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Adaptive Decision Feedback Equalization:
Can You Skip the Training Period?

Jöel Labat, Odile Macchi,Fellow, IEEE, and Christophe Laot

Abstract—This paper presents a novel unsupervised (blind)
adaptive decision feedback equalizer (DFE). It can be thought
of as the cascade of four devices, whose main components are
a purely recursive filter (R) and a transversal filter (T ): Its
major feature is the ability to deal with severe quickly time-
varying channels, unlike the conventional adaptive DFE. This
result is obtained by allowing the new equalizer to modify, in
a reversible way, both its structure and its adaptation accord-
ing to some measure of performance such as the mean-square
error (MSE). In the starting mode, R comes first and whitens
its own output by means of a prediction principle, while T
removes the remaining intersymbol interference (ISI) thanks to
the Godard (or Shalvi–Weinstein) algorithm. In the tracking
mode the equalizer becomes the classical DFE controlled by
the decision-directed (DD) least-mean-square (LMS) algorithm.
With the same computational complexity, the new unsupervised
equalizer exhibits the same convergence speed, steady-state MSE,
and bit-error rate (BER) as the trained conventional DFE, but
it requires no training. It has been implemented on a digital
signal processor (DSP) and tested on underwater communications
signals—its performances are really convincing.

Index Terms—Adaptive equalization, blind decision feedback
equalization, blind deconvolution, blind equalization.

I. INTRODUCTION

DECISION feedback equalizers (DFE’s) are very often
used to combat the distortion of communication channels

because of their many advantages—even with severe and noisy
channels, they can reach pretty good steady-state performance,
e.g., a small output mean-square error (MSE), at a very
much lower computational cost than other efficient techniques
such as maximum-likelihood sequence estimation. Since the
channels are unknown, the DFE must be implemented in an
adaptive way. In a classical DFE, adaptation cannot be started
without the transmission of a known training data sequence

This is the so-called training period. Then the proper
transmission begins and the tracking of channel distortion is
pursued by unsupervised1 adaptation using the detected data

in place of the true data It is the decision-directed
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(DD) mode. Unfortunately, the channel can drastically change
during the tracking period. As a consequence, a continued
adaptation requires the periodic transmission of the training
sequence, which decreases the effective bit rate and is not
always possible. That is why unsupervised DFE’s, without any
training sequence, are necessary—adaptation starts as soon as
the (unknown) data are transmitted.

In the past decade many unsupervised adaptive algorithms
have been designed for transversal equalizers [1]–[4] based
on the assumption that the sequence is zero-mean inde-
pendent identically distributed (i.i.d.). Unfortunately, with a
recursive equalizer such as a DFE, the phenomenon of error
propagation restricts the use of unsupervised adaptation to the
case of an initially well “open eye,” corresponding to a mild
channel. On the other hand, severe channels cannot be properly
corrected with a transversal equalizer, especially when there
is additive noise, hence the dilemma. There have already been
a few approaches to solve it. In [5]–[7] the equalizer is split
into a cascade of several linear filters, which involves at least
one recursive filter. In particular, in [6] the following cascade
has been proposed—an attenuation equalizer which is a purely
recursive whitening filter , a complex-valued gain control,
and a phase equalizer which is an all-pass transversal/recursive
filter. The complex gain control itself is decomposed into the
cascade of a real gain control and a phase rotator

In this paper the new equalizer also appears as a four-
linear-device cascade including, , and For reasons
that will be explained in the sequel, the all-pass transver-
sal/recursive filter of [6] is replaced by a purely transversal
filter The basic idea of the cascade is to split the
difficult task of unsupervised equalization into several, but
easier, subtasks. Furthermore, the structure itself is made
adaptive and a performance index—the estimated MSE—is
used to select the appropriate structure and its adaptation [8],
[9]. The unsupervised starting period begins withbefore

Once the eye is open, this equalizer is switched into a
classical DFE simply by placing after and introducing
the detection device into the recursive path of Adaptation
is then pursued in the classical DD mode. This method greatly
improves the steady-state performances which reach those of
the conventional trained DFE in terms of both residual MSE
and bit-error rate (BER), without increasing the computational
complexity. Moreover, the system easily switches back to the
starting mode when a sudden change occurs in the channel.
This is a very attractive feature.

