
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Humanoid Robot NAO: Developing
Behaviors for Soccer Humanoid Robots

Luís Miranda Cruz

State of the Art Review

Master in Informatics and Computing Engineering

Supervisor: Luis Paulo Reis (PhD.)

Supervisor: Armando Sousa (PhD.)

12th February, 2011

Abstract

The topic of humanoid robot control has driven many research in areas such as robotics, artifi-
cial intelligence, computer vision, among others. More and better technologies have been de-
veloped, providing a wide range of humanoid robots and simulators which is very useful in this
task. Nowadays, humanoids are equipped with several degrees of freedom leading to very versatile
movements but also more complexity to the inherent problems.

Robocup is a robotic soccer international competition that promotes the research in these areas,
including humanoid leagues, both on simulated and real environments. The FCPortugal team has
already a good record of wins in RoboCup. The team intends to study these problems due to its
participation in these humanoid leagues. In this context, this dissertation proposes the development
of automated processes for optimizing behaviours and generate sequences of behaviours for a
given task with regard to the environment.

This document presents the state of the art of the dissertation, describing different optimiza-
tion methods, such as Hill Climbing, Simulated Annealing, Tabu Search and Genetic Algorithms.
It also describes the topic of Machine Learning, the planning problems, and AI search methods,
such as the greedy best-first search and the A* search algorithms. Humanoid control is introduced,
explaining the behaviours at motor, skill and task level, and presenting the work already developed
by FCPortugal in behaviours generation, namely the Step-Behaviours, Slot-Behaviours and Cen-
tral Pattern Generators. The humanoid that will be used in the scope of this project will be the
NAO and the robotic simulator will be the SimSpark, both the official technologies for RoboCup.

i

ii

Resumo

O controlo de um robô humanóide é um tópico que tem impulsionado muita pesquisa em áreas
como a robótica, inteligência artificial, visão por computador, entre outras. Mais e melhores tec-
nologias têm vindo a ser desenvolvidas estando disponível uma vasta gama de robôs humanóides e
simuladores robóticos que ajudam a esta tarefa. Cada vez mais os humanóides são equipados com
um elevado número de graus de liberdade, o que apresenta grande versatilidade de movimentos
mas acrescenta a complexidade dos problemas de controlo.

O RoboCup é uma competição internacional de futebol robótico que fomenta a pesquisa nestas
áreas, integrando ligas de humanóides, tanto em ambiente simulado como real. A equipa FCPor-
tugal apresenta já um bom historial de vitórias no RoboCup e dada a sua participação nestas ligas
de humanóides, pretende estudar estes problemas. Nesse âmbito, esta dissertação propõe o desen-
volvimento de processos automáticos de optimização de movimentos e de geração de sequências
de movimentos para realização de tarefas de robôs humanóides.

Neste relatório é apresentado o estado da arte da dissertação, apresentando os diversos algo-
ritmos de optimização como Subir a Colina, Arrefecimento Simulado, Pesquisa Tabu e Algorit-
mos Genéticos. São também introduzidos os temas de Aprendizagem de Máquina, Problemas de
Planeamento, e algoritmos de pesquisa, descrevendo os algoritmos de pesquisa gulosa e pesquisa
A*. O controlo em humanóides é explicado, descrevendo os comportamentos ao nível de motor,
habilidade e tarefa, assim como o trabalho desenvolvido pela FCPortugal na geração de compor-
tamentos, nomeadamente os Step-Behaviours, Slot-Behaviours e Central Pattern Generators. O
robô humanóide que será utilizado neste projecto será o NAO e o simulador será o SimSpark,
ambos tecnologias oficiais do RoboCup.

iii

iv

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 3
1.4 Document Outline . 4

2 Literature Review 5
2.1 Humanoid Robots . 5

2.1.1 Honda ASIMO . 5
2.1.2 Sony QRIO . 6
2.1.3 TOPIO - TOSY Ping Pong Playing Robot 7
2.1.4 iCub . 7
2.1.5 RoboNova Platform . 8
2.1.6 Aldebaran NAO . 8

2.2 Humanoid Simulators . 8
2.2.1 SimRobot . 9
2.2.2 Webots . 10
2.2.3 OpenHRP3 . 10
2.2.4 Microsoft Robotics Studio Simulator 11
2.2.5 SimSpark . 11

2.3 Humanoid Behaviours . 12
2.3.1 Skill Level Behaviours Generation . 13
2.3.2 Task-level Behaviours . 18

2.4 Optimization . 18
2.4.1 Classification . 19
2.4.2 Hill Climbing . 19
2.4.3 Simulated Annealing . 20
2.4.4 Tabu Search . 20
2.4.5 Genetic Algorithms . 21

2.5 Machine Learning . 23
2.6 Planning Problems . 24

2.6.1 Defining a Planning problem . 24
2.7 Problem Solving with Search Methods . 24

2.7.1 Greedy best-first search . 25
2.7.2 A* search . 25

2.8 Conclusion . 26

v

CONTENTS

3 Approach and Work Plan 27
3.1 Research Approach . 27
3.2 Work Plan . 28

3.2.1 Bibliographic Research . 28
3.2.2 Study of the Technologies . 28
3.2.3 Classification and Test of the Behaviours 28
3.2.4 Interconnection and Sequencing of Behaviours 29
3.2.5 Thesis Writing . 29
3.2.6 Task Schedule . 29

4 Conclusions and Future Work 31

References 33

vi

List of Figures

2.1 Honda ASIMO. 6
2.2 Sony QRIO. 6
2.3 Tosyo ping-pong playing robot TOPIO. 7
2.4 iCub Crawling - c©2010 RobotCub Consortium. 7
2.5 Robonova humanoid robot. 8
2.6 The NAO developed by Aldebaran Robotics, now used in the RoboCup standard

platform. 9
2.7 Detailed kinematics of NAO. Wrist joint not represented. 10
2.8 The modules of SimRobot and their dependencies. Source: SimRobot – Develop-

ment and Applications [LR08]. 11
2.9 SimRobot with the tree view on the left and two scene views on the right. [RLM+09] 12
2.10 Webots simulating e-puck robot with a tree-view of the objects on the left and a

source code editor on the left. 13
2.11 Screen shots of Microsoft Robotics Studio Simulator. 14
2.12 General architecture of SimSpark architecture. 15
2.13 The humanoid robot Nao: real vs simulated. Adapted from [BDR+10]. 16

3.1 Global architecture of the system. 28
3.2 Gantt chart of the proposed task scheduling throughout the twenty weeks of dis-

sertation . 29

vii

LIST OF FIGURES

viii

List of Tables

2.1 Description of the classes in a Slot Behaviour specification. Adapted from [Rei10]. 17
2.2 Description of the classes in a CPG Behaviour specification. Adapted from [Rei10]. 18

ix

LIST OF TABLES

x

Chapter 1

Introduction

This section briefly describes the motivation and goals behind this project, as well as its context

and the document outline.

1.1 Context

This dissertation is related with humanoid robot agents designed to play soccer. The idea of soccer-

playing robots was introduced in order to stimulate and challenge the research in many scientific

areas.

In 1996, took place in Japan the first robotic soccer competition – the preRoboCup-96. Since

then, hundreds of researchers yearly throughout the world to engage themselves and their students

in RoboCup [CFH+02]. RoboCup, originally named Robot Soccer World Cup is an international

competition where several researchers come together to prove the concepts they developed and

show them applied in soccer matches. The best robot team wins the contest. There are different

leagues, including leagues beyond the soccer domain, related to rescue or domestic applications.

