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Adaptive Decision Feedback Equalization:
Can You Skip the Training Period?

Jaal Labat, Odile MacchifFellow, IEEE and Christophe Laot

Abstract—This paper presents a novel unsupervised (blind) (DD) mode. Unfortunately, the channel can drastically change
adaptive decision feedback equalizer (DFE). It can be thought during the tracking period. As a consequence, a continued
of as the cascade of four devices, whose main components argyyaniation requires the periodic transmission of the training

a purely recursive filter (R) and a transversal filter (7). lts . . . .
major feature is the ability to deal with severe quickly time- S€duence, which decreases the effective bit rate and is not

varying channels, unlike the conventional adaptive DFE. This always possible. That is why unsupervised DFE'’s, without any
result is obtained by allowing the new equalizer to modify, in training sequence, are necessary—adaptation starts as soon as
a reversible way, both its structure and its adaptation accord- the (unknown) datal(k) are transmitted.

ing to some measure of performance such as the mean-square : : :
error (MSE). In the starting mode, R comes first and whitens In the past dgcade many unsupervised a_ldaptlve algorithms
its own output by means of a prediction principle, while 7 have been designed for transversal equalizers [1]-[4] based
removes the remaining intersymbol interference (ISI) thanks to 0N the assumption that the sequemi¢g) is zero-mean inde-

the Godard (or Shalvi-Weinstein) algorithm. In the tracking pendent identically distributed (i.i.d.). Unfortunately, with a
mode the equalizer becomes the classical DFE controlled by recyrsive equalizer such as a DFE, the phenomenon of error

the decision-directed (DD) least-mean-square (LMS) algorithm. : ; : :
With the same compu(tatio)nal complexity? the nan u%sugervised propagation restricts the use of unsupervised adaptation to the

equalizer exhibits the same convergence speed, steady-state MSeSase of an initially well “open eye,” corresponding to a mild
and bit-error rate (BER) as the trained conventional DFE, but channel. On the other hand, severe channels cannot be properly

it requires no training. It has been implemented on a digital corrected with a transversal equalizer, especially when there
signal processor (DSP) and tested on underwater communications js aqditive noise, hence the dilemma. There have already been
signals—its performances are really convincing. . . . .
a few approaches to solve it. In [5]-[7] the equalizer is split
Index Terms—Adaptive equalization, blind decision feedback into a cascade of several linear filters, which involves at least
equalization, blind deconvolution, blind equalization. one recursive filter. In particular, in [6] the following cascade
has been proposed—an attenuation equalizer which is a purely
|. INTRODUCTION recursive whitening filte(R), a complex-valued gain control,

and a phase equalizer which is an all-pass transversal/recursive

ECISION feedback (_aqual_lzers (DFE'S) are very oﬂeplter. The complex gain control itself is decomposed into the
used to combat the distortion of communication channels

because of their many advantages—even with severe and ng,%scadg of a real gain contr(@O)_ and a phase rotatg’r).
this paper the new equalizer also appears as a four-

hannels, th n reach pr - rform ! ) X
channels, they can reach pretty good steady-state perfo arlllﬁ%’ar—dewce cascade includirfg, GC, andPR. For reasons

e.g., a small output mean-square error (MSE), at a ver . . .
g P g ( ) at will be explained in the sequel, the all-pass transver-

much lower computational cost than other efficient techniqu o .
%I/recurswe filter of [6] is replaced by a purely transversal

such as maximum-likelihood sequence estimation. Since tﬁ 7Y The basic id £ th de is t it th
channels are unknown, the DFE must be implemented in ! (7). The basic i €a of the cascade IS to Spit the
icult task of unsupervised equalization into several, but

adaptive way. In a classical DFE, adaptation cannot be started . biasks. Furth the struct itself i d
without the transmission of a known training data sequenggs'er_’ subtasks. Furthermore, fhe struclure 1se IS made
daptive and a performance index—the estimated MSE—is

d(k). This is the so-called training period. Then the propét : . .
transmission begins and the tracking of channel distortion Y ed to select the appropriate structure and its adaptation [8],

pursued by unsuperviska@daptation using the detected datlalg' The unsupervised starting period begins wihbefore

d(k) in place of the true datd(%). It is the decision-directed . Opce the eye 1S open, th_'s equalizer is sywtchedlmto a
classical DFE simply by placin@R after 7" and introducing
_ _ o the detection device into the recursive pathaf Adaptation
Paper approved by J. H. Winters, the Editor for Equalization of the IBE than pursued in the classical DD mode. This method greatly
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ment it. Section Il (resp. IV) investigates the starting (resp.

[ |
tracking) period of the new equalizer. Section V (resp. VI)s(K) 1k 4 u(k) | | v(k) wik)
evidences the good behavior of the new DFE by means of" s i | [ X |
computer simulations (resp. real underwater signals). In both | | | ?
cases the new DFE succeeds in tracking the time variations of | | | ()
the communication channel, whereas the conventional DFE is | | |
inefficient to deal with such impairments. Section VIl presents  ¢C R | T PR,

our conclusions. Fig. 1. Cascaded structure of the new equalizer in the starting period.

