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Nomenclature 
 

a = Semiminor radius of contact area or the effective radius of a contact area 
Ae = Elastic contact area 

Aep = Elastoplastic contact area 
Ai = Total contact area for an asperity 

ai,bi = Semiminor and semimajor radius of critical deformed elliptical contact area 
An = Nominal contact area 
Ap = Plastic contact area 
At = Total real contact area 
At

* = Dimensionless total contact area 
au,bu = Semininor and semimajor radius of undeformed elliptical contact 

b = Semimajor radius of contact area 
C = Plasticity factor 
d = Separation based on asperity heights 
d* = Dimensionless mean separation, d/σ 
e = Eccentricity of the ellipse 

E(e) = Complete elliptic integrals of second kind 
E* = Effective elastic modulus 

E1,2 = Elastic modulus of the surface 1 or 2 
Fm(D) = Parabolic cylinder function 

H = Hardness of the softer material 
h = Separation based on surface heights 
h* = Dimensionless mean separation, h/σ 
k = Mean contact pressure factor 

K(e) = Complete elliptic integrals of the first kind 
l = Height of asperity control volume 

N = Total number of asperities 
n = Number of asperity contacts 

pm = Mean contact pressure 
pn = Nominal contact pressure 
po = Maximum contact pressure 
pt = Real contact pressure 
R = Asperity radius of curvature 
r = the contact radius of an circular asperity 

Rm = Mean effective radius of the curvature of asperities 
Rx,y = The effective radii of curvature in the principal x and y plane 

V = Control volume of a plastically deformed asperity 
W = Normal load applied 
we = Elastic contact load of an asperity 

wep = Elastoplastic contact load of an asperity 
Wept = Elastoplastic contact load of two rough surfaces 
Wet = Elastic contact load of two rough surfaces 
wf = Critical contact load at the point of fully plastic flow 
Wi = Total load for an asperity 
wp = Plastic contact load of an asperity 

Wpt = Plastic contact load of two rough surfaces 
Wt = Total contact load 
wy = Critical contact load at the point of initial yield 
x = Coordinates of the roughness digitalized profile points 
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Y = Yield Stress 
ys = Distance between the mean of asperity and that of surfaces heights 

ys = Dimensionless distance between the mean of asperity and that of surface 
heights, ys/σ 

z = Asperity height measured from the mean of asperity heights, z(x) 
z* = Dimensionless asperity height, z/σ 
α = Coefficient of autocorrelation length 
β = ηRσ 
β* = Correlation length 
δ = Interference 
δ* = Dimensionless interference, δ/σ 

δc = Critical interference at the inception of plastic deformation from elastic to 
plastic yield 

δc1 = Critical interference at the point of initial yield 
δc2 = Critical interference at the point of fully plastic yield 
η = area density of asperities 
σ = Standard deviation of surface heights 
σp = Standard deviation of the equivalent rough surface 

σr, σθ = Stress tension in direction radial and angular 
σs = Standard deviation of asperity heights 

σx, σy, 
σz 

= Stress tension in direction x,y,z 

τ = Autocorrelation length 
Φ = Distribution function of asperity heights 
Φ* = Dimensionless distribution function 
Ψ = Plasticity index 

 u1,2 = Poisson’s Ratios of the surface 1 and 2 
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Abstract 
 
  The study of contact between surfaces is fundamental to many engineering 
problems. Some these problems include thermal and electrical conductivity, scuffing, 
friction, sealing, performance and life of machine elements. 

In this work some mechanical contact models are deeply analyses as well as their 
application to different engineering surfaces. The base of the chosen models is the 
Greenwood – Williamson model, that has been proved to produce an accurate 
approximation in certain conditions. Experimental investigation was performed to 
compare the theoretical results that gives some good preliminary qualitative results. 
 The first step in the mechanical contacts analysis is the surface characterization. 
The knowledge of some statistical surface parameters is sufficient to foresee the 
behaviour of the surface when in contact with another. The most common roughness 
parameters are presented in this dissertation. 
 Roughness measures have been carried with specimens, these results had been 
used in the contact models, the deformation values and real contact area percentage 
was estimated using contact mechanics models programmed in Matlab.  
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1. Surface Texture Measurements 

1.1 Waviness and  Roughness 
 

All surfaces are composed by different types of  imperfections and irregularities. 
These characteristics can be divided in to diverse categories (DIN 4760) which defines 
the effects macro geometrics and micro geometrics.  

The measurement of the rough surface produces a primary profile, this profile has 
the designation ‘profile P’ and is divided in two forms of irregularities. The first form is 
waviness, that normally is the result of the guide-ways not being straight as well as 
machine tool vibration. The other form that can be obtained from the measured profile 
is the roughness profile, this profile has the micro geometric imperfections. 

The waviness profile is designed as ‘profile W’ and the roughness profile is ‘profile 
R’. In the figure 1.1.1 a schematic representation of measured profile extracted from 
one surface is reported. 

 
Fig. 1.1.1: Representation of a measured profile and the subdivision of this profile 

(from [1]). 
 
 The profile R and W are obtained from the ‘profile P’ with a digital or analog 
filter, as explained in the chapter  2.2 . 
 

1.2 Measurement Methods 
 

The measurement of the surface roughness is one of the most important steps for 
the analysis of the contact between two surfaces and is very important for the quality 
control of the surfaces. Various alternatives of the techniques for measure the roughness 
surface exist today. The adequate choice for the method that must be used is 
determined by the resolution and the limitations of the equipment. 
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 In the table 1.2.1 is a summary of the present roughness measurements methods 
and the principal specifications. 
 
 

Resolution (nm) 
Method Quantitative 

Information 

Three-
dimensional 

data Spatial Vertical 
Limitations 

Stylus 
instrument  Yes Yes 15-100 0.1-1 Contact type can 

damage the surface 

Optical Methods: 
Taper 
sectioning Yes No 500 25 Destructive, tedious 

specimen preparation 
Light 

sectioning Limited Yes 500 0.1-1 Qualitative 

Specular 
reflection No No 105-106 0.1-1 Semi quantitative 

Diffuse 
reflection 

(scattering) 
Limited Yes 105-106 0.1-1 Smooth surface 

(< 100nm) 

Speckle 
pattern Limited Yes   Smooth surface 

(< 100nm) 
Optical 

interference Yes Yes 500-
1000 0.1-1  

Scanning 
tunnelling 
microscopy  

Yes Yes 0.2 0.02 
Require a conducting 
surface; scan small 

areas  

Atomic force 
microscopy Yes Yes 0.2-1 0.02 Scan small areas 

Fluid/Electrical No No   Semi quantitative  

Electron Microscopy: Expensive 
Reflection/ 
replication No Yes 5 10-20 

Integration of 
backscattered 

signal 
Yes Yes 5 10-20 

Stereo -  
microscopy Yes Yes 5 50 

Instrumentation, 
tedious, limited data, 
requires a conducting 
surface, scans small 

areas  

Tab.1.2.1: Summary of the roughness measurement methods (from[2]). 
 
 
 In this dissertation the methods used for measuring the roughness is the stylus 
method and an optical microscope, that also allows an analysis of the roughness changes 
when one load is applied. Using an interferometer objective in the optical microscope it 
is possible to analyse the surface quantitatively. The following chapters a description of 
the stylus method and of the optical interference are reported.  
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1.3 Stylus method 
 
 The principle of this method is: while a diamond stylus which is traversed across 
the work-piece surface, the vertical displacement of this stylus is measured with a 
conversion into an electric signal. The signal is amplified and after converted into digital 
information; this information is then fed into a computer to analyse the measure profile 
and to calculate typical parameters. 
 The system used in this work is shown in figure 1.3.1.  

 
Fig.1.3.1: Image of the stylus surface analyser and the its components. 

 
The pick-up is composed by three elements (Fig. 1.3.2):  

  The Stylus; 
  The Transducer; 
  The Skid. 

 
Fig.1.3.2 : Components of the pick-up.  
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The Stylus  
 The stylus is generally cone shaped in a diamond with 2-10 µm tip radius and a 
60º-90º tip angle. The effect of the stylus geometry on the measurement is the first 
source of error in the system. This effect can be understood by the analysis of figure 
1.3.3: 

 
Fig.1.3.3: The stylus geometry error (from [2]). 

 
 The stylus with a smaller tip radius and a smaller angle will follow an angular 
profile closely, but the reduced contact area will mean higher contact pressure and will 
damage the surface.  
 
The Transducer  
 The transducer will convert the vertical displacement in a electrical signal. There 
are different transducer types: inductive, piezoelectric, moving coil and laser 
interferometer. The schematic of a moving coil transducer is shown in figure 1.3.4: 

 
Fig.1.3.4: Schematic of a moving coil transducer [3]. 

 
The Skid 

The skid can give the possibility to measure the macro profile features (skid less) 
or to refuse the macro profile features (skid type). Today is usual to use the skid less 
and remove the macro profiles features with a appropriate software. 
 

The linear traverse unit is used in order to moving the pick-up or the work-piece. 
Normally two units are used, one for the transversal movement (direction x) and an 
other for the perpendicular direction (direction y), alternatively it is possible to use one 
for angular motion. All these mechanisms are controlled by a computer.  
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An other important component is the Analog to Digital Converter (ADC), which converts 
the amplified signal from the pick-up to a digital signal. The principal characteristic of 
the ADC is the resolution in bits, for example, 16 bits ADC can divide the transversal 
length in 216=65536 steps. This signal is captured and saved in a computer and it is 
possible to analyse the surface profile with specific software.  
 

1.4 Optical interference method 
 

The main principle of the interference is when a transparent wedge of small 
angle, surrounded by air, is illuminated with monochromatic light, an interference 
pattern is created. This principle can be used for measuring the surface roughness, using 
a reference flat fitted at the interference microscopy. When there is a small angle 
between the reference flat and the surface in examination, lines with equal thickness 
are generated. The local changes in this otherwise regular fringe pattern are a measure 
of the surface roughness. For measuring the surface roughness there are a two 
techniques that can extend the range of measurement of surface roughness where the 
surface slopes are large. One of these techniques is measuring the surface heights at two 
or more visible wavelengths, which increases the dynamic range of the measurement by 
the ratio of the synthetic wavelength to the visible wavelength. Another, more powerful 
technique is using the a white-light scanning interferometer, which involves measuring 
the degree of fringe modulation, instead of the phase of the interference fringes. In this 
case the surface heights are measured by changing the path length of the sample arm of 
the interferometer to determine the location of the sample for which the white-light 
fringe with the best contrast is obtained, then the vertical position at each location 
gives the surface map. The date of these images with fringes are converted in digital 
data after, with the analysis of the fringes is possible to reconstruct a 3d map of the 
measured surface. 

The actual available instruments are based on these two techniques, in the figure 
1.4.1 there is a schematic of the digital optical interferometer. 
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Fig.1.4.1: Schematic of the three dimensional interferometer with Mirau interference 

objective (from [4]). 
 

 In the figure 1.4.2 there is detailed of a Mirau interference objective. 

 
Fig.1.4.2: Principle of the two-beam interferometer (a) and Mirau interference 

objective (b) (from [5]). 
 
 The figure 1.4.3 is an image from one surface with the represented profile shape. 

 
Fig.1.4.3: Interferometer images of the represented profile and using the red light and 

white light (from [6]). 
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From the figure 1.4.3, are can conclude that using white light it is possible to 

connect the fringes orders across a step even if the step height is greater than one 
fourth of the wavelength. But with white light there are more reflections that give 
spurious interference fringes.  
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2. Roughness parameters and surface characterization 

2.1 Measure Parameters 
 

When the profile is measured the height of the individual profile features is 
measured relative to a reference and normally the profile is not aligned and has a 
different form of ‘noise’. In order to prepare the measured profile and remove the 
different forms this profile needs two stages: levelling the profile and applying one 
filter. 

Levelling the profile is used to determine the reference of the profile. Normally 
when the work-piece is level, the profile measure has one inclination and the function of 
the levelling is to remove this inclination, the process used most is the least squares 
method with all measured points used in order to determine the levelling line. If the 
work-piece has another form (circular or elliptical) a reference line must be used that 
has the same form a the nominal profile.  

  

2.2 Filters to extract roughness profiles 
 
 The function of the filter is to separate the roughness profile (profile R) and the 
waviness profile (profile W) from the profile measured. The parameter that determines 
what is roughness and what is waviness is the cut-off length. The cut-off length should 
be at least 2.5 times the peak-to-peak spacing of the profile roughness, but if the 
surface is anisotropic a recognizable pattern does not exist. In this case the standard DIN 
4768/1 or more recent ISO 4288:1996 gives the reference value of cut-off for profiles 
with different characteristics. 
    