Section II deals with the minimum MSE (MMSE) linear
equalizer (LE) and brings a (recursive) solution to imple-
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ment it. Section III (resp. IV) investigates the starting (resp.
tracking) period of the new equalizer. Section V (resp. VI)
evidences the good behavior of the new DFE by means of
computer simulations (resp. real underwater signals). In both
cases the new DFE succeeds in tracking the time variations of
the communication channel, whereas the conventional DFE is
inefficient to deal with such impairments. Section VII presents
our conclusions.

II. RECALLS ABOUT THE LINEAR MMSE EQUALIZER

The variance of the data is denoted The discrete
channel has a causal transfer function (TF) of order
denoted The received signal is corrupted by
an independent additive zero-mean white noise with
variance We recall [10] that the LE, which is optimal
in the MSE sense, has TF

(1)

The denominator of this expression is the power spectral
density (PSD) of . It can be factorized as

(2)

with denoting a real positive number depending on, ,
and Clearly, has pairs of roots , none
of them being on the unit circle (U). So, its factorization is
unique when is constrained to be causal and minimum
phase. If denotes the roots of
located inside U, is written

with (3)

As a result, the filter with TF is both causal and
stable. Furthermore, when the signal is filtered by ,
the output PSD has a constant value, which means that
is a whitening filter—its output is an uncorrelated sequence.
According to (1)–(3), the optimal LE can be viewed as the
cascade of this purely recursive (all-pole) stable whitening
filter and a linear filter with TF

(4)

The transfer functions and are anti-
causal. As a consequence, the implementation of (4) requires
a delay and a transversal filter , with TF

(5)

where TSE stands for “truncated series expansion” of order,
in terms of the positive powers of Moreover, the filter
can itself be split into a , a , and a transversal
filter as in [8] and [9]. Thus, up to a delay, the optimal LE
takes the cascaded form

(6)

Clearly, the order of the four linear transformations, , ,
and is irrelevant in steady state. Nevertheless, it turns out
to be critical in an unsupervised mode. For reasons which will

Fig. 1. Cascaded structure of the new equalizer in the starting period.

be developed later, it is recommended to plugbefore , and
downstream. The place of the , though less critical,

should be located in the vicinity of So a possible form for
the LE (1) corresponds to the cascade of Fig. 1. This is the
architecture chosen for the starting mode and, more generally,
for the difficult periods, e.g., after an abrupt channel change.

The Special Case of a Noiseless Channel : The TF
of can be decomposed as

(7)

where , can be complex, and the (resp.
) denotes the zeros of inside (resp. outside) U

(8)

With a slight loss of generality, it is assumed that has
no zeros on U. Then, and defined in (3) and (4),
respectively, read

(9)

(10)

In the abscence of noise, the MSE equalizer is a zero-forcing
(ZF) device which merely inverts the channel

(11)

According to (10), is the TF of an all-pass filter TF.
Hence, compensates the channel attenuation distortion while

compensates the phase distortion introduced both by the
channel and the recursive filter Unlike in [6], the filter
of TF is implemented by a transversal filter with TF

(12)

where is the necessary delay, this series expansion being in
terms of positive powers of So the MMSE LE is the cascade
of a purely recursive amplitude equalizer(with TF )
and a phase equalizer which can itself be split into a gain
control , a transversal filter , and a phase rotator
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III. STARTING PERIOD: BEFORE

A. Structure and Equations of the Cascade

In the starting period the equalizer is configurated as the
cascade , then , then , then , as depicted in Fig.
1 where the notations are given for the signals at the various
places in the cascade. However, the choice of the respective
places for each part needs some explanation. First let us
consider the noiseless channels. In this case it clearly appears
that, when located before, is an amplitute equalizer that
compensates the channel attenuation distortion whilecom-
pensates the remaining phase distortion. If the criterion (25)
is used for adaptation of , the uncorrelated sequence is
then transformed into an independent sequence So the
criteria are more and more demanding all along the cascade,
which is a wise choice. It is obvious that permutating the order
of the filters and would be meaningless. In addition,
if the channel is minimum phase, then totally removes
the intersymbol interference (ISI) and, as a consequence,
must be located upstream. In the more general case of noisy
channels the explanation is not so evident. However, if the
noise level is weak, the situation is not far from the previous
case. Besides, it is known [10] that the recursive part of the
whitening filter is what the conventional DFE (optimal in the
MMSE sense) needs in its feedback part, which is perhaps
one of the main key points of the new unsupervised equalizer.
Hence, it is natural to begin with whitening the sequence

first, i.e., to locate upstream. In this case, since the
sequence at the input of is uncorrelated, then its correlation
matrix is well conditioned, and so one can reasonably hope
that the convergence speed ofis increased. This is the case
in practice. The corresponding time equations are given below.