Il. RECALLS ABOUT THE LINEAR MMSE EQUALIZER
N be developed later, it is recommended to pRidpefore?, and

The variance of the datd(k) is denot_edaﬁ. The discrete pr gdownstream. The place of th@C, though less critical,
channel 7 has a causal transfer function (TF) of ord®r ghoy|d be located in the vicinity 6R. So a possible form for
denoted '(z). The received signals(k) is corrupted by the LE (1) corresponds to the cascade of Fig. 1. This is the
an independent additive zero-mean white noigé) with  architecture chosen for the starting mode and, more generally,
varianceo;. We recall [10] that the LE, which is optimal for the ifficult periods, e.g., after an abrupt channel change.

in the MSE sense, has TF The Special Case of a Noiseless Charagl= 0): The TF
o2F*(1/z* F(2) of F can be decomposed as
C(Z): 5 d *(/*) 5 (1)
O'dF(Z)F (1/2 )+O'n Ny No
The denominator of this expression is the power spectral F(z)=fIJ0 =2z [ (=55 — 27 (7
density (PSD) ofs(k). It can be factorized as i=1 j=1

D(z) = 02F(2)F*(1/2*) + 02 = SG(2)G*(1/2*) (2) whereN = N; + N,, f can be complex, and the ; (resp.
) _ N _ zo ;) denotes the zeros df(z) inside (resp. outside) U
with S denoting a real positive number dependingagn o2,

and I'(z). Clearly, D(z) has N pairs of roots(z;1/2*), none |z0, 41> 1 |21 < 1. (8)

of them being on the unit circle (U). So, its factorization is

unique whenG(z) is constrained to be causal and minimum With a slight loss of generality, it is assumed tlf&tz) has
phase. Ifz; ¢ = 1,2,---, N denotes theV roots of D(z) no zeros on U. Theni7(z) andT(z) defined in (3) and (4),

located inside UG(z) is written respectively, read
N Ny P
G(z) = H[l —ziz7t with |z < 1. €)) G(z) = H(1 — 2127 %) H(1 —(z5,2)7Y) 9)
i=1 i=1 j=1
As a result, the filtefR with TF 1/G(z) is both causal and 1Nz g (25 2)7
stable. Furthermore, when the signdk) is filtered by R, T(z) = 7 11 T (10)
the output PSD has a constant valsigwhich means thaR j=1 704 "~

is a whitening filter—its output is an uncorrelated sequence.
According to (1)—(3), the optimal LE can be viewed as th
cascade of this purely recursive (all-pole) stable whiteni

filter R and a linear filter with TF 1
F(z)—

T(z) = [0 /SIF*(1/29)G (1)) . (@) )

The transfer functiong™*(1/z*) and G*(1/=*) are anti- According to (10),7(z) is the TF of an all-pass filter TF.

causal. As a consequence, the implementation of (4) requi’-’é%”ce’R compensates the channel attenuation distortion while
a delayL and a transversal filte¥7, with TF T(z) compensates the phase distortion introduced both by the

channelF and the recursive filteR. Unlike in [6], the filter
Ty (z) = 2~ " TSE[T(2)] (5) of TF 7(z) is implemented by a transversal filter with TF

In the abscence of noise, the MSE equalizer is a zero-forcing
gF) device which merely inverts the channel

T(z)=1. (11)

where TSE stands for “truncated series expansion” of akger N, N,
in terms of the positive powers of Moreover, the filterZ; 7, (;) = TSE 1= (25 2 [ zoh — 2717
can itself be split into &C g, aPR ¢4, and a transversal f Jl;[l - Jl;[l @

filter 7 as in [8] and [9]. Thus, up to a delay, the optimal LE (12)
takes the cascaded form

Z_L

C=7T,0R Tp = ge=9°T. 6 where L is the necessary delay, this series expansion being in
terms of positive powers of. So the MMSE LE is the cascade
Clearly, the order of the four linear transformatids, R, 7, of a purely recursive amplitude equaliZ@r(with TF 1/G(z))
andPR is irrelevant in steady state. Nevertheless, it turns oahd a phase equalizer which can itself be split into a gain
to be critical in an unsupervised mode. For reasons which wibntrol GC, a transversal filte?’, and a phase rotatd?R.
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IIl. STARTING PERIOD; R BEFORET where

B:[b07b17“'7bL]T (19)

A. Structure and Equations of the Cascade T
UL+1(k) = (U’(k)v U’(k - 1)7 T ,U,(k - L)) . (20)

In the starting period the equalizer is configurated as the
cascadegC, then'R, then7, then’PR, as depicted in Fig.  For PR: The input isv(k) and the output is
1 where the notations are given for the signals at the various
places in the cascade. However, the choice of the respective w(k) = v(k) exp(—jb). (21)

I for h part n me explanation. First | . : . - . :
places for eact part needs some expa at_o st let u!?_ast in the cascade is the nonlinear decision device (slicer)
consider the noiseless channels. In this case it clearly appear

that, when located befor&, R is an amplitute equalizer that at prowdesd(k), which is an estimate of(k — ), & being
compensates the channel attenuation distortion whileom- a suitable delay.