Periodic Profiles Non-periodic Profiles 

Cut-off 
λc (mm) Peak spacing Sm 

(mm) Ra (µm) Rz  (µm) 

Sampling 
Length/ 

Evaluation 
Length 

λc/L (mm) 
0.08 0.013-0.04 (0.006)-0.02 (0.025)-0.1 0.08/0.4 
0.25 0.04-0.13 0.02-0.1 0.1-0.5 0.25/1.25 
0.8 0.13-0.4 0.1-2 0.5 – 10 0.8/4 
2.5 0.4-1.3 2 – 10 10 – 50 2.5/12.5 
8 1.3-4 10-80 50-200 8/40 

Table 2.2.1: Selection of the cut-off length λc according to ISO 4288:1996. 
 
 It is possible to use a analog filter or digital filter, the analog filter is a commonly  
2RC filter. Today, digital filter is used more because it is more simple and does not use 
electronic components and we can apply different filters or cut-offs for the same profile 
measured.  
 The digital filters can be phase correct filter (ISO 11562:1996) and valley 
suppression filter (ISO 13565-1).  The phase correct filter (or Gaussian filter) is used for 
determining the mean line in surface metrology, and the procedure to obtain the 
roughness filtered profile is: 
Gaussian filtered mean line: ( ) ( )* ( )m z x z W z= , where x(z) is the unfiltered profile, (*) is 
the convolution of the two functions and W(z) is: 
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Weighting function: 

2

1( ) c

z

c

W z e
π

αλ

αλ

⎛ ⎞
− ⎜ ⎟

⎝ ⎠= , with α=0.4697 and λc is cut-off length; 

 
Then the roughness profile is: ( ) ( ) ( )R z x z m z= − .  

In the next image have a representation of the profile P, R e W from the an 
surface measure: 

 
Fig. 2.2.1: Representation of the profiles-P, R and W from the measured surface. 

 
 The valley suppression filter is used for calculation of the Rk parameters. The 
surface is filtered with a phase correct filter, after all valleys beneath the mean line are 
removed and the profile is filtered again with a phase correct filter. The mean line 
obtained with these filter is superimposed in the original and mean line is straightened 
out to obtain the roughness profile. 
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2.3 Main Parameters 
 

 Average roughness (Ra or AA):  

 
0

1 ( )
l

aR z x dx
l

= ∫  (2.3.1) 

 
The average roughness is the area between the roughness profile and its mean 

line, or the integral of the absolute value of the roughness profile height over the 
evaluation length. 

When we have digital data the integral is normally approximated by a trapezoidal 
rule: 

 
1

1 N

a i
i

R r
N =

= ∑  (2.3.2) 

 
Fig.2.3.1: Schematic of the value Ra from an measured profile. 

 
 Root mean square (RMS or Rq): 

 2

0

1 ( )
l

qR z x dx
l

= ∫  (2.3.3) 

 
The root mean square is the square root of the average of the square of the 

deviation of the profile from the mean line. This parameter is more sensitive to the 
peaks and valleys than Ra. 

The digital equivalent formula normally used is:  
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 2

1

1 N

q i
i

R r
N =

= ∑  (2.3.4) 

 
If the roughness profile follows a Gaussian distribution Ra and Rq are 

interchangeable: 

 1.25
2q a aR R Rπ

×∼ ∼  (2.3.5) 

 
 

 The height of the highest peak (Rp) and the depth of the deepest valley (Rv): 
 
The peak roughness Rp is the height of the highest peak in the roughness profile 

over the evaluation length. Similarly, Rv is the depth of the deepest valley in the 
roughness profile over the evaluation length. 
 [ ]min ( ) ,0pR r x x L= ≤ ≤  (2.3.6) 

 [ ]max ( ) ,0vR r x x L= ≤ ≤  (2.3.7) 

 

 
Fig.2.3.2: Representation schematic of the parameters Rp, Rv and Rt. 

 
 The total roughness (Rt): 

The total roughness, Rt, is the sum of these two, or the vertical distance from the 
deepest valley to the highest peak, for a digital profile: 
 t p vR R R= +  (2.3.8) 
 

 Average maximum peak height (Rpm), Average maximum valley depth (Rvm)  and 
Average maximum height (Rtm): 

 
1

1 k

pm pi
i

R R
k =

= ∑  (2.3.9) 

 

 
1

1 k

vm vi
i

R R
k =

= ∑  (2.3.10) 
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where Rpi and Rvi is maximum peak or valley height, respectively, in an cut-off length, k 
is the number of cut-off lengths that divide the profile length. This parameter is 
represented in the figure 2.3.3 . 

 
Fig. 2.3.3: Representation of the parameters Rvm and Rpm  

 
The average maximum height is the average of the successive values of the 

maximum heights values in an cut-off length:  

 
1

1 k

tm ti
i

R R
k =

= ∑  (2.3.11) 

 
The graphical representation of this parameter: 

 
Fig. 2.3.4: Graphical representation of the parameter Rtm 
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The other parameter Rz(ISO) is the sum of the height of the highest peak plus the 

lowest valley depth but within a sampling length.  
 But Rz (DIN) is the mean peak to valley height in 5 equal lengths (normally this 
length is equal of the one cut-off length), is determined by the following formula:      

 
5

( )
1

1
5z DIN i

i
R z

=

= ∑  (2.3.12) 

 
 This parameter is generally more sensitive to changes in surface finish than Ra. 

 
 Maximum peak-to-valley height (Rmax or Ry): 

The Rmax is the maximum peak to valley height within one cut-off length. 
 

 Mean peak height (Rpm) and mean valley depth(RVm): 
5

1

1
5pm i

i
R p

=

= ∑  and  

 
5

1

1
5vm i

i
R v

=

= ∑  (2.3.13) 

 

2.4 Waviness Parameters 
 

 Total waviness height - Wt: 
 Total waviness height is the maximum peak to valley height of the levelled and 
filtered waviness profile, is show in the next figure: 

    
 Fig.2.4.1: Total waviness height representation.(from [8]). 

 
The others waviness parameters (Wp, Wv, Wz, etc.)  have the same meaning that 

the roughness parameters, but relatively to the waviness profile. 
 

2.5 Spacing Parameters 
 

 Peak count or peak density (RPc or Pc or Nr): 
 Peak count is a number giving the number of peaks per length of trace in a 
profile. In order to calculate RPc a peak is defined relative to an upper and lower 
threshold. Usually this is a single number, the "peak count threshold", the distance from 
a lower threshold up to an upper threshold, centred on the mean line. In order to count 
the peaks we need the definition of a peak, in a profile we need to identify the major 
peaks and exclude the minor peaks from the calculation of the peak count, these 
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conditions are called cutting depths. These cutting depths are both selected by the 
operator to suit the profile being analyzed. 

 
º . /

( )c
N of countsRP Peaks cm

Assessment lenght cm
= =  (2.5.1) 

 

 
Fig.2.5.1: Schematic of  peak density - RPc or Pc or Nr (from [8]). 

 
 Profile peak count  (RHSC or D): 

 Profile peak count is the number of the profile peaks that exceed a pre-selected 
threshold, and is calculated over the entire assessment length, and is not normalized to 
a standard length. 

 
Fig.2.5.2: Profile peak count – RHSC or D (from [9]). 

 
 Mean peak spacing (RSm or Sm): 

 Mean peak spacing is the mean spacing between profile peaks at the mean line, 
measured within the sampling length. 

 
1

1 N

m i
i

RS S
N =

= ∑  (2.5.2) 

where N is the number of peak spacings. 
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Fig. 2.5.3: Mean peak spacing - RSm or Sm (from [9]). 

 

2.6 Hybrid Parameters 
 

 Abbot-Firestone Curve 
This curve is also called the Bearing Area Curve or Material Ratio and it gives the 

ratio of air to material ratio at any level, starting at the highest peak. In order to 
produce this curve from a surface profile, some distance from a reference line a parallel 
line is drawn, the length of each material intercept along the line is calculated and 
these lengths are added together. The proportion of this sum to the total length, the 
bearing length (tp) is calculated. If we repeat this along all of the surface profile, 
starting at the highest peak to the lowest valley, the fractional land length as a function 
of the height of each slice from the highest peak  is plotted: 

 
Fig. 2.6.1: Example of the an Abbot-Firestone Curve 

 
In appendix 1, a logarithm for Matlab to draw this curve and probability curve. 
 

 Rk Parameters (kernel roughness depth) 
The Abbot-Firestone curve has significant information about the measured profile. 

The Rk parameters are a simple approach where the Abbot-Firestone curve is 
approximated by a set of straight lines. 
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In order to calculate the Rk parameters the straight lines are divided in to three 
parts: one part describe the peaks, an other part describes the valleys and the other 
describes the core roughness. The first step is to find the point of minimum secant slope 
(‘turning point’). Two points, A and B are arbitrarily separated by 40% on the horizontal 
axis, the turning point is located by shifting  these points along the curve until the 
vertical distance between them is at a minimum. Next draw a line through these two 
points to find the intercepts at 0% and 100%, points C and D, the vertical height between 
C and D is the first parameter – Rk, this parameter is designated the core roughness, 
because this part of the profile has the greatest increase an the material ratio. In order 
to calculate the parameters Mr1 and Mr2: draw a horizontal line across from C to the 
Abbot-Firestone curve this fraction of surface is Mr1, and draw an other horizontal line 
across from D to the  Abbot-Firestone curve this fraction is Mr2. Can see the graphical 
representation of this parameters in the next diagram.  
 

 
Fig. 2.6.2: Representation of the kernel roughness depth (Rk), reduced peak height 

(Rpk), trough depth (Rvk), material ratio corresponding to upper limit (Mr1) and material 
ratio corresponding to the lower limit (Mr2) (from [9]). 

 
 The Reduced Peak Height (Rpk) is the height of triangle that have the same area 
that the area below the Abbot-Firestone curve and above the line CE. The Trough Depth 
(Rvk) is the height of a triangle that have the same area below the Abbot-Firestone curve 
and above the line FD. 
 The other parameter is oil retention volume (Vo), is an indication of the oil 
retained by a cylinder bore surface after it has been scraped by a piston ring for 
example. It is calculated as follows:  

 2(100 )
200

vk r
o

R MV −
=  (2.6.1) 

 
 

 Average profile slope (R∆a):  
This parameter is the average of the absolute value of the slope of the roughness 

profile over the evaluation length: 

 
0

1 ( )L

a
dr xR dx

L dx
∆ = ∫  (2.6.2) 

 
With a digital data this parameter can be approached by the equation:  
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1

1

1

1
1

N
i i

a
i

r r
R

N x

−
+

=

−
∆ =

− ∆∑  (2.6.3) 

 
 

 
 RMS profile slope (R∆q): 

 The root mean square of the profile slope is useful because this value is its 
increased sensitivity to extreme values unlike the numerical value of the average of the 
profile slopes which tends to minimize their influence.  

 
2

0

1 ( )L

q
dr xR dx

L dx
⎛ ⎞∆ = ⎜ ⎟
⎝ ⎠∫  (2.6.4) 

 
And if have digitalized data:  

 
( )21

1

1

1
1

N
i i

q
i

r r
R

N x

−
+

=

−
∆ =

− ∆∑  (2.6.5) 

 
 

 Average Wavelength (Rλa): 

 2 a
a

a

RR
R

λ π=
∆

 (2.6.6) 

 
 Average Wavelength is a measure of the spacings  of the spacing between local 
peaks and local valleys, taking into account their relative amplitudes and individual 
spatial frequencies.  
 

 
Fig. 2.6.3 : Graphic representation of average wavelength (from [8]). 

 
 RMS Profile Wavelength (Rλq): 

 2 q
q

q

R
R

R
λ π=

∆
 (2.6.7) 

 The RMS value is an average more sensitive to the extreme values than the Rλa. 
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2.7 Statistical parameters 
 

 The amplitude distribution function (ADF) or ( )zφ  
 This is a probability function that gives the probability that a roughness profile 
has a certain height at a position. 

 
Fig. 2.7.1: Representation of the amplitude distribution function.  

 
This function can be described mathematically by so-called moments: 

 
First moment: 

 1
1

1 N

i
i

m z z
N =

= = ∑  (2.7.1) 

 The first moment gives the arithmetic average of the roughness profile. 
  
Second moment – Variance: 

 ( )22 2
2

1

1 N

i
i

m Rq z
N

σ
=

= = = ∑  (2.7.2) 

The second moment gives the variance of the roughness profile and is an 
indication of the range of profile heights. 
 
Third moment – Skewness (RSk or Sk): 

 
( )

( )3
3 3

1

1 1 N

i
i

m Sk z
NRq =

= = ∑  (2.7.3) 

Skewness indicated by the one profile shows the asymmetry of the amplitude 
distribution function. Positive Skewness indicates a concentration of the material near 
the base of the profile or negative Skewness indicates a concentration of the material 
near the top. 
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Fig . 2.7.2: Skewness variation with the form of the amplitude distribution function 
(from [2], pag. 117). 