Currently, RoboCup includes the following leagues:

• RoboCup Soccer

– Standard Platform League

– Small Size League

– Middle Size League

– Simulation League

∗ 2D Soccer Simulation

∗ 3D Soccer Simulation

∗ 3D Development

∗ Mixed Reality Soccer Competition

1

Introduction

– Humanoid League

• RoboCup Rescue

– Rescue Robot League

– Rescue Simulation League

∗ Rescue Agents

∗ Virtual Robots

• RoboCup@Home

• RoboCupJunior

– Soccer Challenge

– Dance Challenge

– Rescue Challenge

– General

In one of the many leagues of RoboCup, is the humanoid league. In the humanoid league

the game is played by teams of humanoid robots. Humanoid robots are robots with a human-like

appearance designed to behave like humans. A very popular humanoid is Nao. Nao has several

sensors and joints which make him physically capable of playing soccer. Further details about

humanoid robots will be presented in 2.1.

Since 2000, a Portuguese team, known as FCPortugal1, has been participating in Robocup

competition. It is a joint project of the Universities of Porto and Aveiro and has already won

several awards, including 3 World RoboCup International Competitions. FCPortugal has more

than 60 international publications related with RoboCup, intelligent simulation and cooperative

robotics. [RL10]

The team Research Interests include:

• Multi-Agent Systems (MAS) and Coordination in MAS;

• Intelligent Cooperative Robotics and Robotic Soccer (RoboCup);

• Intelligent Simulation, Agent Based Simulation;

• Soccer, Game Analysis, Strategic Reasoning and Tactical Modelling;

• Humanoid walking and skills development using optimization methodologies;

• Bridging the gap between simulated and real robotics.

1Official website available at: http://www.ieeta.pt/robocup/

2

Introduction

1.2 Motivation

Robotics plays an important role in many levels of our society. Robots can be used in military

operations, spacial missions, industrial tasks like painting or assembling, education, art, and so

on. Usually, Robotics is applied for tasks that humans don’t like to do, some of them because

they are dangerous, repetitive, dirty, or boring. Besides, they are useful due to their robustness,

precision and/or autonomy. When well programmed, they can perform some tasks better than any

human.

Recently, the humanoid robots have been becoming increasingly popular. Several research

projects are being made in order to make them dance, play musical instruments, do the household

chores, and so on.

Humanoids can be a powerful way of human-machine interaction. It’s natural that humans

tend to freely interact with human-like entities. Historically, humans had constrained themselves

to the technology, for instance, with the monitor, keyboard and mouse. With humanoids, humans

can experience new kinds of interactions, not too different from the usual ones on their social

lives [WF11].

Robocup as also integrated humanoids in some of its leagues. What makes RoboCup really

interesting is the fact that in one competition researchers have to solve problems from different

subjects related to Robotics, Artificial Intelligence, Computer Vision, Multi-Agent systems, Real-

Time Reasoning, Machine-Learning, and so on. Its popularity also revealed to be a way to attract

public to these research subjects. This means that the robot soccer is a really attractive application

of technology. However, these technologies can be applied in many other problems, creating an

huge social and economic impact.

The soccer game requires humanoid players to be capable of walking in many directions,

to kick the ball with high precision, to get up when necessary, or even to defend the ball, if

we’re talking about a goal keeper. The better the robot executes these behaviors, the higher the

performance of the team will be. So, it is important for a team to have behaviours that are robust,

efficient and adaptable to different situations.

Even with high quality behaviours, the humanoid has to autonomously choose the sequence

of behaviours that fits the best a given task. This is a real challenge because it might have a large

number of behaviours, and with that, there are even more possible combinations for the sequence,

so it has to reason and choose on the fly the one that could give a faster and more robust conclusion

of the desired task.

1.3 Objectives

Based on this, the main goals for this dissertation are:

• Develop high quality behaviours for humanoid robot.

• Develop a capable of evaluate the performance of behaviours

3

Introduction

• Develop an integrated method capable of predict different sequences of behaviors for the

same tasks, and choose the one which gives the best results at real-time.

• Ensure that the approach works properly on both real and simulated humanoids.

• Execute experiments in different game situations and explore the results with simulated

games against well-known RoboCup teams.

• Participate in robotic competitions, events, conferences and journals to validate the approach

and prove the concept.

1.4 Document Outline

This report is organized in N chapters, in which the first one is this introduction. The second chap-

ter presents the literature review, showing what is being done in the area and different approaches

and methodologies used to solve related problems.

The third chapter describes the approach and work plan, decomposing the problem in specific

tasks during the 20 weeks.

In the last chapter are exposed some conclusions related with the state of the art and with the

work done so far.

4

Chapter 2

Literature Review

This chapter presents the literature review of this project providing background knowledge and

some analysis of related work.

2.1 Humanoid Robots

An humanoid robot is a robot with a human-like appearance. This is, it’s a robot which structure

has two legs, two arms and a head. Besides, its movement is expected to be human-like, using

legged locomotion.

We are familiar with humanoids as they’ve been inspiration for many fictional stories. Exam-

ples of these are C-3PO and battle droids in Star Wars films, or even NS-5 in I, Robot. In addition,

humanoids can be used as a research tool in several scientific areas. This section presents the most

important humanoid robots as well as some related projects.

2.1.1 Honda ASIMO

In 2008, the Honda robot ASIMO conducted the Detroit Symphony Orchestra. It was a remarkable

fact in the robotics community. The name ASIMO is an acronym for "Advanced Step in Innovative

MObility". As seen in figure 2.1, it looks like a small astronaut, standing 130 centimetres and

weighing 54 kilograms. The 34 DOF allows it to do things like walking with a tray, or handle

a cart. It is capable of walking fast, up to 3km/h forward, change direction and walk up/down

stairs smoothly. It can even reach 7km/h by adopting a special running gait. [Hon07, SWA+02]

Although its popularity, ASIMO is still a really expensive technology. [Hes02]

5

Literature Review

Figure 2.1: Honda ASIMO.

2.1.2 Sony QRIO

Qrio, which stands for "Quest for Curiosity", was an humanoid robot designed by Sony for use

within the home. It could sing, dance and its successful development of integrated walking, jump-

ing, and running. Its movement control technology lead to the world record of the first running

humanoid robot [Gui04]. In one of its performances Qrio showed up conducting the Tokyo Phil-

harmonic Orchestra in a rehearsal of Beethoven’s Fifth Symphony. Nevertheless, in 2006, Sony

announced the end of its Aibo robot line as well as the development of Qrio. Qrio stood at 58

cm tall and weighted 7.3Kg. It was able to interact with humans, thanks to its face and voice

recognition systems, its speech synthesis and its remarkably fluid motion due to the equipped 38

DOFs. [Gep04]

(a) Normal view of Qrio. (b) Qrio in detail. [Gep04]

Figure 2.2: Sony QRIO.

6

Literature Review

2.1.3 TOPIO - TOSY Ping Pong Playing Robot

TOPIO is an Vietnamese humanoid robot designed by TOSY Robotics to play ping-pong. It has

1.88m in height, 120kg in weight and 39 degrees of freedom. Ping Pong is challenging because

it requires understanding of dynamic environments, accurate real-time vision, fast actuation, and

intelligence to play the game with a winning strategy [Rai08]. It has an Artificial Intelligence

module that allows to continuously improve itself while playing.

Figure 2.3: Tosyo ping-pong playing robot TOPIO.

2.1.4 iCub

The iCub is an humanoid robot created for research in embodied cognition. It has the dimensions

of a 3.5 year old child. It is distributed as Open Source under the GPL/FDL licenses both for

software and hardware and the entire design is available for download at the project’s official

website 1. This is very useful in research projects because users and developers can freely exploit,

customize and benefit from the work of other users. [MSV+08]

Figure 2.4: iCub Crawling - c©2010 RobotCub Consortium.