pensates the remaining phase distortion. If the criterion (25) ) . o )

is used for adaptation o, the uncorrelated sequenaék) is B. Unsupervised Criteria of Optimality for the Four Devices
then transformed into an independent sequer(ég. So the  For GC: It is used to fix the power level of the samples
criteria are more and more demanding all along the cascadé;) at a particular value, for instance;

which is a wise choice. It is obvious that permutating the order 5 5

of the filters R and 7 would be meaningless. In addition, E{|u(k)I"} = og- (22)

if the channel is minimum phase, theR totally removes g gquation constitutes an unsupervised criterion of opti-
the intersymbol interference (I1SI) and, as a consequéﬁce,ma”ty for the GC.

must be located upstream. In the more general case of noisy . 1. Becauseu(k) has a constant PSB2, R is the

channels the explanation is not so evident. However, if ”ﬂﬁ’]ique stable recursive whitener of its inpik). Thus, the
noise level is weak, the situation is not far from the pl’eViOLl§ptima| prediction vector minimizes ’

case. Besides, it is known [10] that the recursive part of the

whitening filter is what the conventional DFE (optimal in the I(A) = E{|u(k)|*} (23)

MMSE sense) needs in its feedback part, which is perhaps ) ) o

one of the main key points of the new unsupervised equalizéPd the sequence(k) is uncorrelated (white). This is an un-

Hence, it is natural to begin with whitening the Sequ(__,nc%Jperwsed criterion to opt|m|zd—a_lthough the transmltted

s(k) first, i.e., to locateR upstream. In this case, since thélatad(k) are unknown, the recursive paR of the optimal

sequence at the input 6f is uncorrelated, then its correlationMSE LE is exactly found. . o

matrix is well conditioned, and so one can reasonably hopeF©r 7: There are a few unsupervised criteria, based on

that the convergence speed®fis increased. This is the caseStatistics of order higher than two, that allow (blind) decon-

in practice. The corresponding time equations are given beloyp!ution of nonminimum phase channels. For instance, the
For GC: In order to decrease the signal dynamical rang&odard criterion [1] minimizes

we shall implement it at the front edge. It is a one-coefficient ) ] E{|d(k)|**}
real equalizer with inpus(k). It generates the output Ja(B) = E{[|[v(k)[" — Bp]"} with R, = B[R
t(k) = gs(k). (13) (24)
For R: The input ist(k) and the output is In what follows we only investigate the classical_ case
of p = 2. Then R, = 1 for the 4-quadrature amplitude
u(k) = t(k) — t(k) (14) modulation (QAM) scheme (resg,; = 1.32 for the 16-QAM
scheme), when considering unitary power data= 1) taking
where equiprobable values. Note that the criterion (24) is essentially

N the same as the criterion proposed by Shalvi and Weinstein
#k)=> auk—-1)=A"Uy(k—1) (15) [2], ie,
=1

Jsw(B) = E{|o(k)|*} subjectto E{|v(k)[2} = o7

A=[ay, ay_1,an]" (16) (25)

Un(k—1) = (u(k = 1), ulk = N))T. (17)

. . . . The constraint in (25) can be achieved by forcing the vector
In (15) the signak(k) is built up with past samples only. ItB to have an unitary norm, from the moment th:) is a

can be viewed as a predicted value of the infgif in such a white sequence of variance?, which, unfortunately, is not

way thatR |s“_an mnpva},tor which gener_ates the perICtIOI?rue at the beginning of the equalization process. Both criteria
error u(k) or “innovation” (14) contained in the new sample

will maximize the absolute (normalized) kurtosisugf:). Even

with a noisy channel, if the additive noise is Gaussian, the

optimum is reached if and only if the cascade is a ZF equalizer
L [2] (see Appendix A for more details). The resulting veckr

v(k) = Zblu(k — 1) =B"U41(k) (18) might therefore be slightly different from the MSE solution
1=0 which corresponds to the expansion®fz) in (4).

of t(k). A is called the “prediction vector.”
For 7: The input isu(k) and the output is
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For PR: To deal with the phase error brought by the For7: The stochastic gradient algorithm to minimize
channel and the demodulator, a phase rotatiofi is required, Jo(B) in (24) is straightforward
whered is an estimate of the phase error between the modulat-
ing and the demodulating carrier waves. To adfyst possible ~ B(k) =B(k — 1) + pgv(k)(R; — lu(k)[?) T41(k)  (33)
criterion is to minimize the DDMSE o(k) = BT (k — DU 141(k) (34)