 
Fourth moment – Kurtosis (Rku or Ku): 

 
( )

( )4
4 4

1

1 1 N

i
i

m Ku z
NRq =

= = ∑  (2.7.4) 

Kurtosis is a parameter that measures the sharpness of the amplitude distribution 
function. A flat amplitude distribution function indicates many small, rounded peaks and 
valleys in the roughness profile. 

 
Fig. 2.7.3: Kurtosis variation with the form of the amplitude distribution function (from 

[2], pag. 117). 
 

 If the amplitude distribution function (ADF) is a symmetric Gaussian distribution 
the RSk=1 and the RKu=3. Many engineering surfaces have a symmetrical Gaussian height 
distribution and a experience with most engineering surfaces shows that the height 
distribution is Gaussian at the high end, but at the lower end, the bottom of the 
distribution is generally found to be non-Gaussian. But many common machining 
processes produce surfaces with non-Gaussian distributions.  
 

 Mean slope and mean curvature: 
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 The mean slope is the same that R∆a. Mean curvature is not normalized 
parameter, but is very  used for contact analysis with statistical roughness parameters. 

The profile curvature are given as: 
2

2

z
x
∂

−
∂

, for a digitized profile are approximately as:  

 
1

1 1
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2

21
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i i i

i

z z z
N x

−
− +

=

− −
− ∆∑  (2.7.5) 

 
 The cumulative sum of the amplitude distribution curve or Gaussian probability 

distribution function: 
 

This function is the same shape as that of the Abbot-Firestone curve, but this 
function is normalized for statistics analysis and gives the cumulative probability of the 
roughness surface. 
 

 Autocovariance function (ACVF) and autocorrelation function (ACF): 
 

The covariance measure of how much the deviations of the two or more variables 
match and the correlation of two variables provides a measure of how the two variables 
affect one another. The autocovariance function (ACVF) can be calculated duplicating 
the profile, with these two profiles multiplying the two ordinate series. The average of 
the ordinate products is the ACVF value.  The next ACVF value of the ACVF series 
ACVF(τ) is found by shifting the duplicate profile by a distance, τ, and calculating the 
average sum of the products of these two ordinate series. These ACVF values will be 
lower, and duplicated profile is continuously shifted and the multiplication of the 
ordinates is repeated. The curve ACVF can be generated plotting ACVF values on a graph 
versus the shift distance.  
 Mathematically:  

 
0

1( ) lim ( ) ( )
L

L
ACVF z x z x dx

L
τ τ

→∞
= × +∫  (2.7.6) 

 
The normalized form of the ACVF is called autocorrelation function (ACF), in 

mathematical form is: 

 2

( )( )
( )q

ACVFACF
R

ττ =  (2.7.7) 

 The autocorrelation does not include information about the profile amplitude, 
and the range values are from negative one (correlation of the inverted shifted profile) 
to one (perfect correlation).  

The correlation length is a parameter that measures how quickly ACF decays, the 
threshold value for the correlation length is not defined, but commonly is used 
ACF(τ)=0.1. In some cases the correlation length is defined as the distance at which 
value of ACF=1/e, that is 0.368. The correlation length can be taken as that at which 
two points on a function at a distance τ apart are strongly interdependent.  

 



  24 

 
Fig.2.7.4: Representation of the ACF function and the fitting with a exponential 

function, of the profile represent in down. . 
 

 Structure Function (SF) or Variance Function (VF): 
 [ ]2( ) 2 1 ( )SF ACFτ σ τ= −  (2.7.8) 

This function represents the mean square of the difference in height expected 
over any spatial distance τ.  
 

 
 Fourier Analysis 

 
Fourier Analysis is a method that is based on the concept that real roughness 

surfaces can be approximated by a sum of sinusoidal functions, each at a different 
frequency.  

The Fast Fourier Analysis (FFT) is a algorithm developed by Tukey and Cooley in 
1965 to convert the Fourier transform function in discrete data.  

The information contained in a Fourier analysis is identical to the information 
presented by the autocorrelation function, but in a different form.  
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Fig. 2.7.5: Represation of the FFT, of the profile represented in up. 

 
 Power Spectral Density Function (PSDF): 

 
 These function is the Fourier transform of the Autocovariance Function: 

 2( ) ( ) exp( ) ( ) exp( )P w ACVF iw d ACF iw dτ τ τ σ τ τ τ
∞ ∞

−∞ −∞
= − = −∫ ∫  (2.7.9) 

 
Since the ACVF is an even function of τ, the power spectral density function is 

given by the real part: 

 2

0

2( ) ( )cos( )PSDF w ACF w dσ τ τ τ
π

∞
= ∫  (2.7.10) 

 

 

2.8 Three dimensional parameters 
 
 The three dimensional parameters do not yet have a standard, but is these 
parameters commonly used: 
Amplitude parameters: 

 Spatial Average roughness: 

 
1 1

1 M N

a ij
i j

S z
M N = =

=
× ∑∑  (2.8.1) 
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 Spatial root mean square (Sq): 

 2

1 1

1 M N

q ij
i j

S z
M N = =

=
× ∑∑  (2.8.2) 

 
 Spatial maximum height (St): 

 ( ) ( )t ij ijS Max z Min z= −  (2.8.3) 
 

 Spatial maximum peak height (Sp): 
 ( )p ijS Max x=  (2.8.4) 

 
 Spatial maximum valley height (Sv): 

 ( )v ijS Min x=  (2.8.5) 

 
 Spatial average maximum height (DIN): 

 
5 5

1 1

1 1
5 5z i j

i j
S z z

= =

= −∑ ∑  (2.8.6) 

where zi is five maximums, and zj is five minimums of the all profile. 
 

 Spatial Skewness 

 3
3

1 1

1 1 M N

sk ij
i jq

S z
S M N = =

=
× ∑∑  (2.8.7) 

 
 Spatial Kurtosis 

 4
4

1 1

1 1 M N

Ku ij
i jq

S z
S M N = =

=
× ∑∑  (2.8.8) 

 
 

 Material volume per unit area at 10% on BAC (Sm or Smmr): 
The material volume is defined as the material portion enclosed in the 10% 

bearing area and  normalised to unity. 
 

 Core Void Volume of the Surface (Sc): 
A core void volume is enclosed from 10% to 80% of surface bearing area and 

normalised to the unit sampling area.  
 

 Valley void volume per unit area at 80% - 100% on BAC  (Sv or Smvr) 
The valley void volume of the unit sampling area is defined as a void volume at 

the valley zone from 80% to 100% surface bearing area. The void volumes is proposed 
here to provide a direct inspection of lubrication and fluid retention of surfaces.  It 
represents the fluid retention ability of a highly wear surface.  For a flat topped surface, 
such as a honed surface, the core void volume may decrease quickly with the truncation 
level, whereas for a spiked surface, such as a bored surface, the function shows a slow 
decrease. Thus functionally, the void volumes reflect the fluid retention property [10]. 
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3. Models of Contact Mechanics   
  

In this part the models to analyse the contacts of two surfaces are introduced. 
The first model was established by Heinrick Hertz in 1882, but this model only considers 
the elastic contact and disdains the effects of the roughness and the effects of the 
plasticity, and the real contact area is unvalued.  

Nowadays there exist numerical and analytical models that consider the effect of 
the roughness and the plastic/elastic-plastic deformations, most of them using the 
statistical analysis of the roughness in order to estimate the real contact area. In this 
dissertation the most important models are introduced. 

In the following chapter, an introduction to the Hertz Theory is presented, this 
theory is important for estimated the apparent area of the contact and the interaction 
between two asperities in elastic yield.  

3.1 Hertz Theory  
 
 The Hertz theory analysis the contact between two bodies whereby at least one 
have a circular form, the contact is beginning in one point (contact between one sphere 
and other sphere or smooth surface) or beginning in one line (two cylinders or one 
cylinder and one smooth surface).  
 The analysis of the Hertz is based on four assumptions: 

 The surfaces are continuous, smooth and nonconforming; 
 The strains are small; 
 Each solid can be considered as an elastic half-space in the proximity of the 

contact region; 
 The surfaces are frictionless. 

 
In the figure 3.1.1 has the schematic of the simple case of contact between two 

solids of revolution with radius R1 and R2, the contact area is circular and have radius a: 

 
Fig. 3.1.1: Schematic of contact between two solids (from [2]). 
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Defining the composite radius as: 

 
1 2

1 1 1
R R R
= +  (3.1.1) 

 
If the 1zu  and 2zu is the normal displacements, can be written: 

 2
1 2 1 2

1 ,
2z zu u R rδ δ δ δ⎛ ⎞+ = − = +⎜ ⎟

⎝ ⎠
 (3.1.2) 

 
The pressure distribution proposed by Hertz: 

 
1/ 22

0 1 rp p
a

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (3.1.3) 

 
The normal displacements can be given by: 

 ( )
2

2 201 2 ,
4z
pu a r r a

E a
πυ−

= − ≤  (3.1.4) 

 
The pressure in the second body is the same on the first, so that are can define 

the composite of effective modulus by: 

 
2 2
1 2

*
1 2

1 11
E E E

υ υ− −
= +  (3.1.5) 

 
Substituting the expressions for 1zu  and 2zu -(3.1.4) in equation (3.1.2), are 

obtains: 

 ( )2 2 20
*

12
4 2

p a r R r
aE
π δ ⎛ ⎞− = − ⎜ ⎟

⎝ ⎠
 (3.1.6) 

The nominal contact area:  
 2

nA a Rπ π δ= =  (3.1.7) 
 

The radius of the contact is given by: 

 0
*2

p Ra
E

π
=  (3.1.8) 

and 

 0
*2

ap
E

πδ =  (3.1.9) 

The pressure is related to the normal load applied (W) by: 

 2
00

2( )2
3

a
W p r rdr p aπ π= =∫  (3.1.10) 

Then the maximum pressure p0 is 3/2 times the mean pressure pm. 
 
Expressing the radius of the contact in function of W:  

 

1
3

*

3
4
WRa
E

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.1.11) 

 and  
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2

1
* 3

0 2 3 2

3 6
2

W WEp
a Rπ π

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.1.12) 

The stress distributions in polar coordinates in the surface z=0, inside the loaded 
circle r≤a (from Johnson [17] page 62): 

 

3 1
2 2 22 2

2 2 2
0

1 2 1 1 1
3

r a r r
p r a a
σ υ

⎡ ⎤
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⎢ ⎥= − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (3.1.13) 
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 (3.1.14) 

 

1
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2
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= − −⎜ ⎟
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 (3.1.15) 

 
and outside of the circle: 

 
( ) 2

2
0 0

1 2
3

r a
p p r

θ υσσ −
= − =  (3.1.16) 

 

 
Fig.3.1.2: Variation of the σz/p0, σr/p0, σθ/p0 in plane z=0. 

  
The stresses on the z axis may be calculated by considering a ring of concentrated 

force at radius r:  

 ( )
12

1
2

0 0

11 1 tan 1
2

r z a z
p p a z a

θσσ υ
−
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 (3.1.17) 
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 (3.1.18) 

 1
1
2 z rτ σ σ= −  (3.1.19) 
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Fig.3.1.3: Variation of the σz/p0, σr/p0, σθ/p0 and τ1 in plane x=0. 

 
 The limit of the elastic yielding in the Hertz theory is for approximately 0.31p0 at 
a depth of 0.48a, hence plastic yielding would be expected to initiate beneath the 
surface. In order to estimate the limit of elastic deformation, are can use two criteria: 
Tresca maximum shear stress criterion and the Von Mises shear strain energy criterion.  
 By the Tresca criterion, the value of p0 for yield is given by: 

 ( ) ( )0
3 3.2 1.6
2 my y

p p k Y= = =  (3.1.20) 

 
and the Von Mises criterion: 
 ( )0 2.8 1.4

y
p k Y= =  (3.1.21) 

 
where:  

 { }1 2 1 3 2 3
1 1 1max ; ;2 2 2k σ σ σ σ σ σ= − − −  (3.1.22) 

and Y is the yield stress. 
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3.2 Greenwood and Williamson Model  
  

All surfaces are rough on a microscopic scale, and when the two rough surfaces  
are in contact the real area is very small compared to the apparent area of the contact. 
 When loading presses two rough surfaces together, only some peaks of the 
surfaces will be in contact, thus, these peaks often carry very high loads. This effect was 
analysed by Greenwood and Williamson in 1966 [28]. 

    
Fig.3.2.1: Schematic of the real area of contact (from [2]). 

