

Mesh network of surveillance cameras using FM radio as a control channel

João Dias

Porto | January 21, 2015

Introduction

Context

 The industry is asking for WVSNs that provide the best image quality and timely transmissions at the lowest price and energy consumption

Motivation

- Wi-fi is an attractive solution to achieve such networks but suffer from 3 major problems:
 - Poor performance
 - Throughput Unfairness
 - Energy inefficiency

Objectives

 Improve the performance, the throughput fairness and the energy-efficiency of a video monitoring system (WVSN) by implementing a FM control channel based on FM-WiFIX

State Of The Art

IEEE 802.11 Power Saving Mode

 Not suitable for the video surveillance scenario, where nodes are permanently transmitting video streams

MAC Protocols

 Try to provide fairness and energy efficiency but there are no suitable solutions for our video surveillance scenario

Energy-aware routing

 Aims at prolonging the lifetime of battery powered networks instead of achieving a network truly energy-efficient

Video Encoding

• Through proper video encoding is possible to greatly reduce the amount of data to transmit, thus saving more energy.

FM-WiFIX

FM-WiFIX addresses the energy inefficiency problem using a FM-RDS based control channel to turn on and off the Wi-Fi radio interfaces.

PACE

 PACE is a scheduling mechanism used to address the problems of hidden nodes and throughput unfairness

WiFIX

 WiFIX creates a logical tree topology, rooted at the sink node

Reference Scenario

Reference: Filipe Sousa, Rui Campos, and Manuel Ricardo. Energy-efficient wireless multimedia sensor networks using fm as a control channel. In Computers and Communication (ISCC), 2014 IEEE Symposium on, pages 1–7, June 2014. doi:10.1109/ISCC.2014.6912573.

Methodology

Construction of a prototype

- Hardware Specifications
- Software Specifications

Implementation Challenges

- Gathering network topology information
- Control Channel

Evaluation Scenarios

 Metrics to Evaluate: delay, jitter, throughput and energy consumption