K(8) = E{lo(k)e™*®=D — d(k)|*}. (26
where B(0) = [0,0,---,0,1,0,---,0]" and ug is a small
Since this criterion depends on the decisiof(%), the positive step size.
PR has to be located downstream in order not to disturb The theoretical study of the criteria (24), (25) is still in
the previous stages of the equalizer. Furthermore, since tiegress in the open literature. However, it has been stated in
statistics of QAM or phase-shift keying (PSK) signals arfl2] that, providedL is large enough and with an appropriate
unaffected by some particular rotations, it will always remaiteenter tap) initialization strategy, in both cases of Godard and
a phase indetermination in an unsupervised approach. THRRalvi-Weinstein criteria, the equaliz&r will converge to a
problem is classically solved by differential encoding. stable equilibrium near a desired global minimum. Moreover,
The three last devices of the cascade have decoupled critéia convergence speed strongly depends on the value of the
in the sense that the criterion f6R is unaffected by the initial kurtosis ratio K (v)/K(d), where K (v) (resp. K(d))
parametersB and 6 of the next two devices, and that thedenotes the normalized kurtosis ofk) (resp.d(k)). If this
criterion for 7 is unaffected by the stai¢ of the PR which ratio is lower than 0.5, then the equaliz&r will generally
follows. This is why it is critical to plugR before7 so that exhibit slower convergence toward a desired equilibrium. In
the difficult task of unsupervised equalization can be realiz#ae noiseless case or with sufficiently large signal-to-noise ratio
step by step— first the sequence is whitenediythen the (SNR) the corresponding algorithms are efficient to recover
remaining ISl is removed by . the true datal(k) up to an arbitrary phase and an unknown
delay 6. So in steady state

C. Adaptation Algorithms

For GC: 1t is easy to design an adaptive algorithm con- v(k) = d(k = 0) exp(j6). (35)

trollin to satisfy (22), e.g., . . A .
vy fy (22). eg For PR: Classical algorithms to minimiz&(6) in (26)

G(k) =Gk — 1) + pe 1 — Ju(k)|’] (27) can be found in [14]. For instance,

g(k) = VIG(E)| (28)

w(k) =v(k)exp(—jo(k — 1)) (36)
whereG(0) = 1, andu is a small positive step size. This is k
a kind of automatic gain control; see [11, ch. 1]. To implement 6(k) =6(k — 1) + pe <€(/€) +8Y E@)) (37)
the adaptivesC, the gain must be in iték — 1)th state when A =1
the kth observation is processed e(k) = In{w(k)[d(k) — w(k)]*} (38)
t(k) = g(k = 1)s(k)- (29) which corresponds to a second-order phase tracking loop. In

The same principle holds for all adaptive systems below.(37) and (38), is a small positive step sizg, an appropriate

) . ; oo Lpositive parameter, ané(0) = 0.
For R: There are a few algorithms available to minimiz The theoretical analysis of the new equalizer (convergence
I(A) in (23), e.g., the stochastic gradient algorithm whose y q 9

increment is and steady state) is simplified by the decoupled character
of the criteria controlling(g, 4), B, and #, as pointed out
AA=—(ug/2)V glul?, 1> 0. (30) in the previous subsection. Convergenceggk) and A(k)
can be studied firstB(k) and 8(k) being then irrelevant.
BecauseR is a recursive filter, this last quantity cannoifhen, oncey(k) and A(k) have reached their optimal values
be exactly computed, but efficient approximate algorithms ageand A, convergence ofB(k) (see [12] for criteria (24)

available, for example, and (25)] can be investigated independentlyf¢k). Then
convergence of(k) can be studied withy(k), A(k), and
A(k) =A(k — 1) + pgu(k) Uy (K — 1) (31) B(k) in their respective optimal statey, A, and B. In

u(k) =t(k) — A(k — 1)TUN(k —1) (32) other words, one can investigate separately the adaptation

algorithms of the paifg(k)A(k)), the vectorB(k), and the
where A(0) = [0,0,---,0]%. The superscript' stands for anglef(k). As for GC, adaptation of its gaig(k) remains
complex conjugate. Stability of this adaptive predictor haupled with’R that is plugged downstream [see (22) and
been investigated in detail in [11, ch. 15]. It is ensured by23)]. (We recall that the coupling originates in the fact that
1) the presence of noise at the input which pushes the poles GC is plugged beforeR in order to reduce the signal
of R well inside U and 2) the so-called “self-stabilization"dynamic range in the implementation). This coupling makes
property of (31) which holds even in the absence of noise #® theoretical investigation more intricate but, in practice, it
proven in [11]. raised no specific difficulty.
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| | i rule for modifying the structure

_F dk) Mpp (ko) > M, starting mode fork > ko
- Mpp (ko) < M, tracking mode fork > k. (40)

Slicer

| V o .

| exp(=j0)| To ensure a safe transition in the tracking mode (DFE), the
I

|

threshold My must be reasonably small. So what we really
GC PR : ] have to do is to choose a threshald, corresponding to a
' sufficiently low BER (typically less than 0.02) in order to
Fig. 2. Structure of the equalizer in the tracking period—classical DFE. avoid a pathological behavior of the DFE. But since, in the
starting mode, the equalizer is ZF, the BER can be expressed as
a function of the (true) MSE. Hence, the appropriate threshold

Computational ComplexityThe equations governing a be ch q i h dulat h
classical DFE equipped with’BR are given in the following M, can € chosen, depending on the modulation scheme. For
ample, in the 4-QAM case, this leads Ad, = 0.25 (—6

subsection [see (41)—(49)]. Comparing these equations with )
(27)-(29), (31)—(34), and (36)—(38), it appears that tfB). Note that, from this thresholdi/,, the DDMSE becomes

new structure in its starting mode has exactly the sarfled0d estimation of the true MSE and, consequently, a good
computational complexity, at least when the classical DFE fid€x of the equalizer performance.
preceded by an adaptive gain control (which is a conservative