1Available at http://www.robotcub.org.

7

http://www.robotcub.org.

Literature Review

2.1.5 RoboNova Platform

RoboNova (cf. fig. 2.5) is a low cost humanoid developed by Hitec Robotics Company in Japan.

It’s original version comes with 19 DOF. It has two programming interfaces: the RoboScript, a

graphical programming interface for beginners, and RoboBasic, for more advanced users, offering

a programming language based on BASIC designed for controlling humanoid robots.

Figure 2.5: Robonova humanoid robot.

2.1.6 Aldebaran NAO

The humanoid robot NAO (cf. fig. 2.6) is built by the French company Aldebaran-Robotics2. It

weighs 4.5 kg and stands 57 cm high. It was created with the goal of making available a performant

biped robot to the maximum people. Humanoids like Asimo and Qrio were either not available

to researchers or only available to the few teams that have enough funding to support the cost and

maintenance.

It is cappable of recognizing features and human faces in the environment, to self-localize and

to operate in the environment. Besides, this can be made while walking which is a concern for

the participants of RoboCup humanoid league. Another feature is the open architecture. Most of

the embedded software, including the operating system can be changed by the user. Low level

hardware access is also open to allow users to change joint control laws. [GHB+08]

NAO has a total of 25 DOF. 11 DOF for the lower part, that includes legs and pelvis, and 14

for the upper part, that includes trunk, arms and head. Figure 2.7 presents the kinematics details.

Since 2008, NAO is the official robot for the RoboCup standard league.

2.2 Humanoid Simulators

In general, humanoid robots are a really expensive technology, as well as its maintenance. The

use of simulation environments provides many advantages for research, development and test. For

2Official web site at: http://www.aldebaran-robotics.com/

8

http://www.aldebaran-robotics.com/

Literature Review

Figure 2.6: The NAO developed by Aldebaran Robotics, now used in the RoboCup standard
platform.

instance, in real environments every time a simple change is made in the agent, it’s needed to

reinitialize the robot and reinstall the new version all over again. Besides, all tests can be done

without damaging the real robot and it’s easier to retrieve detailed information about the execution.

The following sections will present some of the most popular simulators.

2.2.1 SimRobot

SimRobot is a simulator developed in the context of RoboCup by the B-Human team3. Unlike

most of simulators, which have a client/server architecture, SimRobot consists of several compo-

nents linked in a single application, as shown in figure 2.8. This approach has been chosen to

offer a more comprehensive debugging, allowing to halt or stepwise the simulation without any

concurrences.

The simulator has the following components: the SimRobot core, the simulation scene, the

user interface and the controller.

The SimRobot Core models the robots and the environment, simulates sensor readings and

executes commands given by the user or the controller. The simulation scene is a description of

the robots and the environment, modeled using a XML specification language called RoSiML4. It

consists of an external file that can be loaded at runtime.

The user interface (cf fig. 2.9) provides the graphical visualization and user interaction of the

simulation. It allows the user to move objects around the scene, so that different situations can

3B-Human’s Official Website available at http://www.b-human.de
4Robot Simulation Markup Language. XML Schema is available at: http://www.informatik.

uni-bremen.de/spprobocup/RoSiML.html

9

http://www.b-human.de
http://www.informatik.uni-bremen.de/spprobocup/RoSiML.html
http://www.informatik.uni-bremen.de/spprobocup/RoSiML.html

Literature Review

Figure 2.7: Detailed kinematics of NAO. Wrist joint not represented.

be easily modelled, gives a control for direct manipulation over the actuators and has a graphical

visualization for sensors.

The controller is the component that implements the sense-think-act cycle. In each simulation

step, it reads the sensors, plans the next action, and sets the actuators to the desired states. This

controller has to be provided by the user, it contains the control software of the robots which

usually is identical to the software running in the real robots. [LR08]

2.2.2 Webots

WebotsTM is a robotic simulation environment used to model, program and simulate mobile robots.

A large set of sensors and actuator is available to equip each robot and an integrated IDE is pro-

vided to program the controllers. Once tested in simulation, the controllers can be transferred to

real robots, including the humanoid robot Nao. In figure 2.10 can be seen the WebotsTM’s user

interface.

2.2.3 OpenHRP3

OpenHRP3 (Open Architecture Human-centered Robotics Platform version 3) is a simulator and

motion control library for humanoid robots developed at the National Institute of Advanced In-

10

Literature Review

Figure 2.8: The modules of SimRobot and their dependencies. Source: SimRobot – Development
and Applications [LR08].

dustrial Science and Technology, Kanehiro et al. (2004). It’s a free tool that can simulate the

direct dynamics of open and closed chains of multi-body systems. It includes a library of position,

force/torque, vision, and inclination sensors, which are essential for developing control systems

for the robots. The software also includes simple controllers for locomotion, balancing, a walking

pattern generator as well as collision detection and avoidance schemes. Advanced controllers can

be developed by the users. Besides, standard tools for plotting simulation results, OpenHRP has a

3D visualization interface to display the simulation.

The software developed in OpenHRP can be directly used in the HRP humanoid robots [KHK+08]

but this is not possible for other humanoid robots. The main reason is that several features in

OpenHRP cannot be modified by the user. For example, the actuator models are fixed, and com-

pliance in the robot joints or the robot links cannot be added to the model. Furthermore, there

is very little documentation available for OpenHRP and since this is a free tool there is also no

support from the developers. [MCDB+10]

2.2.4 Microsoft Robotics Studio Simulator

Microsoft Robotics Studio (MSRS) is a Windows-based environment for robot control and simu-

lation. It provides a set of useful tools, including a three-dimensional simulator. In the simulator,

entities can be created in order to include robots and objects like walls, obstacles, floors, etc. Each

entity is provided with a set of callback functions for dealing with events such as closions and

frame updates. It integrates the physics simulator PhysX created by Ageia. Entities in the simula-

tion environment specify a physical description with parameters such as friction coefficient, mass

and center of gravity. Screen shots of the simulator can be seen in figure 2.11. [Jac07]

2.2.5 SimSpark

SimSpark is a multi-agent simulation system and is used as the official simulator for the RoboCup

Simulation League competition. Although it was created for robotic soccer simulation, the sim-

ulator core is the most generic possible and all soccer specific details are contained in a set of

11

Literature Review

Figure 2.9: SimRobot with the tree view on the left and two scene views on the right. [RLM+09]

plugins [BDR+10]. The simulator is designed in a client/server architecture having three main

kinds of components: agents, the server, the monitor (cf fig. 2.12).

An agent is the software that drives the behaviour of a robot. Usually, they communicate with

the simulation server via TCP sockets. The server is the component that hosts and manages the

simulation process. It is responsible to constantly update the simulation state. Every interactions

between the objects, collisions, gravity, and so on, are modelled by the server. Another responsi-

bility of the server is to keep track of all the connected agents. The server provides perceptors to

report the information about the senses of an agent, and provides effectors which allow agents to

perform actions within the simulation.

Finally, the monitor is the component responsible for the graphic visualization of the simula-

tion. It connects to server and continuously receives a data stream with the information needed to

render the scene. SimSpark provides different robot models for use by agents. The RoboCup 3D

Soccer Simulation League currently uses a model of Nao humanoid. As shown in figure 2.13, the

model is quite similar to the real Nao. [BDR+10]

2.3 Humanoid Behaviours

In this context, an humanoid behaviour is a set of trajectories of robotic joints composed in order

express the control of the robot. Once specified it can be executed as many times as necessary.