For : In order to decrease the signal dynamical range,
we shall implement it at the front edge. It is a one-coefficient
real equalizer with input It generates the output

(13)

For : The input is and the output is

(14)

where

(15)

(16)

(17)

In (15) the signal is built up with past samples only. It
can be viewed as a predicted value of the input in such a
way that is an “innovator” which generates the prediction
error or “innovation” (14) contained in the new sample
of is called the “prediction vector.”

For : The input is and the output is

(18)

where

(19)

(20)

For : The input is and the output is

(21)

Last in the cascade is the nonlinear decision device (slicer)
that provides , which is an estimate of , being
a suitable delay.

B. Unsupervised Criteria of Optimality for the Four Devices

For : It is used to fix the power level of the samples
at a particular value, for instance,

(22)

This equation constitutes an unsupervised criterion of opti-
mality for the

For : Because has a constant PSD , is the
unique stable recursive whitener of its input Thus, the
optimal prediction vector minimizes

(23)

and the sequence is uncorrelated (white). This is an un-
supervised criterion to optimize—although the transmitted
data are unknown, the recursive part of the optimal
MSE LE is exactly found.

For : There are a few unsupervised criteria, based on
statistics of order higher than two, that allow (blind) decon-
volution of nonminimum phase channels. For instance, the
Godard criterion [1] minimizes

with

(24)

In what follows we only investigate the classical case
of Then for the 4-quadrature amplitude
modulation (QAM) scheme (resp. for the 16-QAM
scheme), when considering unitary power data taking
equiprobable values. Note that the criterion (24) is essentially
the same as the criterion proposed by Shalvi and Weinstein
[2], i.e.,

subject to

(25)

The constraint in (25) can be achieved by forcing the vector
to have an unitary norm, from the moment that is a

white sequence of variance , which, unfortunately, is not
true at the beginning of the equalization process. Both criteria
will maximize the absolute (normalized) kurtosis of Even
with a noisy channel, if the additive noise is Gaussian, the
optimum is reached if and only if the cascade is a ZF equalizer
[2] (see Appendix A for more details). The resulting vector
might therefore be slightly different from the MSE solution
which corresponds to the expansion of in (4).
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For : To deal with the phase error brought by the
channel and the demodulator, a phase rotation is required,
where is an estimate of the phase error between the modulat-
ing and the demodulating carrier waves. To adjust, a possible
criterion is to minimize the DDMSE

(26)

Since this criterion depends on the decisions , the
has to be located downstream in order not to disturb

the previous stages of the equalizer. Furthermore, since the
statistics of QAM or phase-shift keying (PSK) signals are
unaffected by some particular rotations, it will always remain
a phase indetermination in an unsupervised approach. This
problem is classically solved by differential encoding.

The three last devices of the cascade have decoupled criteria
in the sense that the criterion for is unaffected by the
parameters and of the next two devices, and that the
criterion for is unaffected by the state of the which
follows. This is why it is critical to plug before so that
the difficult task of unsupervised equalization can be realized
step by step— first the sequence is whitened by, then the
remaining ISI is removed by

C. Adaptation Algorithms

For : It is easy to design an adaptive algorithm con-
trolling to satisfy (22), e.g.,

(27)

(28)

where , and is a small positive step size. This is
a kind of automatic gain control; see [11, ch. 1]. To implement
the adaptive , the gain must be in its th state when
the th observation is processed

(29)

The same principle holds for all adaptive systems below.
For : There are a few algorithms available to minimize

in (23), e.g., the stochastic gradient algorithm whose
increment is

(30)

Because is a recursive filter, this last quantity cannot
be exactly computed, but efficient approximate algorithms are
available, for example,

(31)

(32)

where The superscript stands for
complex conjugate. Stability of this adaptive predictor has
been investigated in detail in [11, ch. 15]. It is ensured by:
1) the presence of noise at the input which pushes the poles
of well inside U and 2) the so-called “self-stabilization”
property of (31) which holds even in the absence of noise as
proven in [11].

For : The stochastic gradient algorithm to minimize
in (24) is straightforward

(33)

(34)

where and is a small
positive step size.