T

practice). B. Optimality Criterion and Adaptation
The DDMSE criterion in (26) is applicable to optimize
IV. TRACKING PERIOD: 7 BEFORE R the parameters of this classical DFE. Thé®® and 7 are
redundant, so the coefficieptt) can be held at a fixed value
A. Structure and Switching Rule g, SO
During the first running mode, the system can be viewed t(k) = gs(k). (41)

as a ZF equalizer including a whitening all-pole filter whose

recursive part is precisely the feedback filter of the recursiveThe notations are given in Fig. 2. The eight following
LE (see Section Il) as well as the one of the conventional DFRdguations are those of a classical DFE includin§®&. The
[10]. That is why when the decision§ k) become reliable, output is

which is deduced from the index of performance defined )

below, the equalizer structure is modified into the cascade w(k) = y(k) — AT(k — 1)D(k) (42)
then7, then PR, and lastlyR, which is now fed in by the

detected data, as depicted by Fig. 2. Clearly this structure'fg€re
merely a DFE equipped with a front edgg” and aPR

to ensure the carrier tracking. It is the structure adopted for u
the new equalizer in the tracking period. When modifying the T(k) =[t(k), -, t(k
relative place off and’R and feedingR by the past decisions D(k) = [d(k — 1),d(k
in order to get the classical DFE, the system can only suffer

from the fact that the transversal partof the equalizer has  Adaptation: The simplest updating algorithm is the stochas-
(nearly) reached a ZF solution instead of the MSE solutiofic gradient of the criterion (26)

As a consequence, minimization of the DDMSE can yield a R ) .

(slight) change in parametd® only. Nevertheless, with large B(F) = B(k — 1) + pgld(k) — w(k)]exp(j6(k — 1))T™ (k)

k) = [B" (k — DT (k)] exp(—jé(k — 1)) (43)
L) (44)
2), -, d(k—N)¥.  (45)

SNR, the change is not really significant, so the modification (46)
of structure is justified. In this way the new DFE obviously g(x) = A(k — 1) — NA[CZ(]C) _ w(k)]i)*(k) (47)
yields a smaller MSE than the linear recursive ZF equalizer %
of Section Il :
(k) =6(k—1)+ e(k)+08) et 48
To control the running mode (starting or tracking mode), ) ( ) ue( )+ ; ( )> (48)
some performance measure is required, e.g., an estimati%rak) :IIn{y(k)[cZ(k) — w(k)]*} (49)

of the (true) output MSE, say/. Since the true data are

unknown, they are replaced kyk) at the slicer output and the ¢ performance measufepp, is permanently calculated
performance measure is the DDMSE (26). This is anormalizggmg (39) and tested according to (40). If a sudden change
performance measure sind¢k) has unit power. Besides, it occyrs at steph in the channel, the eye gets closed and
can be estimated using the recursive formula Mpp, overstepsM,. The switchback in starting mode is

Mpp(k) = \Mpp(k — 1) + (1 — )\)|c2(k) —w(k)? (39) straigthforward. For thgC, (27)—(29) are stgrted W_itd_:?_(ko—

1) = ¢. For R, (31) and (32) are started with the initial value

where A, the so-called “forgetting factor,” is taken at 0.99 inA(ko—1) and withU y (ko — 1) = 0. Similarly for 7, (33) and
the sequel. Clearly the eye is open whihis low (M < M,). (34) are started wittB(ko — 1) and withug4+1(ko — 1) = 0.
In this caseM and Mpn, are essentially the same. Hence, th€he PR is started withd(kg — 1).
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Fig. 3. (a) Zeros off'1(z). (b) Attenuation and phase responses. Fig. 4. (a) Zeros off>(z). (b) Attenuation and phase responses.
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V. COMPUTER SIMULATIONS

s H

A. Stationary Channels

With such channels, the equalizer achievements can be
characterized in terms of convergence speed and steady-stater
error. Results have been obtained via Monte Carlo simulations

LE

DFE

DFE ‘Our solution

using 200 different runs and two severe channels. Both have Oorselution ) B
nonminimal phase. Channels 1 and 2 have been proposed in°  Wimeerctoranars  oF ® Rmooer of torauors 4ot
[3] and [5], respectively. Their impulse responses are @) (b)

. _ i1 E . _ . . Fig. 5. Case of 4-QAM—compared performance of the new equalizer with
Channel 1: f,=2-0.45,1.5+1.8,1,1.2-1.37,0.8+1.67] other unsupervised equalizers (Godard and Duhamel) or trained equalizers

Channel 2: f,={0.8264, —0.1653,0.8512,0.1636, 0.81] Eg;}e{md D1F5Ec){a()a) Channel 1, MSESXR = 15 dB). (b) Channel 2, MSE