 
The Greenwood and Williamson [18] model is one of the earliest models of elastic 

asperity contact.  
This is a statistical model that assumes the next simplifications: 

o The rough surface is covered with a large number of asperities, which, at 
least near their summit, are spherical; 

o Asperity summits have a constant radius on each surface; 
o Asperity heights vary randomly; 
o Most engineering surfaces have a Gaussian distribution of peak heights.  

The analysis of the contact between two rough surfaces can be simplified by a 
contact between one smooth surface and one rough surface. The rough surface has a 
equivalent roughness of the two surfaces. This equivalent rough surface has the asperity 
curvature equal of the sum of the curvatures of the two rough surfaces: 

 
1 2

1 1 1

p p pR R R
= +  (3.2.1) 

 
and the standard deviation of the equivalent rough surface is given by:  

 ( )2 2
1 2p p pσ σ σ= +  (3.2.2) 
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Fig.3.2.2: Schematic of the contact between one smooth plane and one rough 

surface with equal asperities –  (from [2]) 
 

 The behaviour of an individual asperity is known from the Hertzian equations, the 
load Wi and the area of contact Ai for each asperity is: 

 
*

1/ 2 3/ 24
3i
EW R δ=  (3.2.3) 

and   
 iA Rπ δ=  (3.2.4) 
 
For N asperities the total load Wt will be equal to NWi, and the total real area  
 t iA NA=  (3.2.5) 
 
then:  

 
* 3/ 2

1/ 2 1/ 2

4
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t
t

E AW
N Rπ

=  (3.2.6) 

 
 The critical load beyond which the plastic deformation occurs can be estimated 
calculating the mean (pm) or maximum contact pressure (p0):  

 
1/3* 1/ 2 *

0 1/ 2 3 2

2 4 16
3 3 9

i
m
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W E WEp p
A R NR

δ
π π

⎛ ⎞
= = = = ⎜ ⎟

⎝ ⎠
 (3.2.7) 

Using the Von Mises shear stress energy criterion, the initial yielding is initiated 
for: 0.9 / 3mp Y H≈ ≈ , then the critical load which the plasticity occurs is :  

 2

3 2 3

*48
critW R H
N E

π
≈  (3.2.8) 

 
 For a contact between one rough surface and a smooth plane, Greenwood and 
Williamson proposed to analyse this contact with amplitude distribution function: 

 
Fig.3.2.3: Schematic representation of the contact between a rough surface and a 

smooth surface, and representation of the amplitude distribution function. 
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 If the two surfaces are separated by a distance d, the probability of making 
contact at any given asperity of height z is: 

 ( ) ( )
d

P z d z dzφ
∞

> = ∫  (3.2.9) 

 
and if there are N asperities in the surface, the probability of the number of contacts is: 

 ( )
d

n N z dzφ
∞

= ∫  (3.2.10) 

 
also, δ=z-d and Ai=πδRp the expected total area of contact will be given by: 

 ( ) ( )t p d
A NR z d p z dzπ

∞
= −∫  (3.2.11) 

 
and the total load is: 

 ( ) ( )3/ 2* 1/ 24
3t t t n n p d

W p A p A NE R z d p z dz
∞

= = = −∫  (3.2.12) 

 
where pt is real pressure, pn is apparent pressure, At is the real area of the contact and 
An is the apparent area. 

Using standardized variables, and describe heights in terms of the standard 
deviation σ of the height distribution. Also, introducing the surface of asperity summits 
per unit area: N=ηAn, where η is the density of asperities, gives: 

Number of contact spots:  
 ( )0nn A F Dη=  (3.2.13) 

Total contact area:  
 ( )1t n p pA A R F Dπη σ=  (3.2.14) 

Load:  

 ( )* 1/ 2 3/ 2
3/ 2

4
3 a p pW A E R F Dη σ=  (3.2.15) 

Where D is the dimensionless separation: / pD d σ=  and Fm(D) is a parabolic cylinder 
function and is given by:  

 ( ) ( ) ( )*m
m D

F D s D p s ds
∞

= −∫  (3.2.16) 

 
for the case that the amplitude distribution function is a Gaussian distribution: 
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2
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( )

( )
( )

2 2

1/ 2 1/ 2
1 ! 1exp exp

2 4 22 2
m

m D

s m DF s D ds U m D
π π
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⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦ ⎣ ⎦

∫  (3.2.18) 

for the case m≥0. 
The values of U are listed in Abramowitz and Stegun (1965) page 702-706, or can 

calculate numerically the function Fm(D). 
 

This contact model is defined by three parameters of the rough surfaces: σp, Rp 
and η. It is possible to use this model with the standard deviation of surface heights (σ) 
and the correlation length (β*) at which autocorrelation function ACF(τ)=0.1. This 
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possibility is presented by Onions and Archard in the paper “The contact of surfaces 
having a random structure”.  

 
In the contact have asperities that plasticize, the probability of a plastic contact 

is: 

 ( ) ( )
p

p d
prob z d z dz

δ
δ φ

∞

+
> + = ∫  (3.2.19) 

where wp is the limit for don’t have plastic deformation. 
 

 The total area of the contacts which become plastic (Apt) is given by: 

 ( ) ( ) ( ) ( )*

*

p p
pt p n p nd d

A R A s d z dz R A s d z dz
δ δ

πη φ πη φ
∞ ∞

+ +
= − = −∫ ∫  (3.2.20) 

 
where:  
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 (3.2.21) 

 
 The factor wp is slightly inadequate for a generalized surface roughness parameter 
because when the roughness increase the wp decrease. Therefore it is substituted by: 

 ( )
1 *

* 2 p
p

p

E
H R

σ
ψ δ

− ⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (3.2.22) 

 
 This factor is called the plasticity index and indicates the degree of plasticity in 
the contact. The critical value of the plasticity index varies with Apt/An but this variation 
is not significant. If assume Apt/An=0.02, if ψ<0.6, the deformation is largely elastic and 
if ψ>1, asperities deformation is largely plastic. One important conclusion of the index is 
if>1, the plastic flow occurs even at trivial normal loads. The probability of plastic flow 
is independent of the load and solely a function of the plasticity index as long as the 
asperities continue to deform independently.  
 In a plastic contact the mean contact pressure will be equal to the hardness and 
virtually independent of the load and of the geometry, the real area of plastic contact is 
given by: 

 n n
pt

p AA
H

=  (3.2.23) 

 
 

where H is the hardness of the softer material.  
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3.3 Chang Model 
 

The Chang or CEB model is an elastic-plastic asperities model for the contact 
between rough surfaces accomplished by Chang, Etsion, and Bogy in the article: “An 
Elastic-Plastic Model for the Contact of Rough Surfaces” in 1987 [20].  

The main characteristic of this model is the volume conservation of an asperity 
control volume during the plastic deformation.  

This model is similar to the Greenwood and Williamson model but it includes the 
consideration of the volume conservation. In the Greenwood-Williamson model the 
contact area is underestimated if a substantial percent of the contacts are plastic.  

It is assumed that asperity deformation is localized mainly in the vicinity of the 
contact, therefore, beyond a certain depth l under the contact the asperity remains 
undeformed as shown in next figure:  

 
Fig. 3.3.1: Schematic of the plastically deformed asperity. 

 
For interference δ/R<<1 (which is the normal case of contacting rough surfaces) 

the radius R is very close to that of the undeformed asperity shown by the dashed line. 
It is further assumed that the initial depth li at δ=δc which defines the control 

volume to be preserved at any interference δ=δc+δp is proportional to the total 
interference δ. Hence, the effect of a larger interference is felt deeper under the 
contact than that of a smaller interference:   

 
Fig.3.3.2: Schematic of the volume conservation.  
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The contact area of plastically deformed asperity at interference δ>δc can be 
found from the initial depth li at the inception of plastic deformation δ=δc and the 
additional plastic interference δp=δ-δc.  

Defining: 
 i il K δ=  (3.3.1) 
where Ki is a constant of proportionality that will be determined later. 
 The diameter ai of the to area of this model is obtained from Hertz theory and is: 

 ( )1/ 22i ca Rδ=  (3.3.2) 
 
 And the diameter of the lower boundary of the control region, located at a 
distance li+δc below the peak of the original undeformed asperity, is: 

 ( ) 1/ 2
2 2 i cb R l δ= +⎡ ⎤⎣ ⎦  (3.3.3) 

 
 Therefore the control volume is: 

 2 2 23 3
6 4 4

i
i i

lV a b lπ ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (3.3.4) 

 
 This volume has to be preserved as plastic deformation proceeds for cδ δ> , and 

the final height l of the deformed portion of the asperity is: ( )i p i cl l lδ δ δ= − = − − . The 
final diameter of its top contact surface is a  and its volume can be expressed as: 

 2 2 23 3
6 4 4
lV a b lπ ⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 (3.3.5) 

 
Using the equation of the control volume and the equations (3.3.1), (3.3.2), 

(3.3.3), it is possible to obtain the diameter of the contact area for interferences δ≥δc in 
the form: 
 2 4a R Cδ=  (3.3.6) 
 
where:  
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K

δ δ δ
δ δ δ

δ
δ

⎛ ⎞ ⎛ ⎞− + −⎜ ⎟ ⎜ ⎟
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− +
 (3.3.7) 

 
From this equation it can be seen that when δ=δc, C=1 regardless of K1 and for this 
condition the equation 3.5 gives the diameter of the Hertz theory. For δ>δc and provided 
K>1, have C>1 assuring that the contact area of a plastically deformed asperity is always 
larger than that obtained from the Hertz solution for the same interference δ. Assuming 
that the upper limit of the contact area is the one obtained from the surface micro 
geometry  model of purely plastic contacts, then it is required for an interference δ 
that: 

 ( )1/ 22
2
a Rδ<  (3.3.8) 

 
which yields the result: C<2 or: 
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2

1 2 1 c cK δ δ
δ δ

⎡ ⎤⎛ ⎞> −⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3.3.9) 

 
With this equation, concluding that for larger interferences δ, so that δc/δ 

approaches zero, K1 becomes larger. Hence, by selecting a sufficiently large value for K1 
the requirement in equation (3.3.8) is maintained over the whole range of δc/δ. From 
the equation (3.3.7) it is observed that as K1 increases the value of C approaches to: 

 2 cC δ
δ

= −  (3.3.10) 

 
 Substituting the equation (3.3.10) in the equation (3.3.2) the contact area of a 
plastically deformed asperity is obtained in the form:  

 
2

2
4

c
p

aA R δπ π δ
δ

⎛ ⎞= = −⎜ ⎟
⎝ ⎠

 (3.3.11) 

 
In the Greenwood model and Williamson the contact area at an interference δ is: 

Rπ δ whereas the purely plastic surface microgeometry model gives 2 Rπ δ for the contact 
area. Hence, from the equation (3.3.11) we can concluded that these two models have a 
different results. The contact area of an elastic-plastic asperity depends not only on the 
total interference δ but also on the ratio δc/δ representing the intensity of plastic 
deformation.  

They assume that for all plastically deformed asperities the average pressure over 
the contact area is equal to kH, i.e., the pressure pm. The contact load for such an 
asperity is: 

 2 cW R kHδπ δ
δ

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (3.3.12) 

 
This assumption is reasonable since asperities in the early stages of plastic deformation 
have average contact pressures less than kH while those with relatively large plastic 
interferences will have average contact pressure approaching H.  
 Now it is possible to obtain the contact area for an elastic-plastic contact, if have 
the amplitude distribution function of the profile. The total contact area is: 
 ( ) ( ) ( )t e pA d A d A d= +  (3.3.13) 
 
Where:  

 ( ) ( ) ( )cd

e n d
A d A R z d z dz

δ
η π φ

+
= −∫  (3.3.14) 

 

 ( ) ( ) ( )2
c

p n cd
A d A R z d z dz

δ
η π δ φ

∞

+
= − −⎡ ⎤⎣ ⎦∫  (3.3.15) 

 
And the contact load is given by: 

 ( ) ( ) ( ) ( ) ( )3/ 2* 1/ 2
*

4 2
3

c

c

d

a cd d

HP d A E R z d z dz Rk z d z dz
E

δ

δ
η φ π δ φ

+ ∞

+

⎛ ⎞= − + − −⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠∫ ∫ (3.3.16) 

 
 

This model is more efficient than the Greenwood and Williamson model because is 
applied to the entire deformation range, from fully elastic to fully plastic. The results of 
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GW model deviate greatly from the experimental results for loads that exceeds about 
half of the yield point load (Powierza et al. 1992), however, this model has a several 
shortcomings: the discontinuity in the contact load at the critical point of the initial 
yielding (the average contact pressure is allowed to jump from 2/3KH in the elastic 
regime to KH in the plastic regime) and the other shortcoming is that this model allows 
only two possible states of deformation for a contacting asperity, either fully plastic or 
fully elastic, the transition from fully elastic to fully plastic is not modelled.  