Behaviours can be expressed at the motor, skill or task level.

At motor level, behaviours are expressed by prescribing commands directly to system’s actu-

ators. At skill level, behaviours express the capabilities of the agent, for instance, walking, getting

up, and so on. Skills are models expressed as parametrized programs for motor level controllers,

without the ability to strategize about objectives or encode semantics about the world. Finally,

task level behaviours are skills performed in order to achieve specified goals. [JM03]

Some related research, including the work done by FCPortugal team, is presented in the fol-

lowing sections.

12

Literature Review

Figure 2.10: Webots simulating e-puck robot with a tree-view of the objects on the left and a
source code editor on the left.

2.3.1 Skill Level Behaviours Generation

Defining a skill by composing several commands at motor level controllers commands can be a

very difficult task. In order to make things easier, a skill can be defined with the trajectory for each

involved joint. These trajectories can be generated based on a sequence of start and end points in

the joint space during some amount of time. [Pic08]

Some of the methods used by FCPortugal to define skill level behaviours are described in this

section.

2.3.1.1 Step-based Behaviours

The step-based method was the first method used by FCPortugal. It generates behaviours using

step functions. A step function (or staircase function) is a discontinuous function consisting of a

series of constant functions, each one defined in some interval of time [Pic08].

So a joint trajectory will be defined as a step function in which the amplitude is the desired

angle on each interval of motion. The function is described as follows:

f (t) =
n

∑
i=0

θi ·111Ai(t),∀t ∈ R (2.1)

where n is the number of intervals, Ai is the interval i, and θi is the desired angle for joint at

interval i. 111Ai(t) is the indicator function of Ai and is defined as follows:

111Ai(t) =

{
1, if t ∈ Ai

0, if t /∈ Ai
(2.2)

The main advantages of this method are [Pic08]:

• Simple to understand;

13

Literature Review

(a) Modular robot base with differ-
ential drive, laser range finder and
bumper array.

(b) Physics primitive view.

Figure 2.11: Screen shots of Microsoft Robotics Studio Simulator.

• Simple to implement;

• Simple to define target trajectories (target angles and tolerances).

The main drawbacks of step-based method [Pic08]:

• Time from current angle to target angle is unpredictable;

• No control over the angular velocity trajectory;

• The same gain is used for all joints;

• Sensitive to overshoot reactions at the control level;

• The syntax of the configuration file is not user-friendly;

• The model is not flexible.

In FCPortugal, a step-based behaviour is specified in a XML file, consisting of a sequence of

steps, and each of them has a sequence of joint positions, corresponding to the target angles that

might be achieved in the step. One step finishes its execution when all the joints are approximately

at the specified angle.

2.3.1.2 Slot Based Behaviours

Another approach to generate behaviours used by FCPortugal is the slot-based method. Slots are

intervals of time where several joints are moved in parallel. This allows to define not only the

trajectory points, but also the time in which those angles should be achieved.

Comparing with step-based method, this approach allows to have control over the transition

time of the current point to the target point. So, instead of defining the states at each interval of

time, in slot-based methods transitions are specified.

14

Literature Review

Figure 2.12: General architecture of SimSpark architecture.

In order to have smooth transitions between the current point and target point, sine interpola-

tion is used. This works as follows: in each slot, the controller will interpolate between the current

point and next point by performing a sine-like trajectory generated by the following expression:

f (t) = Asin(
φ f −φi

δ
t +φi)+α,∀t ∈ [0,δ] (2.3)

where f (t) is the trajectory function, δ is the duration of slot in miliseconds φi is the initial

phase (which will influence the initial angular velocity), φ f is the final phase (which will influence

the initial angular velocity), A is the amplitude and α is the offset. A and α are calculated using

the following expressions:

A =
θ f −θi

sin(φ f)− sin(φi)
(2.4)

α = θi−A · sin(φi) (2.5)

where θi and θ f are the initial and final angles, respectively, and should be defined between

−π and π .

In the FCPortugal agent, this behaviours are described in XML files. In each behaviour is

described a sequence of slots. Each slot has a time parameter and is composed by a series of

moves for the involved joints, which will be executed at the same time. The table 2.1 describes

these classes.

An example of a behaviour description can be seen in listing 2.1. Several slots are defined

and each of them have a set of joint moves.

15

Literature Review

Figure 2.13: The humanoid robot Nao: real vs simulated. Adapted from [BDR+10].

Listing 2.1: Extract from a slot behaviour XML specification (KickLeft Behaviour of the FCPA-

gent) - February 2011.

1 <?xml version="1.0" encoding="ISO-8859-1"?>

2 <behavior name="KickRight" type="SlotBehavior">

3 <slot delta="0.170" />

4 <slot name="shiftWeight" delta="0.400">

5 <move id="&lleg2;" angle="-11" />

6 <move id="&lleg6;" angle="11" />

7 <move id="&rleg2;" angle="-11" />

8 <move id="&rleg6;" angle="11" />

9 <move id="&lleg3;" angle="8" />

10 <move id="&rleg3;" angle="8" />

11 <move id="&lleg4;" angle="-14.5" />

12 <move id="&rleg4;" angle="-14.5" />

13 <move id="&lleg5;" angle="12.5" />

14 <move id="&rleg5;" angle="12.5" />

15 </slot>

16 <slot name="kickLegUp" delta="0.500">

17 <move id="&rleg3;" angle="20" />

18 <move id="&rleg4;" angle="-40" />

19 <move id="&rleg5;" angle="20" />

20 <move id="&lleg3;" angle="0" />

21 <move id="&lleg4;" angle="0" />

22 <move id="&lleg5;" angle="0" />

23 </slot>

24 </behavior>

The main advantages of this method are [Pic08]:

• Simple to understand and implement;

• Time from current angle to target angle is controlled;

16

Literature Review

Slot Behavior
Class Properties
Slot delta(δ)
Joint joint identifier

target angle (θ)
kp, ki, kd

Table 2.1: Description of the classes in a Slot Behaviour specification. Adapted from [Rei10].

• Some control over the angular velocities trajectories;

• The model is flexible;

• The motion description language is user-friendly and well structured.

The main drawbacks are [Pic08]:

• It is not possible to define more complex sinusoidal shapes;

• The angular velocities trajectories are not completely controlled.

2.3.1.3 Central Pattern Generator

Central pattern generators are biological neural networks that can produce coordinated multidi-

mensional rhythmic signals, under the control of simple input signals. They are found both in

vertebrate and invertebrate animals for the control of locomotion [RI06]. The concept of neural

networks can also be applied in robot control in order to generate a suitable pattern for a walking

motion.

The input parameters are described by the vector a = (ar,ap,ay) which corresponds to the

lateral swing amplitude, forward swing amplitude and rotational amplitude, respectively. A gait

phase, φgait , varies between −π and π . φleg represents the phase of a leg and will correspond to

φgait− π

2 for the left leg and φgait +
π

2 . The step of one leg during the whole gait is divided into five

complex stages: Shifting, Shortening, Swinging, Loading and Balance [Rei10]. Further details can

be found in [Pic08].

The main advantages of CPG behaviours are [Pic08]:

• More complex shapes are possible;

• Angular velocities trajectories are completely controlled;

• Allows several gaits with just one generator (forward walk, backward walk, sided walk,

curved walk, curved walk and turn on the spot);

• The generated gait is very similar to the natural human behaviour.

The main drawbacks are [Pic08]:

17

Literature Review

CPG Behaviour Parameters
Class Properties

Behavior delta(δ)
Pattern joint identifier

target angle (θ)
period
phase

amplitude
Table 2.2: Description of the classes in a CPG Behaviour specification. Adapted from [Rei10].