The theoretical study of the criteria (24), (25) is still in
progress in the open literature. However, it has been stated in
[12] that, provided is large enough and with an appropriate
(center tap) initialization strategy, in both cases of Godard and
Shalvi–Weinstein criteria, the equalizer will converge to a
stable equilibrium near a desired global minimum. Moreover,
the convergence speed strongly depends on the value of the
initial kurtosis ratio , where (resp. )
denotes the normalized kurtosis of (resp. ). If this
ratio is lower than 0.5, then the equalizer will generally
exhibit slower convergence toward a desired equilibrium. In
the noiseless case or with sufficiently large signal-to-noise ratio
(SNR) the corresponding algorithms are efficient to recover
the true data up to an arbitrary phase and an unknown
delay So in steady state

(35)

For : Classical algorithms to minimize in (26)
can be found in [14]. For instance,

(36)

(37)

(38)

which corresponds to a second-order phase tracking loop. In
(37) and (38) is a small positive step size,an appropriate
positive parameter, and

The theoretical analysis of the new equalizer (convergence
and steady state) is simplified by the decoupled character
of the criteria controlling , , and , as pointed out
in the previous subsection. Convergence of and
can be studied first, and being then irrelevant.
Then, once and have reached their optimal values

and , convergence of (see [12] for criteria (24)
and (25)] can be investigated independently of Then
convergence of can be studied with , , and

in their respective optimal states, , and In
other words, one can investigate separately the adaptation
algorithms of the pair , the vector , and the
angle As for , adaptation of its gain remains
coupled with that is plugged downstream [see (22) and
(23)]. (We recall that the coupling originates in the fact that
the is plugged before in order to reduce the signal
dynamic range in the implementation). This coupling makes
the theoretical investigation more intricate but, in practice, it
raised no specific difficulty.
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Fig. 2. Structure of the equalizer in the tracking period—classical DFE.

Computational Complexity:The equations governing a
classical DFE equipped with a are given in the following
subsection [see (41)–(49)]. Comparing these equations with
(27)–(29), (31)–(34), and (36)–(38), it appears that the
new structure in its starting mode has exactly the same
computational complexity, at least when the classical DFE is
preceded by an adaptive gain control (which is a conservative
practice).

IV. TRACKING PERIOD: BEFORE

A. Structure and Switching Rule

During the first running mode, the system can be viewed
as a ZF equalizer including a whitening all-pole filter whose
recursive part is precisely the feedback filter of the recursive
LE (see Section II) as well as the one of the conventional DFE
[10]. That is why when the decisions become reliable,
which is deduced from the index of performance defined
below, the equalizer structure is modified into the cascade,
then , then , and lastly , which is now fed in by the
detected data, as depicted by Fig. 2. Clearly this structure is
merely a DFE equipped with a front edge and a
to ensure the carrier tracking. It is the structure adopted for
the new equalizer in the tracking period. When modifying the
relative place of and and feeding by the past decisions
in order to get the classical DFE, the system can only suffer
from the fact that the transversal part of the equalizer has
(nearly) reached a ZF solution instead of the MSE solution.
As a consequence, minimization of the DDMSE can yield a
(slight) change in parameter only. Nevertheless, with large
SNR, the change is not really significant, so the modification
of structure is justified. In this way the new DFE obviously
yields a smaller MSE than the linear recursive ZF equalizer
of Section III.

To control the running mode (starting or tracking mode),
some performance measure is required, e.g., an estimation
of the (true) output MSE, say . Since the true data are
unknown, they are replaced by at the slicer output and the
performance measure is the DDMSE (26). This is a normalized
performance measure since has unit power. Besides, it
can be estimated using the recursive formula

(39)

where , the so-called “forgetting factor,” is taken at 0.99 in
the sequel. Clearly the eye is open whenis low
In this case and are essentially the same. Hence, the

rule for modifying the structure

starting mode for

tracking mode for (40)

To ensure a safe transition in the tracking mode (DFE), the
threshold must be reasonably small. So what we really
have to do is to choose a threshold corresponding to a
sufficiently low BER (typically less than 0.02) in order to
avoid a pathological behavior of the DFE. But since, in the
starting mode, the equalizer is ZF, the BER can be expressed as
a function of the (true) MSE. Hence, the appropriate threshold

can be chosen, depending on the modulation scheme. For
example, in the 4-QAM case, this leads to ( 6
dB). Note that, from this threshold , the DDMSE becomes
a good estimation of the true MSE and, consequently, a good
index of the equalizer performance.