 

3.4 Zhao Model 
 

This model is an other elastic-plastic asperity microcontact model for contact 
between two nominally flat surfaces with the transition between fully elastic 
deformation to fully plastic deformation, accomplish by Zhao, Maietta and Chang in the 
article: “An Asperity Microcontact Model Incorporating the Transition from Elastic 
Deformation to Fully Plastic Flow” in 2000 [21]. The transition from fully elastic 
deformation to fully plastic flow of the contacting asperity is modelled based on contact 
mechanics theories in conjunction with the continuity and smoothness of variables 
across different modes of deformation. 
 The assumptions following in this model are the same as those made in the GW 
model and CEB model: 

 The asperity distributions is isotropic; 
 Asperities are, at least near their summits, spherical; 
 Asperity summits have a uniform radius R, but their heights vary randomly; 
 The interactions among contacting asperities are neglected; 
 Only the asperities deform during contact and no bulk deformation occurs.  

 
The Elastic Contact: 
 

From the Hertz theory the interference (δ), the contact load (we),  and the mean 
contact pressure (pm) are given by: 

 
2

*

3
4

ap R
E
πδ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.4.1) 

 

 * 1/ 2 3/ 24
3ew E R ω⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.4.2) 

 

 
1/ 2*

0
2 4
3 3m

Ep p
R
ω

π
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (3.4.3) 

 
the critical interference is for p0=kH: 

 
2

1 *

3
4c

kH R
E

πδ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.4.4) 

 
 when δ < δ c1, the contact is elastic, and when δ ≥ δ c1, the contact is either 
elastoplastic or fully plastic.  
 
Fully Plastic: 
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 When δ increases to another critical value δ c2 at which the mean contact pressure 
pa of the asperity reaches the value of H, fully plastic deformation occurs. For this stage 
(δ > δ c2), the mean contact pressure pm remains constant at H:  
 mp H=  (3.4.5) 
 The contact area in this stage is equal to the geometrical intersection of the flat 
with the original undeformed profile of the asperity: 
 2pA Rπ δ=  (3.4.6) 
 
 The contact load wp is equal to the contact area multiplied by the mean contact 
pressure: 
 2pw R Hπ δ=  (3.4.7) 
 

The minimum value of this critical value (δc2) may be estimated based on a simple 
analysis, at δ=δc2 the load carried by the contact is equal to 22 cR Hπ δ , by equation 
(3.4.7), and the load carried by the contact at δ=δc2 had it been elastic, would have 

been equal 
1/ 2* 3/ 2

2
4
3 cE δ⎛ ⎞

⎜ ⎟
⎝ ⎠

, by the equation (3.4.2). Therefore: 

 * 1/ 2 3/ 2
2 2

42
3c cR H E Rπ δ δ⎛ ⎞< ⎜ ⎟

⎝ ⎠
 (3.4.8) 

or 
 

 
2 2

2 * 2 *

3 4 3
2 4c

H kHR R
E k E
π πδ ⎛ ⎞ ⎛ ⎞> =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.4.9) 

 
Using the equation (3.4.4) into the above expression yields: 
 2 125c cδ δ>  (3.4.10) 
 

The minimum value of δc2 may also be further estimated using experimental 
results from Johnson (1985), fully plastic deformation occurs when the contact force at 
fully plastic deformation, wf, is about equal to 400 times that at initial yielding, wy: 

 400f

y

w
w

=  (3.4.11) 

 
 Using the equation (3.4.2), the following expressions are obtained for wf and wy: 

 * 1/ 2 3/ 2
1

4
3y cw E R δ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (3.4.12) 

 

 * 1/ 2 3/ 2
2

4
3f cw E R δ⎛ ⎞≤ ⎜ ⎟

⎝ ⎠
 (3.4.13) 

 
and dividing the equation (3.4.13) by equation (3.4.12): 

 
3/ 2

2

1

400fc

c y

w
w

δ
δ

⎛ ⎞
≥ =⎜ ⎟

⎝ ⎠
 (3.4.14) 

 
or 
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 2 154c cδ δ≥  (3.4.15) 
 

This expression shows that the contact interference at the onset of fully plastic 
deformation would be at least 54 times that the initial yielding. 

 
 

Elastoplastic Contact: 
When the interference is between δc1 and δc2, the asperity deforms 

elastoplastically. Since the total deformation is composed of a mixture of the elastic and 
plastic deformations in this stage, the relations for the contact area (Aep) and the mean 
contact pressure (pm) as functions of the interference δ become complex.  

The relationship between Pm and δ can be derived from the one equation 
presented by H. A. Francis (1976) based on a statistical analysis of spherical 
indentations: 

 1 2
/ln
/

m

R R

p h bC C
Y Y E

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
 (3.4.16) 

 
where, YR is the unaxial flow stress of the material, h the displacement of the contact 
center, b the radius of the contact area, C1 and C2 are the regression constants.  
Therefore, the dependence of Pa and δ in the regime of the elastoplastic deformation of 
the asperity may analogously be characterized by the following logarithmic function: 

 1 2 lnmp a a
a
δ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (3.4.17) 

 
where a1 and a2 are two constants to be determined and a is the contact radius of the 
asperity.  
 The relation between a and δ within the transitional regime may be established 
from the a - δ relations for the two extremes of elastic and fully plastic deformations. 
These two relations are: 

 ( ) ( )1/ 2
1ca Rδ δ δ= ≤  (3.4.18) 

 

 ( ) ( )1/ 2
22 ca Rδ δ δ= ≥  (3.4.19) 

 
 When the asperity deforms elastoplastically, the following relation is expected: 

 ( )1/ 2a C Rδ=  (3.4.20) 
 
where C is a variable coefficient having a value between: 1≤C≤2. Substituting this 
equation in (4.17) we have: 
 ( )3 4 lnmp a a δ= +  (3.4.21) 
 
where:  
 ( ) ( )3 1 2 2ln 0.5 lna a a C a R= + −  (3.4.22) 
 
and  
 4 20.5a a=  (3.4.23) 
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are the functional parameters to be determined. 
 The continuity between pa and δ requires that the mean contact pressure pa in 
the elastoplastic transitional regime be equal to that in the elastic regime at δ=δc1. It 
also requires Pm to be equal to the fully plastic contact pressure at δ=δc2. Then for 
elastic regime we have: 
 ( )3 4 1ln ma a p kHδ+ = =  (3.4.24) 
 
and for plastic regime we have: 
 ( )3 4 2lna a Hδ+ =  (3.4.25) 
 
Solving these two equations: 

 ( ) ( )
( ) ( )

2
3

2 1

ln
1

ln ln
a H H k

δ
δ δ

= − −
−

 (3.4.26) 

 
and  

 
( )

( ) ( )4
2 1

1
ln ln

H k
a

δ δ
−

=
−

 (3.4.27) 

 
Therefore, the mean contact pressure in the regime of the elastoplastic 

deformation is given by: 

 ( ) ( ) ( )
( ) ( )

2

2 1

ln ln
1

ln lnmP H H k
δ δ
δ δ

−
= − −

−
 (3.4.28) 

 
The relation between contact area Aep and the contact interference δ can be 

modelled by a polynomial smoothly joining the expressions for Ae and Ap as functions of 
δ. The domain of this polynomial is from δc1 to δc2 and it should monotonically increase 
and satisfy four boundary conditions:  
 ( ) ( )1 1ep c e cA Aδ δ=  (3.4.29) 
 

 
( ) ( )1 1ep c e cdA dA

d d
δ δ
δ δ

=  (3.4.30) 

 
 ( ) ( )2 2ep c p cA Aδ δ=  (3.4.31) 
 

 
( ) ( )2 2ep c p cdA dA

d d
δ δ
δ δ

=  (3.4.32) 

 
Using a polynomial of the third degree, the template of these curve is: 

 3 22 3 , 0 1y x x x= − + ≤ ≤  (3.4.33) 
 

This curve passes through the lower left and upper right corners of its bounding 
box (x=0, x=1, y=0 and y=1) and is tangential to the lower and upper edges. For this 
curve to satisfy the four stated boundary conditions will need to be transformed which 
involves translating and scaling δ so that  δ=δc1 and δ=δc2 corresponded to x=0 and x=1 
respectively: 
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 1

2 1

c

c c

x δ δ
δ δ

−
=

−
 (3.4.34) 

 
The function output must then be scaled by the distance between the top and 

bottom of the quadrilateral on the Aep-δ plane, which represents the asperity contact 
areas at the fully plastic and fully elastic states. The scaled function is translated by 
adding it to the fully elastic Ae- δ function. The function simplified for Aep  are: 

 
3 2

1 1

2 1 2 1

1 2 3c c
ep

c c c c

A R δ δ δ δπ δ
δ δ δ δ

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
⎢ ⎥= − +⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.4.35) 

 
In the figure 3.4.1 the plot with relation between the real area of contact and the 

interference is shown. 

 
Fig. 3.4.1: Relation between the real area of contact (A) and interference (δ)  

 
Using the equations (4.26) and (4.29) it is possible determine the contact load 

(wep) of the asperity in the regime of elastoplastic deformation: 

 ( ) ( ) ( )
( ) ( )

3 2
2 1 1

2 1 2 1 2 1

ln ln
1 1 2 3

ln ln
c c c

ep a ep
c c c c c c

w p A H H k R
δ δ δ δ δ δ π δ
δ δ δ δ δ δ

⎡ ⎤⎡ ⎤− ⎛ ⎞ ⎛ ⎞− −
⎢ ⎥= = − − × − +⎢ ⎥ ⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

(3.4.36) 

 
Now the expressions in order to calculate the total real area (At) and the total 

load (Wt) in the contact between two rough surfaces can be given with the amplitude 
distribution function (Φ(z)): 

( ) ( ) ( )

( ) ( ) ( )1 2

1 2

c c

c c

t et ept pt

d d

e ep pd d d

A d A d A d A

N A z dz N A z dz N A z dz
δ δ

δ δ
φ φ φ

+ + ∞

+ +

= + +

= + +∫ ∫ ∫
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( ) ( )

( )

1 2

1

2

3 2

1 1

2 1 2 1

1 2 3

2

c c

c

c

d d c c
a ad d

c c c c

a d

A R z dz A R z dz

A R z dz

δ δ

δ

δ

δ δ δ δη π δφ η π δ φ
δ δ δ δ

η π δφ

+ +

+

∞

+

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
⎢ ⎥= + − + +⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

+

∫ ∫

∫
(3.4.37) 

 
and 

( ) ( ) ( ) ( )

( ) ( ) ( )1 2

1 2

c c

c c

t et ept pt

d d

e ep pd d d

W d W d W d W d

N w z dz N w z dz N w z dz
δ δ

δ δ
φ φ φ

+ + ∞

+ +

= + + =

= + +∫ ∫ ∫
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( ) ( )

( )

1

2

1

2

1/ 2 3/ 2

3 2

2 1 1

2 1 2 1 2 1

4
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ln ln1 1 2 3
ln ln

2

c

c

c

c

d

a d

d c c c
a d

c c c c c c

a d

A ER z dz

A R H H k z dz

A HR z dz

δ

δ

δ

δ

η δ φ

δ δ δ δ δ δη π δφ
δ δ δ δ δ δ

πη δφ

+

+

+

∞

+

= +

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞− − −
⎢ ⎥+ − − × − + +⎜ ⎟ ⎜ ⎟⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

+

∫

∫

∫

(3.4.38) 

The normalization of these equations can be done diving by Aa and AaE 
respectively, and the all length parameters in these equations are normalized by σ: 

 

( )

( )
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* *

* *
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* *
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* *
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* * * * *

3 2* * * *
* * * *1 1

* * * *
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h yt
t h y

a

h y c c
h y

c c c c

h y

AA z dz
A

z dz

z dz

ω

ω

ω
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ω ω ω ω

πβ ω φ
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−
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− +

∞

− +

= = +

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
⎢ ⎥+ − + +⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

+

∫

∫

∫

 (3.4.39) 

 
and 
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( )

* * *
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* *

* * *
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* * *
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* *
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* * * * *

3 2* * * * * *
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E

δ

δ

δ

σβ δ φ

δ δ δ δ δ δπ β
δ δ δ δ δ δ

π β δ φ

− +

−

− +

− +

−

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞− − −
⎢ ⎥+ − − × − + +⎜ ⎟ ⎜ ⎟⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦

+

∫

∫

*
2cδ

∞

+∫

 (3.4.40) 

 
 
where in this case: 
 Rβ ησ=  (3.4.41) 
 
 * * * *

sz h yδ = − +  (3.4.42) 
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3.5 Jeng and Wang Model 
 Jeng and Wang model is another elastic-plastic microcontact model taking into 
account the elastic, elasto-plastic and fully plastic deformation, but the difference is 
that this model consider that the contact area between the two rough surfaces is 
elliptic. This model is accomplish by Jeng and Wang in the article  “An Elliptical 
Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation” in 2003 
[23]. 
 