Fig. 3(a) [resp. Fig. 4(a)] depicts the location of the TF
zeros of channel 1 (resp. 2) and gives the amplitude aadd 25 dB, respectively. The impulse responses are normalized
phase responses of these two channels. Note that both chartoelsiity. The additive noise is zero mean, white, and Gaussian,
exhibit deep fading frequencies as well as severely nonlineahnereas the channel phase-shift standing for the demodulation
phase distortion, as a result of the zeros I6fz) which phase error ist(n) = mnAFT + &, T denoting the symbol
are outside U and close to it. For such severe channalsyation. In the 200 trials® is uniformly distributed in
most unsupervised equalizers proposed in the literature do fip=] and the normalized frequency offs&f"T" is uniformly
succeed to open the eye. distributed in[0, 1e — 3] for 4-QAM and in [0, le — 4] for

Five adaptive equalizers have been tested. Three of them #8eQAM. Then the DDMSE is estimated in (39) for every
transversal LE’s with 31 taps, started with a centered refereregeriment, then averaged over the 200 trials and plotted in
tap—the Godard unsupervised equalizer [1], the Duhamel afigis. 5 and 6 versus the number of iterations.
Hilal one [4], and the classical trained LE. The two recursive The striking important conclusion drawn from the simu-
equalizers are the trained DFE and the new unsupervised DBfons of Figs. 5 and 6 is that, with the same step size,
of this paper. Both recursive equalizers have 5 and 20 tapsr new unsupervised system achieves essentially the same
in their recursive and transversal parts, respectively. For teieady-state MSE as the best trained equalizer, which is the
16-QAM scheme, the Duhamel and the Godard unsupervideBE. In the 16-QAM case and with channel 1, we even
algorithms are totally inefficient for these two severe channelote a 1-dB difference at iteration 20000— it means that
So our system is only compared to the trained LE and DFthe final value of the MSE is reached sooner with the new
To compute the DDMSE in (39), we start witpp(0) = 1, equalizer. The transversal equalizers are totally outperformed
while the switching threshold/, is 0.25 6 dB) for the 4- (3—-9 dB of output DDMSE gain) because they are not matched
QAM and 0.063 £12 dB) for the 16-QAM. It means that theto such severe channels. Convergence of the new equalizer,
system starts with the appropriate structuf@—eomes first. respectively, requires less than 2000 and 5000 iterations, in
The equalizer input SNR for the 4- and 16-QAM schemes is 1Be 4- and 16-QAM cases. It is very fast. The BER is plotted
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Fig. 6. Case of 16-QAM—compared performance of the new unsuper-
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Eiocl ... L= o With such channels one can investigate the tracking achieve-
R HEEHE Pt ~* ment of the equalizer, when facing a permanent time variation.

In the simulations we begin with a fixed maximal phase
channelF, whose TF has one zero a5 ; = 1.1. Then the

T  channel becomes time-varyitf( k) with a second mobile zero
z2(k) appearing after 2000 iterations, with, for> 2000

10°L........ X our solution 4

11 0 DPEY with detected symbols fedback 11

10-55 é 7 r ) SNR1:?H us 1i1 iz 1‘3 14 15 z2 (Iﬂ/) = exp(j27r/3) + 01 exp(j27r1074(k —_ 2000)) (50)
(b) This zero is located half-time inside and half-time outside
Fig. 7. (a) Compared BER—case of channel 1 (4-QAM). (b) Compardd. Both zeros are close to U, so the time-varying channel
BER—case of channel 2 (4-QAM). F (k) is very severe. In fact,(k) corresponds to the classical

differential Doppler effect—a new path suddenly arrives on
in Fig. 7, versus the SNR, with a 4-QAM scheme, for ¢he receiver at time: > 2000.
trained LE (*), a trained DFE(o), and the new equalizer In the case of 4-QAM modulation, Fig. 8 (resp. 9) displays
(x). As a performance upper bound, we have indicated ttige behavior of the classical trained DFE and of the new unsu-
BER of a “supervised” DFE+) whose recursive path andpervised DFE. The DDMSE (solid line) and true MSE (dotted
adaptation are controlled with the true data (this DFE stanlilse) are depicted in Figs. 8(a) and 9(a), and the equalizer
as a reference). For an SNR below 7 dB, all equalizers perfooatput diagram around iteratioh = 5000 is shown in the
essentially the same way, that is, bad, with BER higher th&igs. 8(b) and 9(b). It appears thiafyp is a good estimate of
0.1. For an SNR higher than 7 dB, the trained DFE and tliee true MSE as soon ddpp < —6 dB. Due to training, the
new one have the same achievement in BER, much betttassical DFE begins with successfully compensating the fixed
than the trained LE. They display only a slight loss witlthannel,. However, when the channel is suddenly modified
respect to the optimal supervised DFE. For instance, witth time ky = 2000, it is unable to reopen the eye without a
channel 1 and at a BER of 16, the loss is about 0.5 dB. new training sequence. On the other hand, the new DFE takes
Therefore, the new equalizer appears really attractive in teraggproximately 850 iterations (in the starting mode) to correct
of both convergence speed and steady-state performanitesfixed (maximal phase) channgl,. Then it switches its
(MSE and BER). structure in the tracking mode but at tinkg = 2000, where
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Fig. 11. MSE. Successful transmission through the shallow water channel
ith the novel unsupervised DFE.