B. Optimality Criterion and Adaptation

The DDMSE criterion in (26) is applicable to optimize
the parameters of this classical DFE. Then and are
redundant, so the coefficient can be held at a fixed value

, so

(41)

The notations are given in Fig. 2. The eight following
equations are those of a classical DFE including a The
output is

(42)

where

(43)

(44)

(45)

Adaptation: The simplest updating algorithm is the stochas-
tic gradient of the criterion (26)

(46)

(47)

(48)

(49)

The performance measure is permanently calculated
along (39) and tested according to (40). If a sudden change
occurs at step in the channel, the eye gets closed and

oversteps The switchback in starting mode is
straightforward. For the , (27)–(29) are started with

For , (31) and (32) are started with the initial value
and with Similarly for , (33) and

(34) are started with and with
The is started with
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(a) (b)

Fig. 3. (a) Zeros ofF1(z). (b) Attenuation and phase responses.

V. COMPUTER SIMULATIONS

A. Stationary Channels

With such channels, the equalizer achievements can be
characterized in terms of convergence speed and steady-state
error. Results have been obtained via Monte Carlo simulations
using 200 different runs and two severe channels. Both have
nonminimal phase. Channels 1 and 2 have been proposed in
[3] and [5], respectively. Their impulse responses are

Channel 1:

Channel 2:

Fig. 3(a) [resp. Fig. 4(a)] depicts the location of the TF
zeros of channel 1 (resp. 2) and gives the amplitude and
phase responses of these two channels. Note that both channels
exhibit deep fading frequencies as well as severely nonlinear
phase distortion, as a result of the zeros of which
are outside U and close to it. For such severe channels,
most unsupervised equalizers proposed in the literature do not
succeed to open the eye.

Five adaptive equalizers have been tested. Three of them are
transversal LE’s with 31 taps, started with a centered reference
tap—the Godard unsupervised equalizer [1], the Duhamel and
Hilal one [4], and the classical trained LE. The two recursive
equalizers are the trained DFE and the new unsupervised DFE
of this paper. Both recursive equalizers have 5 and 20 taps
in their recursive and transversal parts, respectively. For the
16-QAM scheme, the Duhamel and the Godard unsupervised
algorithms are totally inefficient for these two severe channels.
So our system is only compared to the trained LE and DFE.
To compute the DDMSE in (39), we start with ,
while the switching threshold is 0.25 ( 6 dB) for the 4-
QAM and 0.063 ( 12 dB) for the 16-QAM. It means that the
system starts with the appropriate structure—comes first.
The equalizer input SNR for the 4- and 16-QAM schemes is 15

(a) (b)

Fig. 4. (a) Zeros ofF2(z). (b) Attenuation and phase responses.

(a) (b)

Fig. 5. Case of 4-QAM—compared performance of the new equalizer with
other unsupervised equalizers (Godard and Duhamel) or trained equalizers
(LE and DFE). (a) Channel 1, MSE (SNR = 15 dB). (b) Channel 2, MSE
(SNR = 15 dB).

and 25 dB, respectively. The impulse responses are normalized
to unity. The additive noise is zero mean, white, and Gaussian,
whereas the channel phase-shift standing for the demodulation
phase error is , denoting the symbol
duration. In the 200 trials, is uniformly distributed in

and the normalized frequency offset is uniformly
distributed in for 4-QAM and in for
16-QAM. Then the DDMSE is estimated in (39) for every
experiment, then averaged over the 200 trials and plotted in
Figs. 5 and 6 versus the number of iterations.

The striking important conclusion drawn from the simu-
lations of Figs. 5 and 6 is that, with the same step size,
our new unsupervised system achieves essentially the same
steady-state MSE as the best trained equalizer, which is the
DFE. In the 16-QAM case and with channel 1, we even
note a 1-dB difference at iteration 20 000— it means that
the final value of the MSE is reached sooner with the new
equalizer. The transversal equalizers are totally outperformed
(3–9 dB of output DDMSE gain) because they are not matched
to such severe channels. Convergence of the new equalizer,
respectively, requires less than 2000 and 5000 iterations, in
the 4- and 16-QAM cases. It is very fast. The BER is plotted
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(a) (b)

Fig. 6. Case of 16-QAM—compared performance of the new unsuper-
vised equalizer with trained LE and DFE equalizers (a) Channel 1, MSE
(SNR = 25 dB). (b) Channel 2, MSE (SNR = 25 dB).