The Elastic Contact 
 In the contact of the one elliptic asperity and a smooth plane the contact area is 
an ellipse with semiminor radius a and semimajor radius b . The eccentricity of the one 
ellipse (e) is: 

 
2

2 1 ae
b

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (3.5.1) 

 
and the mean effective radius of curvature (Rm) is:  

 
1 1 1 1

2m x yR R R
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.5.2) 

 

 
Fig 3.5.1: Schematic of the interference of an deformed asperity. 

 
 The contact area in this case is: 
 A abπ=  (3.5.3) 
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From the theory of elasticity, the contact area of the semimajor contact ellipse 
radius, can be define by: 

 
( )
( )

1/3

* 2

3
2 1

mE e FR
b

E eπ

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
 (3.5.4) 

 
The maximum contact pressure: 

 0
3
2

Fp
A

=  (3.5.5) 

 
 

 The interference of an asperity: 

 
( ) ( )

( )

1/32 2/3

*

12 3
2 4m

eK e F
E e R E
π

δ
π

⎡ ⎤− ⎛ ⎞⎢ ⎥= ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (3.5.6) 

 
where K(e) and F(e) are the complete elliptic integrals of the first and second kinds 
respectively: 

 ( ) ( )
0.5/ 2 2 2

0
1 sinK e e d

π
ϕ ϕ

−

= −∫  (3.5.7) 

 

 ( ) ( )
0.5/ 2 2 2

0
1 sinF e e d

π
ϕ ϕ= −∫  (3.5.8) 

 
Combining the equations (3.5.1), (3.5.3), (3.5.4), (3.5.5) and (3.5.6), the real 

elastic contact area is: 

 ( ) ( )
( )( )

( )10.521
e m m

E e
A R f e R

K e e
δ π δ π δ

⎡ ⎤
⎢ ⎥= =
⎢ ⎥−⎣ ⎦

 (3.5.9) 

 
and the load is: 

 ( ) ( )
( ) ( )

( )
0.5

* 0.5 1.5 * 0.5 1.5
20.51.5 2

4 4
3 31

e m m

E e
F E R f e E R

K e e

π
δ δ δ

⎡ ⎤
⎢ ⎥= =
⎢ ⎥−⎣ ⎦

 (3.5.10) 

 
The critical interference can be define according Horng -1998 ([32]): 

 
( ) ( )
( )

2

1 2 */ 2c m

K e E e HR
E

δ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.5.11) 

 
When δ<δc1, the contact is elastic, and when δ≥δc1, the contact is either 

elastoplastic or fully plastic. 
  
Fully plastic contact 
 

Volume conservation is used for the analysis of the fully plastic contact. The fully 
plastic flow occurs when δ≥ δc2 : 
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Fig 3.5.2: Schematic of the geometry of an plastically deformed asperity. 

 
Using the equations (3.5.4), (3.5.6) and the equation (3.3.3) from the CEB Model, 

the radius of the lower boundary of the contact region, can be found. Hence (bc1) can be 
represented by: 

 
( )
( )( )

1/ 2

1 21
m i

c

E e R
b

K e e
ω⎡ ⎤

⎢ ⎥=
−⎢ ⎥⎣ ⎦

 (3.5.12) 

 
and (bu): 

 ( ) 1/ 2

1 12u y c cb R l ω⎡ ⎤= +⎣ ⎦  (3.5.13) 

 
the boundary conditions are: 
 1 1 1, ,c c cx a y b z ω= = =  (3.5.14) 
 
 1 1, ,u u c cx a y b z lω= = = +  (3.5.15) 
 

The asperity could be approach by the quadratic function, using the boundary 
conditions (3.5.14) and (3.5.15), this function is: 

 2 2
2 2 2 2

1 1u c u c

l lz x y
a a b b

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

 (3.5.16) 

 
Thus, the control volume of this elliptic model is: 

 ( )( )0.52 2 21
1 1

2
c

u c
lV b b eπ

= + −  (3.5.17) 
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 Assuming that the eccentricity of the ellipse is uniform during deformation and 
conservation of volume, the final height l of the deformed portion of the asperity is: 
 ( )1 1 1c f c cl l lω δ δ= − = − −  (3.5.18) 
 

Using the equations (3.5.12), (3.5.13), (3.5.17) and (3.5.18) we can obtain the 
product of the semiminor and semimajor radius of surface contact:  
 ( ) ( )3 4l l ma b f e f e R Cω=  (3.5.19) 
 
where: 

 ( ) ( )
( ) ( ) ( )( )

2

3 0.52 22 1 1

E e e
f e

e E e K e e
=

⎡ ⎤− − −⎣ ⎦
 (3.5.20) 

 

 
( )( )

( )

1 1 1
4

1

2 2 2 1

1

c c c
l

c
l

k f e
C

k

δ δ δ
δ δ δ

δ
ω

⎡ ⎤ ⎛ ⎞− − + −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠=
− +

 (3.5.21) 

 

 ( )
( ) ( ) ( )

( )

2

4 2

2 1E e e K e
f e

K e e

⎡ ⎤− −⎣ ⎦=  (3.5.22) 

 
and kl is a constant of proportionality : lc1=klδ. 

For δ>δc1 and provided kl>1, have 2<C<K(e)/E(e), assuring that the contact area of 
a plastically deformed asperity is always larger than that obtained from Hertz solution 
for the same interference. For purely plastic contact we have: 

 
( )

2
1

4 1

2 1

2 ( )

c

l
c
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f e

δ
δ δ

δ

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦>

−
 (3.5.23) 

 
From this equation, when δc1/δ approaches zero, kl becomes large, hence, if a 

sufficiently large value for kl is selected, the equation (3.5.21) approaches: 

 ( )( )1
42 2cC f eδ

δ
⎡ ⎤= − −⎢ ⎥⎣ ⎦

 (3.5.24) 

 
 Using this equation and the equation (3.5.19) are obtains the contact area of a 
plastically deformed asperity: 

 ( ) ( )( )1
3 42 2c

p mA R f e f eδπ δ
δ

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 (3.5.25) 

 
And when the interference δ is much larger than δc1 this equation gives the a fully 

plastic contact area: 
 ( )32p mA R fπ δ δ=  (3.5.26) 
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These authors assumed that the fully plastic deformed asperities will occur when 
the mean contact pressure is equal to H.  When the maximum pressure approaches to H, 
and remains constant, the fully plastic contact load is: 
 ( )32p mW R fπ δ δ=  (3.5.27) 
 

 
Elastoplastic contact 

The equations to calculate the area of the contact and the elastoplastic load have 
the same  relations which used in Zhao et al. model. 

Using the relation between pm and δ, based in the study of H. A. Francis in 1976: 

 1 2 lnmp a a
r
δ⎛ ⎞= + ⎜ ⎟
⎝ ⎠

 (3.5.28) 

 
The relation between δ-r may be established based in the transitional regime 

from the elastically critical interference and fully critical plastic contact.  
The contact area in GW model is: πr2=πRδ and the contact radius r Rδ= . The 

elliptic contact area is equal: A abπ= , simplifying these relations for an elliptic asperity 
one has: 

 ( )( )1/ 2
1 1m cab f e R forδ δ δ= ≤  (3.5.29) 

 
and 

 ( )( )1/ 2
1 22 m cab f e R forδ δ δ= ≤  (3.5.30) 

 
Hence, in this case the relation of pm and δ is: 

 1 2 lnmp a a
ab
δ⎛ ⎞= + ⎜ ⎟

⎝ ⎠
 (3.5.31) 

 
When δ=δc1, the equation (3.5.31) can be expressed as: 

 
( )( )
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1 1

ln c

m c
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f e R

δ

δ

⎡ ⎤
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 (3.5.32) 

 
and the inception of fully plastic deformation δ=δc2: 

 
( )( )

2
1 2 1/ 2

2 2

ln
2

c

m c

H a a
f e R

δ

δ

⎡ ⎤
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 (3.5.33) 

 
Solving these last two equations, the parameters a1 and a2 of the function can be 

determined: 
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 (3.5.34) 

 
and  
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 (3.5.35) 
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Then substituting a1 and a2 in equation (3.5.31) are obtains the mean contact 

pressure in the elastoplastic deformation: 

 ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )( )
2 3

2 1 3 1

ln ln 2 ln 2ln ln
1

ln ln ln 2 ln
c m l l

m
c c

f e R a b
p H H k

f e f e

δ δ

δ δ

− − − +
= − −

− − −
 (3.5.36) 

 
When have a=b, ( ) ( )3 4 1f e f e= = , these conditions are admitted in the Zhao model 

but this equation for pm is different that the one proposed in the Zhao et al. model 
(equation (3.4.26)). 

Using the relation between the contact area (Aep) and the interference (δ) 
proposed in Zhao et al. model we have: 

 ( )
3 2

1 1

2 1 2 1

2 3c c
ep e p e

c c c c

A A A A δ δ δ δ
δ δ δ δ
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 (3.5.37) 
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 (3.5.38) 

 
or: 
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 (3.5.39) 

 
and the contact load is: 
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 (3.5.40) 

 
The total area for a contact between one rough surface and a smooth plane can 

be calculated with the amplitude distribution function (Φ(z)): 
 ( ) ( ) ( ) ( )t e ep pA d A d A d A d= + +  (3.5.41) 
 
where: 

 ( ) ( ) ( ) ( )1

1
cd

e a m d
A d A R f e z d z dz

δ
η π φ
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= −∫  (3.5.42) 
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∫ (3.5.43) 
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The contact load is: 
 ( ) ( ) ( ) ( )t e ep pF d F d F d F d= + +  (3.5.45) 
 
where: 

 ( ) ( ) ( ) ( )1 1.5* 1/ 2
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(3.5.47) 

 
and 

 ( ) ( ) ( )
2

32 2
c

p a m d
F A R Hf e z d z dz

δ
η π φ

∞

+
= −⎡ ⎤⎣ ⎦∫  (3.5.48) 

 
 
 
 
 
 
 

3.6 Analysis of the asperity contact in FEM 
 
 A model of a contact mechanic between an asperity and a smooth plane was 
done, but it was not possible to obtain results because the model did not converge. 
Alterations to the used model must be made, changing the element types or the mesh. 
In the appendix 3 it has a example of the model used in the software ANSYS and the 
figure 3.6.1 and 3.6.2 two types of meshes used. 
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Fig. 3.6.1: Mesh of a parabolic asperity. 

 

 
Fig. 3.6.2: Other mesh of a parabolic asperity. 
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4. Approximation of the roughness profiles by mathematical functions 
 
 In order to study the contact mechanics between two rough surfaces the 
measured profiles, are normally approached by mathematical functions for the 
application of the existing models. Next, some methods for approximation the 2D 
roughness profiles by mathematical functions will be displayed. 
 

4.1 Parabola functions using the Aramaki formulation 
 
 Aramaki in the paper “The Contact Between Rough Surfaces With Longitudinal 
Texture – Part I: Average Contact Pressure and Real Contact Area”-[25] propose a form 
to approach the measured rough profile with quadratic functions in order to calculate 
the average pressure and the real contact area in a contact between two longitudinally 
rough surfaces. 
 First, he define an asperity: 

 
Fig. 4.1.1: Schematic of the definition of an asperity 

 
   In this figure L is the asperity width and ξ(L) is the asperity height having with L, 
this height is defined as the height of the parabola function above the reference plane 
having the same cross-sectional area as the actual measured asperity. 
 He admits that the distribution of the asperities widths follow an exponential 
function: 

 ( ) 1 exp Lp L
L L

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (4.1.1) 

 
The relationship between the asperity width and the asperity height will be found 

using the autocorrelation function, this relation is: 

 
2

L
ξ ασ

π
=  (4.1.2) 

 
Where α is a coefficient of autocorrelation function, and defined by: 

 
1α
τ

=  (4.1.3) 

 
and τ is the autocorrelation length: ( ) 0.368ACF τ = , σ is the standard deviation of the 
rough profile. The equation (4.1.2) correspond to the equation (8) in the paper [25], 
where the formulation used to give this equation is described.  
 The asperity curvature can be given by: 
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( )

( )( )
3/ 22

1

f x
K

f x

′′
=
⎡ ⎤′+
⎣ ⎦

 (4.1.4) 

 
For an asperity with width L and height ξ the curvature is: 

 2

8K
L
ξ

=  (4.1.5) 

 
 Using the radius of curvature the quadratic function that describe the asperity is: 

 2
2

4 4z x x
L L
ξ ξ

= − +  (4.1.6) 

 
In the figure 4.1.2 this approximation is represented: 

 
Fig. 4.1.2: Example of the approach the rough profile by parabolas using the method 

proposed by Aramaki [25] and [26]. 
 