• Requires complex knowledge about human behaviours

• The shifting stage leads to slower movements.

A behaviour specification file for a CPG behaviour consists of a series of patterns for each

specified joint [Rei10]. The table 2.2 describes the parameters used to specify the behaviour.

2.3.2 Task-level Behaviours

In task-level behaviours it’s intended to combine the known behaviours in a sequence ensuring

that the task is successfully completed. Several researches are being made on this subject.

An interesting approach is in [OTI+00], in which the tasks are learned by watching them being

performed by the human hand. The idea is to represent actions in symbolic task models, acquired

through observation. For each task, in the acquisition process is specified a set of attention points

(APs), dividing the task in the steps that requires attention and analysis. Through observation,

the system creates a model of the task classifying the actions between the APs, taking account

of attributes like in which hand is the performing, the absolute position in 3D space, the kind of

action (if it’s grasp, release, pour, hand over), and many others.

Another interesting feature in this approach is the assignment of priorities to the attributes.

For instance, the information of which was the hand that performed the task is expected to be less

important than the kind of action. First, the robot tries to perform the task exactly as the described

in the model. If it fails, then it will iteratively ignore the attributes with lower priority. This task

model is flexible enough to apply an acquired task in different environments. [OTI+00]

2.4 Optimization

As long as humankind exists, we strive for perfection in many areas. We want to reach a maximum

degree of happiness with the least amount of effort. In our economy, profit and sales must be

maximized and costs should be as low as possible. [Wei09]

Therefore, as usually, there is a science to deal with this problems - Optimization. It refers to

find the best elements from a set of possible alternatives, according to a criteria.

18

Literature Review

Thus, an optimization can be stated by a set of parameters, known as decision parameters,

describing the alternatives, and a mathematical function, known as objective function, that anal-

yses each alternative according to these parameters. The objective function gives a quantity to

classify a candidate solution of the problem. If the goal is to maximize the function, it is called

utility function, otherwise, if it’s to minimize, then it’s called cost function.

There are many approaches on solving optimization problems. In the following sections, a

classification of optimization solving methods is presented, as well as the most popular algorithms.

2.4.1 Classification

2.4.1.1 Deterministic and Stochastic Algorithms

Optimization algorithms can be divided in two basic classes: deterministic and stochastic algo-

rithms. Deterministic algorithms are used when the utility of a possible solution can be efficiently

calculated. In each step of a deterministic algorithm exists at most one way to proceed.

On the other hand, stochastic algorithms contain instructions that use random numbers in

order to decide what to do or how to modify data. Such methods apply in the usual case where a

closed-form solution to the optimization problem of interest is not available and where the input-

information ito the optimization methods may be contaminated with noise. [Wei09, WW04]

2.4.1.2 Individual and Population-based Algorithms

Another kind of classification that can be made it’s individual or population-based methods.

Individual-based methods deals only with one possible solution in each iteration. Conversely,

in optimization-based methods multiple alternatives are handled at the same time. [Pic08]

2.4.1.3 On-line and Off-line Optimization

According with the use case, methods can be classified with regard to the required speed. It’s

possible to distinguish on-line optimization in which problems need to be solved quickly in a

time span between ten milliseconds to a few minutes. In order to find a solution in this short time,

optimality is normally traded in for speed gains. With off-line optimization, time constraints are

less important and the user can wait even days if that means obtaining an optimal or close-to-

optimal solution. [Wei09]

2.4.2 Hill Climbing

The Hill Climbing (HC) algorithm is simple to implement and performs well in several situations,

achieving reasonable results. It starts with a arbitrary guess of the solution, and then attempts to

find a better solution by analysing the neighbour alternatives, which are obtained by making minor

changes to the guess. It terminates when reaches a state where no neighbour has a better value.

19

Literature Review

Hill-climbing algorithms typically choose randomly among the set of best successors if there

is more than one. It often makes rapid progress towards the solution because it is usually easy to

improve from a bad state. Unfortunately, hill-climbing is not so good when [RN10]:

• There is a local maximum, which is a peak that is higher than each of its neighboring states

but lower than the global maximum.

• There is a plateau, which is a flat area of the state-space landscape. It can be a flat local

maximum, from which no better state, or a shoulder, from which progress is possible. A

hill-climbing search might get lost on the plateau.

Hill climbing is good for finding a local optimum, but it is not guaranteed to find the best possible

solution (the global optimum) out of all alternatives. The algorithm is shown in algorithm 1.

Algorithm 1 Hill Climbing search algorithm. [RN10]

1: current← GetInitialSolution()
2: loop
3: neighbour← a highest-valued successor of current
4: if neighbour.VALUE < current.VALUE then
5: return current.STAT E
6: end if
7: current← neighbour
8: end loop

2.4.3 Simulated Annealing

Simulated Annealing (SA) is a stochastic method to avoid getting stuck in local, non-global min-

ima, when searching for global. minima [DA89]. Annealing, in metallurgy, is the process used

to temper or harden metals and glass. This procedure hits the material to a high temperature so

that the material is liquid and the atoms can move freely. The temperature of the material is then

slowly decreased so that, at each temperature, the atoms can move enough to begin adopting the

most stable orientation. If the material is cooled slowly enough, the atoms are able to achieve the

most stable orientation.

The Simulated Annealing algorithm is presented in 2. When it’s time to choose the next state,

instead of choosing the best state, however, it picks a random state. If the random state has a

better value, it is accepted. Otherwise, it accepts the move with some probability less than 1. The

probability decreases as the state becomes worse, and also as the "temperature" T goes down. In

the beginning of execution the temperature is high, and decreases over time. So worse states are

more likely to be accepted at the start, but more unlikely as T decreases.

2.4.4 Tabu Search

Tabu Search (TS) is a variant of HC method, proposed by Fred Glover in 1986. This algorithm

maintains a list of the k last visited states in order to prevent a previous state from being repeated.

20

Literature Review

Algorithm 2 Simulated Annealing. [RN10]

1: current← GetInitialSolution()
2: for t = 1 to ∞ do
3: T ← schedule(t)
4: if T=0 then
5: return current
6: end if
7: next← a randomly selected successor of current
8: ∆E← next.VALUE− current.VALUE
9: if ∆E > 0 then

10: current← next
11: else
12: current← next only with probability e∆E/T

13: end if
14: end for

With this, it’s preferable to visit worse states rather than repeating them. As well as improving

efficiency by avoiding cycles, this improvement can allow to escape from a local optima, since

it can accept worse states. [GHP+97, RN10] The pseudo-code of this method is presented in

algorithm 3.

Algorithm 3 Tabu Search algorithm. [Pic08]

1: current← GetInitialSolution()
2: evaluation1← Evaluate(current)
3: tabuList←{}
4: while TerminationConditionsNotMet() do
5: neighbours← GetNeighbourhood(current)
6: for i = 1 to Length(neighbours) do
7: if NotMember(neighbours[i],TabuList) then
8: Add(TabuList,neighbours[i])
9: evaluation2← Evaluate(neighbours[i])

10: if evaluation2 < evaluation1 then
11: current← neighbours[i]
12: evaluation1← evaluation2
13: end if
14: end if
15: end for
16: end while
17: return current

2.4.5 Genetic Algorithms

The Genetic Algorithm (GA) was developed by John Holland (1975) it’s an optimization method

bases on the principles of genetics and natural selection. A GA allows a population composed of

many individuals to evolve under certain selection rules to a state that maximizes the "fitness" (i.e.,

21

Literature Review

minimizes the cost function) [HH04]. In this case, an individual (also called chromosome) is a

set of parameters, known as genes, and represents a possible solution to the optimization problem.