(a)

(b)

Fig. 7. (a) Compared BER—case of channel 1 (4-QAM). (b) Compared
BER—case of channel 2 (4-QAM).

in Fig. 7, versus the SNR, with a 4-QAM scheme, for a
trained LE , a trained DFE , and the new equalizer

As a performance upper bound, we have indicated the
BER of a “supervised” DFE whose recursive path and
adaptation are controlled with the true data (this DFE stands
as a reference). For an SNR below 7 dB, all equalizers perform
essentially the same way, that is, bad, with BER higher than
0.1. For an SNR higher than 7 dB, the trained DFE and the
new one have the same achievement in BER, much better
than the trained LE. They display only a slight loss with
respect to the optimal supervised DFE. For instance, with
channel 1 and at a BER of 10, the loss is about 0.5 dB.
Therefore, the new equalizer appears really attractive in terms
of both convergence speed and steady-state performances
(MSE and BER).

(a) (b)

Fig. 8. The classical trained DFE faced to a sudden and permanent change
in the channel. True MSE—dotted line; DDMSE—solid line. (a) MSE. (b)
Equalizer output.

(a) (b)

Fig. 9. The novel unsupervised DFE faced to a sudden and permanent change
in the channel. True MSE—dotted line; DDMSE—solid line. (a) MSE. (b)
Equalizer output.

B. Nonstationary Channels

With such channels one can investigate the tracking achieve-
ment of the equalizer, when facing a permanent time variation.
In the simulations we begin with a fixed maximal phase
channel whose TF has one zero at Then the
channel becomes time-varying with a second mobile zero

appearing after 2000 iterations, with, for

(50)

This zero is located half-time inside and half-time outside
U. Both zeros are close to U, so the time-varying channel

is very severe. In fact, corresponds to the classical
differential Doppler effect—a new path suddenly arrives on
the receiver at time

In the case of 4-QAM modulation, Fig. 8 (resp. 9) displays
the behavior of the classical trained DFE and of the new unsu-
pervised DFE. The DDMSE (solid line) and true MSE (dotted
line) are depicted in Figs. 8(a) and 9(a), and the equalizer
output diagram around iteration is shown in the
Figs. 8(b) and 9(b). It appears that is a good estimate of
the true MSE as soon as dB. Due to training, the
classical DFE begins with successfully compensating the fixed
channel However, when the channel is suddenly modified
at time , it is unable to reopen the eye without a
new training sequence. On the other hand, the new DFE takes
approximately 850 iterations (in the starting mode) to correct
the fixed (maximal phase) channel Then it switches its
structure in the tracking mode but at time , where
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(a) (b)

Fig. 10. Two sudden changes plus a drift in between them. True
MSE—dashed line; DDMSE—solid line. (a) Trained DFE. (b) Novel
unsupervised DFE.

the channel is suddenly modified, it immediately switches back
to the starting mode. Without a new training, this DFE takes
1000 iterations to reopen the eye, then it switches again to
the tracking mode and is able to properly track the permanent
time variations created by the drifting zero in (50). The
diagram in Fig. 9(b) shows that, in steady state, despite the
severity of this channel, most of the ISI is removed.

In order to evidence still better the ability of the new DFE
to correct fast variations of the channel, we have made another
sudden change at iteration by canceling the zero

in (50). As shown in Fig. 10(a), this second change is
well accepted by the novel DFE, which switches back to the
starting mode. It takes 850 iterations to reopen the eye and then
switches again to the tracking mode. On the other hand, the
classical DFE [Fig. 10(b)] gets completely lost at this second
change—its parameters converge toward a false equilibrium
state for which the equalizer output is locked onto two
periodical values of the data diagram. The previous simulations
are very convincing of the superiority of this novel DFE. It
does work without training even with severe and fast-changing
channels. Its achievement will now be illustrated in the case
of a real (underwater) digital transmission.