The algorithm in Matlab used for calculate this approximation is in appendix 4. 
This approximation proposed by Aramaki gives good results when the autocorrelation 
function follows an exponential function. In the case of a small lot of the big asperities 
this method doesn’t give good results.  
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4.2 Parabola functions using the least mean squares 
 
 In this approximation parabolas functions that represent the peaks and the valleys 
are used. The standard equation used is: 
 2z ax bx c= + +  (4.2.1) 
 
 Where, z corresponds to the profile height and x the coordinate of the respective 
point. A peak or valley is constituted by n points: (x1,z1) (x2,z2) … (xi,zi)… (xn,zn). The 
best fitting function is the function that has the minimum least square error: 

 ( ) ( ) 22 2

1 1
min .

n n

i i i i i
i i

R z f x z ax bx c
= =

⎡ ⎤= − = − + + =⎡ ⎤⎣ ⎦ ⎣ ⎦∑ ∑  (4.2.2) 

 
 This function has two points defined, because it must start when the asperity 
starts (f(x0)=0) and end when the asperity ends (f(x1)=0), then it only has one unknown 
coefficient (the coefficient a was chosen): 
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The least square error is:  
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 (4.2.4) 

 
In order to obtain the least square error the first derivate in order of a must equaled 0:  

 0R
a
∂

=
∂

 (4.2.5) 

 
Resolving this equation we obtain: 
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(4.2.6) 

 
This approximation admitting that the base of the asperity is in x=0, in the figure 

4.2.1 is presented a plot with this approximation and the Matlab model used is reported 
in appendix 5. 
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Fig. 4.2.1: Approach with mean squares for c=0 

 
 With this approach it is very easy to obtain a profile described by mathematical 
functions, but it isn’t very good for the reason that in order to define one asperity the 
mean line is used moreover, in this case, the asperity can have one or more ‘peaks’ or 
‘valleys’ in the same asperity and the asperity has a large size in the base. Alternatively, 
if we are using for reference lines one distance c1, of the mean line for the peaks and a 
distance c2, for the valleys we obtain a better approximation because the probability of 
one parabola describing various peaks or valleys is reduced and the number of the points 
for the mean squares method is near of the maximum of the asperity. The values of c1 
and c2 can be the same used to calculate the peak density (RPc), but these values don’t 
have a standard. Therefore we will used the amplitude distribution function for estimate 
these values: 
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Fig. 4.2.2: Approach with mean squares using reference lines with height c1 and c2 

from the mean line. 
 

In this figure the line c1 represents the height for which the amplitude 
distribution function is equal to 30% (ADF(c1)=0.7), this approach permits to obtain a 
better approximation and the radius in the peak of the these functions are nearer to the 
real values. This value must be changed in the function of the approximation objective.  
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4.3 Parabola functions with the same area 
 
 Aramaki in [25] and [26] define asperity height ξ(L) how that height of the 
parabola function above the reference plane having the same cross-sectional area, but 
in description of the model, he doesn’t use this consideration.  
 This model, for approaching the rough surfaces uses quadratic functions in order 
to describe the peaks and the valleys with the condition that the real asperity has the 
same area that the function used for express the asperity.  
 The area of an asperity is: 

 
2

1

n

i
i n

A x z
=

= ∆ ∑  (4.3.1) 

 
where ∆x is the space between two points,  and n1 and n2 is the initial and finish point of 
the asperity. 
 The quadratic function is: 
 2z ax bx c= + +  (4.3.2) 
 

The coefficients a, b and c can be determined using the boundary conditions: for 
x=x0 and x=x1, z=0 and the area of an asperity described by this quadratic function is the 
same that the area of an asperity: 

 
13 2

03 2

x

x

ax bxA cx
⎤

= + + ⎥
⎦

 (4.3.3) 

 
 Resolving these equations obtain the quadratic function: 
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1 02 0 1
3 3 3

1 0 1 0 1 0

6 66 A x x Ax xAz x x
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+
= − + −

− − −
 (4.3.4) 
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Fig. 4.3.1: Representation of the approach the rough profile by quadratic functions 

with the same area that the real rough profile. 
 
 With this method the approach profile has the same value of Ra but in the cases 
where big values of Rz exist this approach doesn’t follow the highest peaks. Comparing 
this method with the method proposed for Aramaki this method can be better in the 
cases that the value Ra/Rz is low. 
 

4.4 Comparison of the approach profiles methods  
 

Others models with quadratic functions can be constructed using the others 
parameters, for example, a rough surface can be approached with quadratic functions 
using the condition that the both surfaces have the same Rq, however these 
approximations has a problem: the radius of curvatures of the asperities. This is a most 
important value in the mechanical contact analysis and when approach the profile with 
the means squares method or using the same area the radius of curvature have a big 
error admitting that the asperity width and the asperity height have the next relation 
(from [25]):  
   

 
( )

2
* *

*

2
1

L LL where L
L

ξ π α
σ π

= =
+

 (4.4.1) 

 
and where α is coefficient of autocorrelation. These equation can be simplified by the 
equation (4.1.2). In figures 4.1.2, 4.1.2, 4.1.2 have a plots with the representation of 
the asperity width and the asperity height for the three methods and using three 
different surfaces presented in the figure 4.1.1. 
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Fig.4.4.1: Roughness profiles of three surfaces.  

 

 
Fig.4.4.2:  Asperity height in function of the asperity width for a three approached 

profiles using the method of the mean squares. 
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Fig.4.4.3:  Asperity height in function of the asperity width for a three approached 

profiles using the method of the asperity with the same area..  
 
 

 
Fig. 4.4.4:  Asperity height in function of the asperity width for a three approached 

profiles using the Aramaki method. 
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 From this plots it is possible to conclude that for high values of asperity widths or 
heights the relation keep out from the approach used by Aramaki, but this values are 
most important in mechanical contact studies because are the asperities that to come in 
contact first.   
 
 
 The asperity radius is an important input data on the contact mechanic models. It 
is possible to estimate this value from the fourth spectral moment value, this spectral 
moment is calculated from the second derivate of the rough profile, equation 4.4.2: 

 
22

4 2

d zm E
dx

⎧ ⎫⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (4.4.2) 

where E{  } denotes a statistical estimator. 
The relation between the fourth spectral moment and the asperity radius is given by the 
equation 4.4.3. 

 
4

3
8 m

πβ =  (4.4.3) 

 
In the article “A simple numerical procedure to calculate the input data of 

Greenwood-Williamson model of asperity contact for actual engineering surfaces” – [33]  
three different methods for calculating the second derivate are presented. 

Simple derivation: 
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Three points derivation: 
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 Finite central differences: 
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i i i i i

i

z z z z zd z
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+ + − −⎛ ⎞ − + − + −
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⎝ ⎠
 (4.4.6) 

Where 1i ih x x+= − , in this article h=0.695 µm is used. 
Using this method is possible to estimate the asperity radius and approach the 

profile with a different method proposed by Aramaki [25]. The application of this 
method was not done in this work. In the future works must be done the confront 
between the radius of curvature obtained with the various methods.  



  62 

5. Experimental Results 
 
 In this chapter the roughness measures is described in three different surfaces 
and the analysis of the contact mechanic in these surfaces.  

5.1 The measured specimens 
 Three specimens in steel had been used in order to measure the roughness profile 
and with these results the variation in the roughness is studied when applied a load in 
the specimen.  

 Fig.5.1.1: The three measured specimens. 
 
 The specimens 1 and 2 is a bearing pad from the thrust bearings. The specimen 1 
is from of the a Glacier Thrust Bearing, these bearings have a small layer in aluminium 
tin alloy (Al-Sn). The specimen 2 is a bearing pad prepared in the Department of 
Mechanics, Nuclear and Production Engineering manufactory, the material of this pad is 
a AISI type 430 stainless steel. The specimen 3 is a cylinder carburized steel specimen 
(AISI 9310) used in friction and wear experiences in this department. This specimen was 
cut by a saw, so has a high value of Ra, Rq or Rt in the top. Only the top of this 
specimen was analysed in stylus and in the microscope. 
 

In the table 5.1.1 has the properties of each used specimen and the glass disc 
used in the apparatus for a contacts analysis: 

Property: Specimen 1 Specimen 2 Specimen 3 Glass Disc 
Modulus of Elasticity ≈70 GPa 200 GPa 200 GPa 80 GPa 

Poisson Ratio 0.33 0.29 0.29 0.22 
Yield Tensile Strength 124 MPa 310 MPa 1238 MPa - 

Ultimate Tensile Strength  165 MPa 517 MPa 993 MPa - 
Hardness Vickers 70 160 (*) 397 403 

Hardness (SI Units) 686.5 MPa(**) 1569 MPa (**) 3893 MPa (**)  3952 MPa (**) 
Tab.5.1.1 : Mechanical properties of the used specimens.( (*)

 Converted using the web 
calculator [28] and (**) converted using the web calculator [29]). 
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5.2 Roughness Measures with stylus method 
 

The topography of the surface was made in the stylus device: Hommel Tester 
T8000, in the three specimens topography measurements was done, the selected area 
for these topographies are 2x2 mm. The number of the scanned points in direction ‘x’ 
are 2000 and 201 scans in direction ‘y’ had been made.  

The results had been imported for ‘.asc’ files and after converted in the Matlab in 
matrixes, in the next figures there is the mesh 3d plots of these measures and in 
appendix 7 the complete analysis of these measures, using the software HommelMap 
Basic.  

 
The specimen 1, measure 1: 

 
Fig. 5.2.1: Specimen 1 measure 1, three dimension surface representation, dimensions 

in µm. 
 

 
Fig. 5.2.2: Specimen 1 measure 1, two dimensional surface representation, dimensions 

in µm. 
 

The first measure at the specimen 1 have a problem because in the measure area 
have a ‘micro’ defect, this effect induce a false roughness parameters and this measure 
introduce an error in the contact analysis for the reason that the defect have a big 
height comparing with the surface. For this reason, this measure was repeated in other 
zone. 
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The specimen 1, measure 2: 

 
Fig.5.2.3 : Specimen 1 measure 2, three dimension surface representation, dimensions 

in µm. 
 

 
Fig.5.2.4: Specimen 1 measure 2, XY plane representation, dimensions in µm. 

 
The specimen 2: 

 
Fig. 5.2.5: Specimen 2, three dimension surface representation, dimensions in µm 
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Fig.5.2.6 : Specimen 2, XY plane representation, dimensions in µm 

 
 
 
 
 

The specimen 3: 

 
Fig.5.2.7 : Specimen 3, three dimension surface representation, dimensions in µm 

 

 
Fig. 5.2.8: Specimen 3, XY plane representation, dimensions in µm 
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The results in appendix 7 there is an error in the scale, in the measure of the 
specimen 1, and in 3 there is an error in transversal length (direction y) containing a 
reduction of 40% caused by a problem in the linear transverse unit in direction ‘y’, this 
error influenced the application of the cut off filter. In specimen 2 this error is resolved. 

The stylus used for these measures was TKL 100/17, and the specification of this 
stylus is: tip radius= 5 µm; tip angle= 90º; tip load applied in the surface vertically: 
0.8N. 

The load applied in the measure is very low but in the specimen 1 is possible to 
view scratches generated by the tip of the stylus. These impressions are represented in 
the next image: 

 
Fig.5.2.9 : “Scratches” generated by the tip of the stylus. 

 
 The main cause of these ‘scratches’ is because the metal of these specimen is 
ductile. 

In the next table there is a summary with the three dimensional parameters and 
the results of the taker measurements: 

 
 Sa (µm) Sq (µm) Sp (µm) Sv (µm) St (µm) Ssk Sku Sz 

(µm) 
Specimen 1-a 0.13 0.349 2.03 7.46 9.49 -7.43 96 8.88 
Specimen 1-b 0.0516 0.0872 0.643 3.91 4.56 -9.78 276 3.21 
Specimen 2 0.0125 0.0198 0.114 0.162 0.276 0.111 9.48 0.242 
Specimen 3 0.304 0.38 1.39 2.06 3.45 -0.278 3.14 3.35 

Tab. 5.2.1: Summary of the roughness parameters for the three specimens. 
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5.3 Analysis of the contact area in the specimens – theoretical values 
 Using the presented models in the chapters 3.2, 3.3 and 3.4, the interference 
values and the real contact area was estimated when a load of 40 and 80N are applied to 
the specimens. These values are approached with the considerations: 

 The surface of the specimen is anisotropic; 
 The surface of the specimen is plain; 
 The apparent pressure is the same on all surface; 
 The glass disc is smooth. 

The roughness parameters used are one profile of the surface matrix measured 
and the roughness profile is approached using the Aramaki formulation because a 
important parameter for these models is the curvature of the asperities, that in the 
other models this value is sub valuated.  