The algorithm starts by creating a new population of individuals. Then, it starts the evolution

by applying several operators to the population, generating a new one. Along the algorithm, a

sequence of new populations is generated.

The simplest form of GA, involves three types of operators: selection, crossover and mutation.

• Selection This operator selects chromosomes in the population for reproduction, accord-

ingly to a given probability. The fitter the chromosome, the more times it is likely to be

selected to reproduce.

• Crossover This operation randomly chooses a locus and exchanges the subsequences be-

fore and after that locus between two chromosomes to create two offspring. For example,

the strings 10000100 and 11111111 could be crossed over after the third locus in each to

produce the two offspring 10011111 and 11100100. The crossover operator roughly mimics

biological recombination between two single-chromosome organisms.

• Mutation This operator randomly flips some of the genes in a chromosome. For example,

the string 00000100 might be mutated in its second position to yield 01000100. Mutation

can occur at each bit position in a string with some probability, usually very small (eg.

0.001). [Mit98]

In addition, there is a selection method known as elitism, which defines the number of the

best individuals at each generation, that are guaranteed to survive in the next generation. Such

individuals can be lost if they are not selected to reproduce or if they are destroyed by crossover

or mutation. Many researchers have found that this technique leads to better results [Mit98].

Some of the advantages of a GA include that it [HH04]:

• Optimizes with continuous or discrete variables;

• Doesn’t require derivative information;

• Simultaneously searches from a wide sampling of the cost surface;

• Deals with a large number of variables;

• Is well suited for parallel computers;

• Optimizes variables with extremely complex cost surfaces (they can jump out of a local

minimum);

• Provides a list of optimum variables, not just a single solution;

• May encode the variables so that the optimization is done with the en- coded variables;

• Works with numerically generated data, experimental data, or analytical functions.

22

Literature Review

The algorithm 4 shows the pseudo code of a generic GA. The mutation function receives the

parameter pm which is the probability of occurring a mutation in a chromosome.

Algorithm 4 Genetic Algorithm. Adapted from [Pic08].

1: population←CreateInitialPopulation()
2: Evaluate(population)
3: while TerminationConditionsNotMet() do
4: [Elitism] elite← Elitism(population)
5: [Selection] parents← Selection(population)
6: [Crossover] children←Crossover(Parents)
7: [Mutation] mutants←Mutation(children, pm)
8: end while

2.5 Machine Learning

Over the years, psychologists had particular interest in studying the concept of learning. The

complexity of such a natural thing has led to many theories. Some of them examine learning as

a process, others as the product of a process [Smi09]. In both of them, there is a process, so in

order to learn, a cognitive process of acquiring or knowledge has to be made.

Machine learning can be stated has the branch of artificial intelligence that deals with the

design of algorithms that allow a machine to learn by itself thus reducing (perhaps eliminating)

the need for human intervention in the learning process [Pic08].

The importance of machine learning can be seen by its real-world applications. We can find

examples like speech-recognition, where the accuracy is greater if someone trains the system

then if it is programmed by hand. Besides, machine learning makes possible to the system to

gain more accuracy, even after the user buys the product, by learning with the user. Another

application that is being successfully used is robot control, where machine learning is used for

acquiring control strategies. The recent Darpa-sponsored competition, involving a robot driving

autonomously for over 100 miles in the desert was won by a robot that used machine learning

to refine its ability to detect distant objects (training itself from self-collected data consisting of

terrain seen initially in the distance, and seen later up close). Other applications can be handwriting

recognition, face recognition, systems that automatically classify microscope images of cells, data-

mining, and many others. [Mit06]

The machine learning methods can be compared to the scientific method, in which there is

the process of observing a phenomenon, forming a hypothesis, making predictions, and then it-

eratively revising the hypothesis before making further observations. Machine learning aims to

automate this process, so that computer-automated predictions can make a task more efficient,

accurate, or cost-effective than it would be using only a human decision. [mac]

Machine learning techniques can be broadly classified in three main categories: supervised
learning, unsupervised learning, and reinforcement learning. In supervised learning systems

is supplied a training set with input-output instances. The learner has to autonomously adapt its

23

Literature Review

parameters in order to make the correct matching between a given input and the desired output.

Unsupervised learning there is no such thing as a training set giving the desired outputs, and

consequently the learner has to adapt its parameters autonomously given only a set of inputs.

Finally, reinforcement learning. The third type, called the reinforcement learning, bridges a gap

between supervised and unsupervised categories. The learner hasn’t an input-output training set,

however it has some kind of feedback about the environment. The feedback allows the learner to

know if some action has been rewarding or punishable, allowing the learner to adapt its parameters

in order to increase the rate of rewarding actions. [Kon00]

2.6 Planning Problems

Planning is the process of generating (possibly partial) representations of future behaviour prior

to the use of such plans to constrain or control that behaviour. The outcome is usually a set of

actions, with temporal and other constraints on them, for execution by some agent or agents. A

planning problem has an initial state of the world, a desired goal state (or set of goal states) of the

world, and a planning domain. A planning domain is a of actions which can be executed in some

particular world-states, named preconditions and changes the world state, having a set of effects.

A planner solves a planning problem by producing a legal sequence of actions which takes from

the initial state to the final state. [WKoT99, CIR99]

2.6.1 Defining a Planning problem

In order to provide a standard encoding language to describe planning problems, in 1998, Drew

McDermott released the Planning Domain Description Language (PDDL), which encourages shar-

ing of problems and algorithms, and provides meaningful comparison of the performance of plan-

ning methods on different problems. It separates the domain description and the problem instance

description in different files, so that the same domain can be used for different planning problems.

The syntax is inspired by Lisp5, so much of the structure of a domain description is a Lisp-like list

of parenthesised expressions. [FL03, GHK+98]

As we can see, the description of a planning problem defines a search problem: we can search

from the initial state through the space of states, looking for a goal [RN10]. So, in order to solve

a planning problem, AI search methods can be used. Further details are presented in the next

section.

2.7 Problem Solving with Search Methods

A solution for a formulated problem can be seen as sequence of actions, in which the solution is

one particular sequence which leads to a goal state. The sequences of actions can be stated with a

5List processing language invented at MIT in the 50s and developed in the 60s.

24

Literature Review

search tree, where the root is the initial state, the branches are the actions, and the nodes represent

states in the space of the problem.

The essence of search methods is the generation of the search tree. It starts in the initial state,

which is the root, tests whether it is a goal state, and, if it is not, expands the current state applying

each legal action, thereby generating a new set of nodes (states). After that, the method must

choose which one of non-visited nodes must go next, and repeat the process until reach the goal

state.

Search algorithms can be broadly divided in uninformed (also called blinded search) or in-
formed search algorithms. The difference is that in informed search algorithms some guidance on

where to look for solutions is given.

The most popular uninformed methods are breadth-first search, uniform-cost search, depth

first search, depth limited search and Iterative deepening depth-first search.

In the scope of informed methods, greedy best first search, A* search are also very popular.

The performance of search algorithms can be evaluated with the following properties:

• Completeness: Is the algorithm guaranteed to find the solution when there is one?

• Optimality: Does it find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: The amount of memory needed to perform the search.

Depending on the problem to solve, some of these properties can be more important than the

others.

2.7.1 Greedy best-first search

Greedy best-first search expands first the node estimated to be closer to the goal. Thus, it evaluates

nodes using just an heuristic function, h(n). The heuristic gives the estimated cost of the cheapest

path from the node n to the goal, so the performance of the method is highly committed to the

quality of the heuristic. The algorithm is called "greedy" because at each step it tries to get as

close to the goal as it can. Because of that, this method can return non optimal solutions. The

greedy best-first search is also incomplete in infinite spaces. With finite states it can be incomplete

in the presence of loops. However, using some technique to avoid loops, the algorithm can be

complete.