VI. UNDERWATER ACOUSTIC CHANNELS

In the field of underwater acoustic communications, digital
communications systems generally use binary PSK (BPSK)
and quadrature PSK (QPSK) signaling [13]. They correct
multipath effects and Doppler frequency shifts by means of
an adaptive trained DFE. The synchronization (carrier and
timing recovery) is jointly optimized with the DFE according
to some appropriate criterion. For the vertical underwater
acoustic channel, this solution (DFE) yields an acceptable
spectral efficiency of the order of 2 b/s/Hz. The channel
impulse response is usually very short, so the equalizer only
needs a small number of taps.

Unfortunately, the trained DFE is inefficient, unless it is
periodically retrained, for digital communications through a
shallow water channel. This latter turns out to be among
the most severe channel encountered in practice and mainly
suffers from two kinds of impairments. The first one is
the strong channel distortion due to multipath propagation
because of multiple scattering by surface and bottom. Since
the delay spread may reach tens of symbol durations, the

Fig. 11. MSE. Successful transmission through the shallow water channel
with the novel unsupervised DFE.

number of taps of the equalizer increases drastically, leading
to a computational complexity that can severely limit the
achievable data rate. This is an obvious reason to choose a
recursive equalizer, regardless of stability consideration. The
second strong impairment is the fast nonstationarity of the
channel which originates in the relative motion between the
transmitter and receiver and in the waves at the sea surface.
This yields a Doppler frequency shift on the carrier and a
differential Doppler effect on the various multipaths which
makes the channel filter quickly changing. It also renders
optimal sampling more difficult. From this point of view,
the new equalizer turns out to be particularly well suited
because of its ability to deal with rapidly varying channels by
modifying both its optimality criteria and its structure when
necessary. Two main solutions can be thought of to solve this
problem. The first one is carried out by means of maximum-
likelihood sequence estimation, but is not well suited here
because of the impulse response length that would imply a
prohibitive computational complexity. Up to now, the second
solution was the periodically trained DFE.

In this section we present a shallow underwater communi-
cation system based on the new unsupervised DFE, where the
modulation scheme is a 4-QAM and the bit rate is 6 kb/s.The
carrier frequency is 12 kHz and the transducer bandwidth is
close to 4 kHz. The experiment was carried out in the bay
of Brest (France). The transmitter was located on the bottom
of the sea and the transducer was kept under the boat at a
depth of 5 m below the sea surface. The transducer output
signal was first amplified, filtered, and then recorded on a
digital audio tape during a few hours. In this way we obtained
files to test the new equalizer. In addition, the whole receiver
has been implemented on a digital signal processor (Motorola
DSP 56 002) and its behavior observed during the few hours
of recording. There are (resp. ) taps in
the feedback (resp. forward) part of the DFE with the step
sizes , while the step size is
for the Fig. 11 displays the evolution of the estimated
MSE for both the conventional trained DFE and the
new unsupervised DFE. The latter switches for the first time
in tracking mode after about 500 iterations, which is very
fast for an unsupervised equalizer with this kind of channel.
After approximatively 3300 iterations, oversteps the
threshold So the new DFE switches back to the starting
mode, where it remains for approximately 500 iterations. In



LABAT et al.: ADAPTIVE DECISION FEEDBACK EQUALIZATION 929

(a)

(b)

Fig. 12. Time evolution of the shallow water channel response.

this way it is able to deal with this sudden change of the
channel characteristics.

On the other hand, the classical DFE cannot be started
without a training sequence and so would not work with this
file. To have an idea of its behavior, we have started the
DFE with our structure and we have inhibited any further
switchback from the tracking mode to the starting mode. This
is essentially equivalent to a trained classical DFE. From
iteration 3300, it gets lost and remains in this state during
approximately 4000 iterations, i.e., 1.3 s in this example. Then
it appears as very lucky to converge again toward the right
solution and so ensures a correct transmission during 6300
iterations. Unfortunately, from iteration 13 000 until the end
of the file, it remains irremediably lost—the estimated MSE is
near zero because the output is locked onto a periodic sequence
in the data diagram and this pathological state is stable.
Such a behavior has often been observed in this channel. In
such conditions a conventional DFE has to be periodically
trained, whereas the new DFE remains efficient with only
a few hundreds of false bits during the starting periods and
a few isolated false bits in the tracking periods. Such an
achievement is really convincing! Besides, the whole impulse
response, including transmitter and receiver filters as well as
transducer and channel, has been identified by estimating, with
an adaptive algorithm, the filter
The plot in Fig. 12 displays this response every 250and for a
file duration of 6 s (76 successive responses). It shows that the
channel response typically spreads over ten symbol durations,
which is consistent with the fact that the receiver was close to
the transmitter (50 m for the studied file). Fig. 12 evidences
a first transmission path that is approximately constant and a
second one that is delayed by with time-varying amplitude
(real and imaginary parts). So this real channel is not very far
from the time-varying simulation model adopted in subsection
V-B with the TF having a fixed zero and a mobile periodic
zero Even the period of chosen in the simulations
for the channel variations appears consistent with the period
that can be appreciated on the basis of Fig. 12 in the real
underwater experiment. Despite a delay spread that may reach
40 symbol durations (more than 10 ms) in the worst case, the
new system never got lost during 2 h of transmission and with
a distance from transmitter to receiver ranging from a few

