of this research there was the creation of a framework identifying some of

the main problems and stages of an automatic vision system for sports analysis. It was presented

a set of methods to the different stages achieving some positive preliminary results. However,

is possible to refine the results and upgrade the functionalities. Some of the future work should

include:

• Video Stabilization capable to deal with intentional camera movement and without decreas-

ing visible area over time.

• More robust camera calibration method without need Hough transform that is very expen-

sive computationally

• Creation of a dedicated classifier based on HOG descriptor for players’ detection. By col-

lecting a large set of positive and negative samples is possible to develop a more precise

detector turning detection easier.
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• Results of detection must be refine using linear or non liner filtering as Kalman or Particle

Filter.

• Finally, real time constraints must be applied and the methods shall be developed in a more

computationally efficient platform such as in C++ with OpenCV. MATLAB is a flexible and

powerful tool to image processing but it is not efficient to process video making the testing

of sequences a long time consuming task.
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