2.7.2 A* search

A* search (pronnounced A-star search) is a similar to method the greedy algorithm. Nevertheless,

now, the evaluation function, f (n), combines the heuristic, h(n), with a cost-function, g(n), which

gives the path cost from the start node to the node n:

f (n) = g(n)+h(n).

25

Literature Review

Provided that the heuristic function, h(n) satisfies certain conditions, A* search both complete

and optimal.

2.8 Conclusion

As presented in this chapter there are a lot of researching being made in fields related to humanoid

robotics. Several technologies were developed in order to help this research, including the referred

simulators and humanoid robots. Nevertheless, there is still a lot of work to do. The creation of

smooth and well optimized behaviours is still a very difficult task, and the RoboCup initiative

have been challenging its participants to focus on this kind of problems. Topics related to AI,

such as optimization, machine learning, planning problems and search algorithms were also de-

scribed. These are methods highly related to the problem of this dissertation. In robotic soccer,

the humanoid players are expected to have different sequences of behaviours for the same task.

However, depending on the environment, some are better than others. So, rather than having the

job done, it’s expected to do the job with the better approach. The hand-actions system, briefly

described in 2.3.2, is not flexible enough when the goal is to reason over different ways of do-

ing the same task. It only tries to learn them by observation and doesn’t try to mix the known

behaviours [OTI+00].

26

Chapter 3

Approach and Work Plan

This chapter briefly describes the proposed approach for this dissertation. The global architecture

of the system will be presented, including a simple description of the main components. It will

also present the work plan schedule estimated for the twenty weeks of dissertation, providing a

description of the main tasks.

3.1 Research Approach

In order to overcome the needs presented in the previous sections it’s intended to develop a soft-

ware solution that can classify behaviours, generate and classify sequences of behaviours and im-

prove the generated sequence as the humanoid gains experience in the desired task. The proposed

architecture is illustrated in the figure 3.1.

The component Behaviours Knowledge stores all the known behaviours and the parameters

related to its classification. The Classification Engine will be responsible of monitoring the exe-

cution of the behaviours and evaluating its performance, updating the necessary parameters in the

Behaviours Knowledge. This component will use machine learning techniques, in order to avoid

the need of studying the relative importance of all the information available about the execution.

Subsequently, it will be integrated the Task level Behaviours Generator which is prompted by

the agent to give the best sequence of behaviours to execute a given task in a given situation. It will

use the knowledge acquired by the Classification Engine, in order to give the sequence that best

fits the task in that situation. This is a non-trivial problem that can be stated as a planning problem

and use a search method to solve it. Nevertheless, the environment is always changing and other

tasks with high priority can appear, interrupting the process. Besides, a precise prediction of the

effect of a known behaviour is needed in order to make a good planning.

27

Approach and Work Plan

Figure 3.1: Global architecture of the system.

3.2 Work Plan

This section aims to present the work plan throughout the twenty weeks of the master’s disserta-

tion. At the end of each development module, a set of experiments will be performed both in real

and simulated environments, using the humanoid Nao and the simulator SimSpark, respectively.

A brief description of each task and the intended work plan are presented below.

3.2.1 Bibliographic Research

To better understand the problem, the thesis work will begin with a revision of related work. This

task was initiated in the context of the course unit "Dissertation Planning". A literature review

was performed on the available of humanoids and robotics simulators technologies, and on some

of related problems. It was also reviewed optimization and classification techniques which are

widely used in this problems. However it will be spent more time to continue the research. It will

focus on the study of more research projects related to behaviour-control systems, acquisition and

reasoning of task-level behaviours. During the thesis, bibliographic research will be an open topic

in order to give an updated overall context of the scientific development on these areas.

3.2.2 Study of the Technologies

In order to make the best possible use of the technologies, it will be spent some time studying

them, including the SimSpark simulator, the humanoid robot Nao, and the FCPortugal team’s

agent. It’s very important to make a detailed study on FCPortugal’s agent because the work and

concepts developed in the scope of this dissertation will be tested using the agent as use case.

3.2.3 Classification and Test of the Behaviours

This task consists of a development module in which will be designed and implemented a sys-

tem capable of classifying the behaviours performed by the humanoid. This will require a good

28

Approach and Work Plan

knowledge of the behaviours generators developed by FCPortugal, and also about classification

techniques. The developed component should be able to give the agent a way of reasoning about

the performance of its behaviours with regard to different situations.

3.2.4 Interconnection and Sequencing of Behaviours

The resulting work of this module will be integrated with the developed system. It will focus

on the application of optimization and search techniques, allowing the agent to combine different

known behaviours in order to perform its task with better performance.

Since the environment in robotic soccer is always changing it’s quite hard to find the best

sequence of behaviours for a certain situation. It’s not reasonable having an agent stalled in the

middle of a game processing what is going to do next, so it’s also required to give the sequence in

real-time.

3.2.5 Thesis Writing

The final 4 weeks of the project will be dedicated to the thesis writing, which will report all the

work, experiments and results made during the dissertation. The documentation written along the

previous weeks will be useful in this stage.

3.2.6 Task Schedule

The tasks described in the previous sections will be performed according with the proposed sched-

ule in figure 3.2.

Figure 3.2: Gantt chart of the proposed task scheduling throughout the twenty weeks of disserta-
tion

29

Approach and Work Plan

30

Chapter 4

Conclusions and Future Work

This document has presented the first version of the state of the art of this dissertation. This

existing research provides a solid base for future work on this subject.

Nevertheless, there are still some topics that may deserve special focus. It’s the case of search

methods, which might need a more detailed study. Besides, in addition to the optimization methods

presented in 2.4, there is also a very popular method, Particle Swarm Optimization, that might be

interesting in the scope of this problem. A more detailed research about machine learning methods

should also be very useful, contemplating topics such as Markov Decision Process, Q-Learning.

These improvements will be performed in the very beginning of this dissertation, as estimated

in the work plan.

31

Conclusions and Future Work

32

References

[BDR+10] Joschka Boedecker, Klaus Dorer, Markus Rollmann, Yuan Xu, Feng Xue, Marian
Buchta, and Hedayat Vatankhah. SimSpark User’s Manual, 1.2 edition, January
2010.

[CFH+02] Mao Chen, Ehsan Foroughi, Fredrik Heintz, ZhanXiang Huang, Spiros
Kapetanakis, Kostas Kostiadis, Johan Kummeneje, Itsuki Noda, Oliver Obst, Pat
Riley, Timo Steffens, Yi Wang, and Xiang Yin. RoboCup Soccer Server: Users
Manual. The RoboCup Federation, 2002.

[CIR99] CIRL. Planning and scheduling materials. The Computational Intelligence Re-
search Laboratory of the University of Oregon, available at: http://www.
cirl.uoregon.edu/research/overview.html, 1999.

[DA89] Anton Dekkers and Emile Aarts. Global optimization and simulted annealing.
Mathematical Programming, 50(1-3):367–393, June 1989.

[FL03] M. Fox and D. Long. Pddl2. 1: An extension to pddl for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20(1):61–124, 2003.

[Gep04] L. Geppert. Qrio, the robot that could. Spectrum, IEEE, 41(5):34–37, May 2004.

[GHB+08] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafourcade,
B. Marnier, J. Serre, and B. Maisonnier. The nao humanoid: a combination of
performance and affordability. Arxiv preprint, 2008.

[GHK+98] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld,
and D. Wilkins. PDDL — The Planning Domain Definition Language. AIPS-98
Planning Competition Committee, 1.2 edition, October 1998.