number of taps of the equalizer increases drastically, leading

the channel is suddenly modified, itimmediately switches bagk a computational complexity that can severely limit the
to the starting mode. Without a new training, this DFE takeschievable data rate. This is an obvious reason to choose a
1000 iterations to reopen the eye, then it switches again ricursive equalizer, regardless of stability consideration. The
the tracking mode and is able to properly track the permanegicond strong impairment is the fast nonstationarity of the
time variations created by the drifting zetg(k) in (50). The channel which originates in the relative motion between the
diagram in Fig. 9(b) shows that, in steady state, despite thansmitter and receiver and in the waves at the sea surface.
severity of this channel, most of the ISl is removed. This yields a Doppler frequency shift on the carrier and a

In order to evidence still better the ability of the new DFHifferential Doppler effect on the various multipaths which
to correct fast variations of the channel, we have made anotigsikes the channel filter quickly changing. It also renders
sudden change at iteratigh = 8000 by canceling the zero optimal sampling more difficult. From this point of view,
z2(k) in (50). As shown in Fig. 10(a), this second change ife new equalizer turns out to be particularly well suited
well accepted by the novel DFE, which switches back to thgscause of its ability to deal with rapidly varying channels by
starting mode. It takes 850 iterations to reopen the eye and thg#difying both its optimality criteria and its structure when
switches again to the tracking mode. On the other hand, thecessary. Two main solutions can be thought of to solve this
classical DFE [Fig. 10(b)] gets completely lost at this secorgtoplem. The first one is carried out by means of maximum-
change—its parameters converge toward a false equilibriyigelihood sequence estimation, but is not well suited here
state for which the equalizer output(k) is locked onto two pecause of the impulse response length that would imply a
periodical values of the data diagram. The previous simulatiOﬁﬁ)hibitive computational complexity. Up to now, the second
are very convincing of the superiority of this novel DFE. I5g|ytion was the periodically trained DFE.
does work without training even with severe and fast-changing|n this section we present a shallow underwater communi-
channels. Its achievement will now be illustrated in the caggtion system based on the new unsupervised DFE, where the

of a real (underwater) digital transmission. modulation scheme is a 4-QAM and the bit rate is 6 kb/s.The
carrier frequency is 12 kHz and the transducer bandwidth is
V1. UNDERWATER ACOUSTIC CHANNELS close to 4 kHz. The experiment was carried out in the bay

In the field of underwater acoustic communications, digit@lf Brest (France). The transmitter was located on the bottom
communications systems generally use binary PSK (BPS&f) the sea and the transducer was kept under the boat at a
and quadrature PSK (QPSK) signaling [13]. They corregepth of 5 m below the sea surface. The transducer output
multipath effects and Doppler frequency shifts by means &fgnal was first amplified, filtered, and then recorded on a
an adaptive trained DFE. The synchronization (carrier amliital audio tape during a few hours. In this way we obtained
timing recovery) is jointly optimized with the DFE accordingfiles to test the new equalizer. In addition, the whole receiver
to some appropriate criterion. For the vertical underwatbas been implemented on a digital signal processor (Motorola
acoustic channel, this solution (DFE) yields an acceptad&sP 56 002) and its behavior observed during the few hours
spectral efficiency of the order of 2 b/s/Hz. The channef recording. There ar&v = 29 (resp.L + 1 = 20) taps in
impulse response is usually very short, so the equalizer ohe feedback (resp. forward) part of the DFE with the step
needs a small number of taps. sizesp g4 = ppg = 0.003, while the step size igig = 0.01

Unfortunately, the trained DFE is inefficient, unless it ifor the GC. Fig. 11 displays the evolution of the estimated
periodically retrained, for digital communications through MSE Mpp (k) for both the conventional trained DFE and the
shallow water channel. This latter turns out to be amonmgew unsupervised DFE. The latter switches for the first time
the most severe channel encountered in practice and maimlytracking mode after about 500 iterations, which is very
suffers from two kinds of impairments. The first one ifast for an unsupervised equalizer with this kind of channel.
the strong channel distortion due to multipath propagatidkfter approximatively 3300 iterations{/pp (k) oversteps the
because of multiple scattering by surface and bottom. SinbeesholdA,. So the new DFE switches back to the starting
the delay spread may reach tens of symbol durations, ttmede, where it remains for approximately 500 iterations. In
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meters up to about 1 km. The new DFE is a fully satisfactory
system in practice.

VII. CONCLUSION

The new unsupervised DFE introduced in this paper is
based on the decomposition of the equalizer into a cascade
of four devices, whose major components are a recursive
whitening filter(R) and a transversal filté7 ). The specificity
is that the positions of these two devices can be switched on
_—wo and back in a reversible way, according to some estimation
of the output MSE. In the starting period (large MSE) the
(b) equalizer is linear=R comes first and whitens its own output,
whereas7 removes the remaining ISI (ZF equalizer). In
the tracking mode (small MSER comes last and its loop
_ o ) ) is fed in with the detected data, so the equalizer becomes
this way it is able to deal with this sudden change of th@e classical DFE. This novel equalizer is very well suited
channel characteristics. for both severe stationary channels as well as quickly time-