meters up to about 1 km. The new DFE is a fully satisfactory
system in practice.

VII. CONCLUSION

The new unsupervised DFE introduced in this paper is
based on the decomposition of the equalizer into a cascade
of four devices, whose major components are a recursive
whitening filter and a transversal filter The specificity
is that the positions of these two devices can be switched on
and back in a reversible way, according to some estimation
of the output MSE. In the starting period (large MSE) the
equalizer is linear— comes first and whitens its own output,
whereas removes the remaining ISI (ZF equalizer). In
the tracking mode (small MSE) comes last and its loop
is fed in with the detected data, so the equalizer becomes
the classical DFE. This novel equalizer is very well suited
for both severe stationary channels as well as quickly time-
varying channels—where a conventional DFE would suffer
from error propagation and bursting due to a sudden change,
the new DFE switches back to its starting mode. On the other
hand, it is worth emphasizing that this unsupervised DFE not
only has the same steady-state performance as a usual trained
DFE but has approximately the same convergence speed.
Moreover, its computational complexity is not increased. As
a consequence, a wide field of applications can be thought of,
such as radiowave transmission, TV broadcasting [15], voice
band modems, asymmetrical digital subscriber line (ADSL),
and so on.

Hence, the conclusion—adaptive DFE can now skip the
training period and receive a permanent digital flow without
periodical retraining, even in a severely nonstationary context.
Moreover, the performances can be improved by implementing

as a fractionally spaced equalizer during the tracking period.
In addition, at the price of an increasing complexity, an
recursive-least-squares (RLS) algorithm can be used to update

during the starting periods, and bothand in the tracking
periods.

APPENDIX A
RECALL ABOUT THE SHALVI AND WEINSTEIN THEOREM [2]

If denotes a zero-mean i.i.d. input sequence and
denotes the vector corresponding to the impulse response of
a noiseless system (for instance channelequalizer) with
output , it then comes, according to the above-mentioned
theorem, that the normalized kurtosis of the output can
be expressed as

where

The main conclusions derived from this result are

if and only if
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This means that the maximization of is equivalent
to the deconvolution (ZF) of the system (with impulse
response ).

As a consequence, in the starting mode the new unsu-
pervised equalizer is a ZF one, when using (25). Since the
transversal part is located downstream, this criterion will
give a solution which inverts the linear cascade– –
This remains valid for Gaussian channels as well. This results
from the fact that, with the notations used in our paper,

, where denotes the signal contribution
kurtosis. This is because, by assumption, signal and noise are
independent processes and, moreover, the noise is Gaussian.

Note that, according to [12], what is important for the
convergence of the Godard and Shalvi–Weinstein algorithms
is the initial (positive) kurtosis ratio

with denoting the initial impulse response of the system
(channel equalizer), which is nothing but the impulse
response of the channel when a center tap initialization strategy
is used. When this ratio is greater than 0.5, then, for a
small step size and a sufficient length, the equalizer will
converge to a stable equilibrium near a desired global min-
imum [12]. Otherwise, it will generally take a longer time,
subject to an appropriate initialization strategy, to converge to
a desired equilibrium. For the two channels of Section V-A,
the initial kurtosis conditions are not satisfied. The kurtosis
ratios are 0.2375 for channel 1 and 0.3174 for channel 2.
They clearly are lower than 0.5, which explains that the
Godard or Shalvi–Weinstein linear equalizers take a long time
to converge to a desired equilibrium. However, despite the
severity of the two proposed channels, the convergence of the
new equalizer is very fast.
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Supérieure des T´elécommunications de Bre-
tagne (ENSTB), Brest, France, as a Maı̂tre de
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