[GHP+97] Perry Gray, William Hart, Laura Painton, Cindy Philips, Mike Trahan, and John
Wagner. A survey of global optimization methods. URL: http://www.
cs.sandia.gov/opt/survey/main.html, Sandia National Laboratories,
March 1997.

[Gui04] Guiness. Guinness World Records 2005. Guiness, 50th annv edition, August 2004.

[Hes02] Arik Hesseldahl. Ten o’clock tech - say hello to asimo. Forbes.com, 2002.

[HH04] Randy L. Haupt and Sue Ellen Haupt. Pratical Genetic Algorithms. Wiley - Inter-
science, second edition, 2004.

[Hon07] Honda. Asimo technical information, September 2007.

33

http://www.cirl.uoregon.edu/research/overview.html
http://www.cirl.uoregon.edu/research/overview.html
http://www.cs.sandia.gov/opt/survey/main.html
http://www.cs.sandia.gov/opt/survey/main.html

REFERENCES

[Jac07] J. Jackson. Microsoft robotics studio: A technical introduction. Robotics Automa-
tion Magazine, IEEE, 14(4):82–87, dec. 2007.

[JM03] O.C. Jenkins and M.J. Mataric. Automated derivation of behavior vocabularies for
autonomous humanoid motion. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 225–232. ACM,
2003.

[KHK+08] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi. Humanoid robot
hrp-3. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 2471–2478. IEEE, 2008.

[Kon00] A. Konar. Artificial Intelligence and Soft Computing Behavioral and Cognitive
Modeling of the Human Brain. CRC Press, 2000.

[LR08] Tim Laue and Thomas Röfer. Simrobot - development and applications. In Work-
shop Proceedings of SIMPAR 2008, November 2008.

[mac] Machine learning interaction research in the computer science department at
carnegie mellon. http://www.csd.cs.cmu.edu/research/areas/
machinelearning/, Consulted at February, 2011.

[MCDB+10] GA Medrano-Cerda, H. Dallali, M. Brown, NG Tsagarakis, and DG Caldwell. Mod-
elling and simulation of the locomotion of humanoid robots. In UK Automatic Con-
trol Conference, Coventry, 7-10 September, 2010.

[Mit98] M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, February
1998.

[Mit06] T.M. Mitchell. The Discipline of Machine Learning. Carnegie Mellon University,
School of Computer Science, Machine Learning Dept., 2006.

[MSV+08] G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The icub humanoid
robot: an open platform for research in embodied cognition (special session on eu-
projects). In PerMIS ’08 Proceedings of the 8th Workshop on Performance Metrics
for Intelligent Systems, pages 50–56, 2008.

[OTI+00] K. Ogawara, J. Takamatsu, S. Iba, T. Tanuki, H. Kimura, and K. Ikeuchi. Ac-
quiring hand-action models in task and behavior levels by a learning robot through
observing human demonstrations. In Proceedings of the IEEE-RAS International
Conference on Humanoid Robots. Citeseer, 2000.

[Pic08] Hugo Picado. Development of behaviors for a simulated humanoid robot. Master’s
thesis, Universidade de Aveiro, 2008.

[Rai08] R. Steven Rainwater. Ping pong playing robots. Robots.net, June 2008.

[Rei10] Luis Rei. Optimizing simulated humanoid robot skills. Master’s thesis, FEUP -
Faculdade de Engenharia da Universidade do Porto, 2010.

[RI06] L. Righetti and A.J. Ijspeert. Programmable central pattern generators: an applica-
tion to biped locomotion control. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pages 1585–1590. IEEE, May
2006.

34

http://www.csd.cs.cmu.edu/research/areas/machinelearning/
http://www.csd.cs.cmu.edu/research/areas/machinelearning/

REFERENCES

[RL10] Luis Paulo Reis and Nuno Lau. Paper contributions, results and work for the simu-
lation community of fcportugal. 2010.

[RLM+09] T. Röfer, T. Laue, K. Müller, O. Bösche, A. Burchardt, E. Damrose, K. Gillmann,
C. Graf, T. J. Haas, A. Härtl, A. Rieskamp, A. Schreck, I. Sieverdingbeck, and
J. Worch. B-human team report and code release 2009. November 2009.

[RN10] S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, third
edition, 2010.

[Smi09] M. K. Smith. Learning theory. Encyclopedia of informal education, http://
www.infed.org/biblio/b-learn.htm, September 2009.

[SWA+02] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura.
The intelligent asimo: System overview and integration. In Intelligent Robots and
Systems, 2002. IEEE/RSJ International Conference on, volume 3, pages 2478–
2483. IEEE, 2002.

[Wei09] Thomas Weise. Global optimization algorithms – theory and application. URL:
http://www.it-weise.de,Abrufdatum, 2009.

[WF11] Derek Wadsworth and Doug Few. Humanoid robotics, November 2011.
URL:https://inlportal.inl.gov/portal/server.pt?open=
512&objID=536&parentname=CommunityPage&parentid=7&mode=
2&in_hi_userid=3338&cached=true.

[WKoT99] R.A. Wilson, F.C. Keil, and Massachusetts Institute of Technology. The MIT ency-
clopedia of the cognitive sciences. MIT Press, 1999.

[WW04] M. Wetter and J. Wright. A comparison of deterministic and probabilistic opti-
mization algorithms for nonsmooth simulation-based optimization. Building and
Environment, 39(8):989–999, August 2004.

35

http://www.infed.org/biblio/b-learn.htm
http://www.infed.org/biblio/b-learn.htm
http://www. it-weise. de, Abrufdatum
https://inlportal.inl.gov/portal/server.pt?open=512&objID=536&parentname=CommunityPage&parentid=7&mode=2&in_hi_userid=3338&cached=true
https://inlportal.inl.gov/portal/server.pt?open=512&objID=536&parentname=CommunityPage&parentid=7&mode=2&in_hi_userid=3338&cached=true
https://inlportal.inl.gov/portal/server.pt?open=512&objID=536&parentname=CommunityPage&parentid=7&mode=2&in_hi_userid=3338&cached=true

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Document Outline

	2 Literature Review
	2.1 Humanoid Robots
	2.1.1 Honda ASIMO
	2.1.2 Sony QRIO
	2.1.3 TOPIO - TOSY Ping Pong Playing Robot
	2.1.4 iCub
	2.1.5 RoboNova Platform
	2.1.6 Aldebaran NAO

	2.2 Humanoid Simulators
	2.2.1 SimRobot
	2.2.2 Webots
	2.2.3 OpenHRP3
	2.2.4 Microsoft Robotics Studio Simulator
	2.2.5 SimSpark

	2.3 Humanoid Behaviours
	2.3.1 Skill Level Behaviours Generation
	2.3.2 Task-level Behaviours

	2.4 Optimization
	2.4.1 Classification
	2.4.2 Hill Climbing
	2.4.3 Simulated Annealing
	2.4.4 Tabu Search
	2.4.5 Genetic Algorithms

	2.5 Machine Learning
	2.6 Planning Problems
	2.6.1 Defining a Planning problem

	2.7 Problem Solving with Search Methods
	2.7.1 Greedy best-first search
	2.7.2 A* search

	2.8 Conclusion

	3 Approach and Work Plan
	3.1 Research Approach
	3.2 Work Plan
	3.2.1 Bibliographic Research
	3.2.2 Study of the Technologies
	3.2.3 Classification and Test of the Behaviours
	3.2.4 Interconnection and Sequencing of Behaviours
	3.2.5 Thesis Writing
	3.2.6 Task Schedule

	4 Conclusions and Future Work
	References