On the other hand, the classical DFE cannot be startgghying channels—where a conventional DFE would suffer
without a training sequence and so would not work with thigom error propagation and bursting due to a sudden change,
file. To have an idea of its behavior, we have started thge new DFE switches back to its starting mode. On the other
DFE with our structure and we have inhibited any furth&fand, it is worth emphasizing that this unsupervised DFE not
switchback from the tracking mode to the starting mode. Thigly has the same steady-state performance as a usual trained
is essentially equivalent to a trained classical DFE. FromrFE but has approximate|y the same convergence Speed.
iteration 3300, it gets lost and remains in this state duringoreover, its computational complexity is not increased. As
approximately 4000 iterations, i.e., 1.3 s in this example. Thenconsequence, a wide field of applications can be thought of,
it appears as very lucky to converge again toward the righlich as radiowave transmission, TV broadcasting [15], voice
solution and so ensures a correct transmission during 63§hd modems, asymmetrical digital subscriber line (ADSL),
iterations. Unfortunately, from iteration 13000 until the en@dnd so on.
of the file, it remains irremediably lost—the estimated MSE is Hence, the conclusion—adaptive DFE can now skip the
near zero because the output is locked onto a periodic sequetigiing period and receive a permanent digital flow without
in the data diagram and this pathological state is stabfseriodical retraining, even in a severely nonstationary context.
Such a behavior has often been observed in this channelMoreover, the performances can be improved by implementing
such conditions a conventional DFE has to be periodically as a fractionally spaced equalizer during the tracking period.
trained, whereas the new DFE remains efficient with only addition, at the price of an increasing complexity, an
a few hundreds of false bits during the starting periods amecursive-least-squares (RLS) algorithm can be used to update
a few isolated false bits in the tracking periods. Such &R during the starting periods, and bdthandR in the tracking
achievement is really convincing! Besides, the whole impulgeriods.
response, including transmitter and receiver filters as well as
transducer and channel, has been identified by estimating, with
an adaptive algorithm, the filtel(k) — s(k) exp(—j68(k—1)). APPENDIX A
The plotin Fig. 12 displays this response every Z58nd fora RECALL ABOUT THE SHALVI AND WEINSTEIN THEOREM [2]
file duration of 6 s (76 successive responses). It shows that théf z(k) denotes a zero-mean i.i.d. input sequence #nd
channel response typically spreads over ten symbol duratiodignotes the vector corresponding to the impulse response of
which is consistent with the fact that the receiver was close @onoiseless system (for instance chanselequalizer) with
the transmitter (50 m for the studied file). Fig. 12 evidencesutputz(k), it then comes, according to the above-mentioned
a first transmission path that is approximately constant andhgorem, that the normalized kurtosis of the outp(it) can
second one that is delayed BY with time-varying amplitude be expressed as
(real and imaginary parts). So this real channel is not very far
from the time-varying simulation model adopted in subsection [Filn 4 !
V-B with the TF having a fixed zere, ; and a mobile periodic () = K(x) [||f||2} where ||f, = Z | fxl®
zeroz(k). Even the period ot0*7" chosen in the simulations k
for the channel varlgtlons appears cgn&stept with _the penodThe main conclusions derived from this result are
that can be appreciated on the basis of Fig. 12 in the real
underwater experiment. Despite a delay spread that may reach |K(2)]

40 symbol durations (more thgn 10 ms) in the yvo_rst case, 'Fhe K (#)| = |K(z)] if and only if
new system never got lost during 2 h of transmission and with 0 T
a distance from transmitter to receiver ranging from a few f=(++0,0,p¢",0,0,- )"

Fig. 12. Time evolution of the shallow water channel response.
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This means that the maximization 0K ()| is equivalent
to the deconvolution (ZF) of the system (with impulse
responsef). [10]

As a consequence, in the starting mode the new unsu-
pervised equalizer is a ZF one, when using (25). Since the!
transversal parf is located downstream, this criterion will [12]
give a solution which inverts the linear cascadeGC-R.

This remains valid for Gaussian channels as well. This resuﬂﬁ]
from the fact that, with the notations used in our paper,
K(v) = Ks(v), whereKs(v) denotes the signal contribution
kurtosis. This is because, by assumption, signal and noise are
independent processes and, moreover, the noise is Gaussiga]

Note that, according to [12], what is important for the
convergence of the Godard and Shalvi-Weinstein algorithms;
is the initial (positive) kurtosis ratio

o = o]

with f denoting the initial impulse response of the system
(channel + equalizer), which is nothing but the impulse
response of the channel when a center tap initialization strate
is used. When this ratio is greater than 0.5, then, for
small step size and a sufficient length, the equalizer w
converge to a stable equilibrium near a desired global mi
imum [12]. Otherwise, it will generally take a longer time
subject to an appropriate initialization strategy, to converge |

(9]

rh

a desired equilibrium. For the two channels of Section V_Aélted problems such

the initial kurtosis conditions are not satisfied. The kurtosis
ratios are 0.2375 for channel 1 and 0.3174 for channel 2.
They clearly are lower than 0.5, which explains that the
Godard or Shalvi-Weinstein linear equalizers take a long time
to converge to a desired equilibrium. However, despite tl
severity of the two proposed channels, the convergence of
new equalizer is very fast.
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