In the next table there are the values of the apparent area of contact in the 
specimens, the pressure and the equivalent load which is applied in a line of the 
surface, admitting that this line has a 1.25 mm of length: 

 

 Apparent 
contact area 

Load Pressure Equivalent load 
(in line with 1.25 mm) 

40 N 0.138 MPa 0.1724 N/mm Specimen 1 290 mm2 
80 N 0.276 MPa 0.3448 N/mm 
40 N 0.138 MPa 0.1724 N/mm Specimen 2 290 mm2 
80 N 0.276 MPa 0.3448 N/mm 
40 N 0.796 MPa 0.9947 N/mm Specimen 3 50.27 mm2 
80 N 1.592 MPa 1.9894 N/mm 

Tab. 5.3.1: Apparent contact area and the equivalent load in ‘line’. 
 
The algorithms used for the determination of the deformation values and the real 

contact area is in appendix 8. 
 
The results: 

Greenwood and Williamson Model: 
Load: 40 N 80 N 

 Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 

Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 
Specimen 1 0.0560 7.55 0.0805 11.08 
Specimen 2 0.1041 18.72 0.1142 37.75 
Specimen 3 0.3539 1.19 0.6961 2.58 

Tab. 5.3.2: Deformation values an real contact area percentage using the Greenwood – 
Williamson model. 
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  Chang Model: 

Load: 40 N 80 N 

 Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 

Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 
Specimen 1 0.0560 7.55 0.0805 11.08 
Specimen 2 0.1041 18.72 0.1142 37.75 
Specimen 3 0.8030 3.57 1.0324 7.48 

Tab. 5.3.3: Deformation values an real contact area percentage using the Chang model. 
 
Zhao Model: 

Load: 40 N 80 N 

 Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 

Deformation 
(µm) 

Percentage of 
the Contact 

Area (%) 
Specimen 1 0.0560 7.55 0.0805 11.08 
Specimen 2 0.1041 18.72 0.1142 37.75 
Specimen 3 0.8463 4.3 1.0751 8.21 

Tab. 5.3.4: Deformation values an real contact area percentage using the Zhao model. 

 
The figures 5.3.1-5.3.3 the variation of the real contact area with the load is 

presented for a load applied in line with 1.25 mm (N/mm). 
 

 
Fig. 5.3.1: Percentage of real contact load of the specimen 1 as a function of load. 
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Fig. 5.3.2: Percentage of real contact load of the specimen 2 as a function of load. 

 

 
Fig. 5.3.3: Percentage of real contact load of the specimen 3 as a function of load. 
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The figures 5.3.4-5.3.4 the variation of the interference in µm with the load is 
presented for a equivalent load applied in line with 1.25 mm. 

 

 
Fig. 5.3.4: Interference of the specimen 1 as a function of load. 

 

 
Fig. 5.3.5: Interference of the specimen 2 as a function of load. 
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Fig. 5.3.6: Interference of the specimen 3 as a function of load. 
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5.4 Analysis of the contact area in the specimens using a optical microscope 
 
 For the three specimens the variation of the roughness was analyzed in the case 
of the contact mechanic between the specimen and one smooth plane. In these analyses 
it the one stereo zoom microscope (Nikon SMZ-10) was used with a maximum 
magnification (approximately 40x) and the smooth plane is a glass disc. The load was 
applied using the apparatus represented in the next figure: 

 
Fig.5.4.1: Apparatus used for applied the load in the specimen. 

 
 In the figure 5.4.2 there is a photo of the microscope and the devices used for 
these analyses: 
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Fig. 5.4.2: Apparatus used for the analysis of the real contact area. 

 
The obtained images 
 In the appendix 9 have a summary of the obtained images from these analysis. In 
the next is represented a comparison between the profiles obtained with the stylus and 
these images. 
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Specimen 1 

 
 
 
Specimen 2 
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Specimen 3 

 
Fig. 5.4.3-8: Comparison between the images obtained with the stylus and the 

microscope. The images on the left correspond a one real area with 2x2 mm and the 
right images correspond a one real area with 1.5x1.2 mm.  

 
 The specimen 3 have a two sequences of photos, the first sequence is a small 

indentation executed with a metal pen for the reference of the stylus measure. 
 The analysis with this method isn’t very conclusive because the variation in the 

images is not significant but contain a small differences if to analyze the variations in 
small lot of pixels, therefore only do a qualitative analysis. 

The total resolution of obtained images is 1280x1024 pixels and with the 
magnification these images correspond a real area with 1.5x1.2 mm in the specimen 
(1.17x1.17µm for each pixel).  

For a qualitative analysis was crop a lot of pixels in zone approximately with the 
same intensity of light (200x200 pixels) and convert the images for grayscale. Exporting 
for Matlab was constructed histograms and images using a diverse color map for a high 
contrast. The procedure is indicated in fig. 5.4.9. 

 
Fig. 5.4.9: Procedure for analysis of obtained images. 
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 The relationship between the colors of the false color image and the gray scale 
image has represented in the figure 5.4.10. 

 
Fig.: 5.4.10: Relationship between the colors of the false color image and the gray scale 

of the image. 
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Specimen 1 without filter:  
0 N 40 N 80 N 

   

   
 

Specimen 1 with yellow filter (λ=577 nm):  
0 N 40 N 80 N 
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Specimen 2 without filter:  
0 N 40 N 80 N 

   

   

 
Specimen 2 with yellow filter (λ=577 nm): 

0 N 40 N 80 N 
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Specimen 3 – zone 1 without filter:  
0 N 40 N 80 N 

   

   

 
Specimen 3 – zone 1 with yellow filter (λ=577 nm): 

0 N 40 N 80 N 
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Specimen 3 – zone 2 without filter: 
0 N 40 N 80 N 

   

   

 
Specimen 3 – zone 2 with yellow filter (λ=577 nm): 

0 N 40 N 80 N 
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Fig .5.4.11-59: Representation in Matlab® of a part of the microscope images 
elaborated applying a diverse color map for more contrast (top) and histograms of 

these images using grayscale(bottom).  
 
 From the analysis of these images it can be concluded that the area increase by 
increasing the load but that from these preliminary experimental investigations is not 
possible to quantify this increase because there are some error sources using this 
method: 

 The displacements of the glass disc and of the support is significant, this 
displacement change the image focus and the observable area;  

 Humidity or lubricant sediments induce some interference fringes; 
 The specimens were not completely flat, for this the apparent area is below the 

apparent area estimated; 
 The microscope magnification isn’t very high: for the specimen 2 the roughness 

isn’t detectable in the obtained images; 
 The light isn’t uniform in the all image; this effect can be reduced using a 

digital filters but isn’t a good solution, other solution is move the light peak to 
a corner. 

 
Despite these problems, an estimation of the real contact area should be possible 

using these method by using a more robust apparatus and choosing appropriate 
specimens. 
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Conclusions 
 
 The main objective of this work has been the study of the roughness changes 
when mechanical contacts occur between two surfaces. 

Some mechanical contact models has been presented in this dissertation. The 
mechanical contact study between two rough surfaces  is not simple because the 
interactions among asperities. Therefore the contact between two rough surfaces is 
substituted by a contact between a rough surface (with equivalent roughness) and a 
smooth plane.  In these models the real rough profile needs to be approached by 
mathematical functions. Some methods are presented, but the main parameter used in 
mechanical contacts models is the asperity radius of curvature curvatures, with mean 
squares method and same asperity area method the radius of curvature has high values 
which influence the results.  

A mechanical contact experimental study has been done with an apparatus where 
a load is applied in the specimen with a glass disc (smooth plane). Three specimens has 
been tested previously investigated by a stylus device. The changes in the roughness 
profile have been captured by a computer controlled camera connected to a stereo 
microscope. From these investigations the results are not completely satisfactory 
because some error sources, but it is evident that the real contact area increases with 
the load and that the methodology used is promising.  
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Appendix 1 – Abbott-Firestone curve 
 Model in Matlab (script) for construct the Abbot-Firestone curve, the amplitude 
distribution function and calculation of the Rk parameters: 

%Abbott-Firestone Curve and the Probability Distribution Function 
%function [abbot,adf]=abbot(data_x,data_z); 
x=data_x; 
rug=data_z; 
resolution=1000; 
%===Abbott-Firestone Curve=== 
maxr=max(rug); 
minr=min(rug); 
dis=length(rug); 
increment=(maxr-minr)/resolution; 
abbot=zeros(resolution+1,1); 
temp=maxr; 
j=1; 
while temp>minr 
    abbot_y(j)=temp; 
    for i=1:dis 
        if rug(i)>temp 
            abbot(j)=abbot(j)+1; 
        end 
    end 
    j=j+1; 
    temp=temp-increment; 
end 
%normalizing the vector abbot: 
for i=1:resolution+1 
    abbot(i)=(abbot(i)*100)/max(abbot); 
end 
subplot(1,2,1) 
area(abbot,abbot_y,minr) %plot area 
axis([0 100 minr maxr]) 
xlabel('%') 
ylabel('micron m') 
title('Abbot-Firestone Curve'); 
%===Probability Distribution Function=== 
temp=maxr; 
adf=zeros(resolution+1,1); 
j=1; 
while temp>0 
    for i=1:dis 
        if rug(i)>temp 
            adf(j)=adf(j)+1; 
        end 
    end 
    j=j+1; 
    temp=temp-increment; 
end; 
while temp>minr 
    for i=1:dis 
        if rug(i)<temp 
            adf(j)=adf(j)+1; 
        end 
    end 
    j=j+1; 
    temp=temp-increment; 
end; 
A=sum(adf)*increment; %area of the adf 
%normalizing adf 
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for i=1:resolution+1 
    adf_n(i)=adf(i)/A; 
end 
subplot(1,2,2) 
area(adf_n,abbot_y); 
axis([0 max(adf_n)+0.1 minr maxr]) 
ylabel('micron m') 
title('Amplitude Distribution Function (ADF)'); 
 
%====Algorithm for calculation of Rk parameters 
inte=fix((resolution+1)*0.4); 
 for i=1:fix((resolution+1)*0.6) 
     m(i)=(abbot_y(i)-abbot_y(i+inte))/(abbot(i)-abbot(i+inte)); 
 end 
 a=find(m==max(m)); 
c=abbot_y(a(1))-abbot(a(1))*m(a(1)); %y=mx+c 
j=1; 
for i=1:(resolution+1) 
    line(i)=m(a(1))*abbot(i)+c; 
end 
for i=1:(resolution) 
    if or(or(line(i)>abbot_y(i) & line(i+1)<abbot_y(i+1),line(i)<abbot_y(i) 
& line(i+1)>abbot_y(i+1)),line(i)==abbot_y(i)) 
        mr(j)=abbot(i); rk(j)=abbot_y(j); 
        j=j+1; 
    end 
end 
Mr1=min(mr) 
Mr2=max(mr) 
Rk=max(rk)-abs(min(rk)) 
clear m; 
m=find(abbot==Mr1); 
A1=0; 
for i=1:m(1) 
    A1=A1+(abbot(i+1)-abbot(i))*(abbot_y(i)-abbot_y(m(1))); 
end 
clear m; 
m=find(abbot==Mr2); 
A2=0; 
for i=m(1):resolution 
    A2=A2+(abbot(i+1)-abbot(i))*(abs(abbot_y(i))-abs(abbot_y(m(1)))); 
end 
Rpk=2*A1/Mr1 
Rvk=2*A2/(100-Mr2) 

 



  89 

Appendix 2 – Hertz formulas 
 Table summary with Hertz formulas for elastic contact: 

Parameter 

Circular Contact 
(Diameter 

contact=2a, Load 
W) 

Line Contact (With 
=2a, Load =W’/unit 
length along y axis 

Elliptical contact (*) 

Composite 
Radius 1 2

1 1 1
R R R
= ±  

1 2

1 1 1
R R R
= ±  

 

a bR R R=  

( ) ( )
1

aR
A B B A

=
+ − −

 

( ) ( )
1

bR
A B B A
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+ + −
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1/3

*

3
4
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E

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 
1/ 2'

*2 W Ra
Eπ

⎛ ⎞
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⎝ ⎠
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1*

3
4
WRc ab F
E

⎛ ⎞= = ⎜ ⎟
⎝ ⎠
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2a
R
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'
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1

2
2 2

2

2
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2
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2

W

R
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π
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2
2

1
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1/ 22

0 1 rp p
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a

⎡ ⎤≅ −⎢ ⎥⎣ ⎦
 

 
(*)For elliptical contact the parameters: 
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Appendix 3 – FEM model of mechanical contact between an asperity 
and a smooth plane, in ANSYS® 

FINISH 
/CLEAR 
/PREP7 
/TITLE, ANALYSIS OF THE CONTACT BETWEEN AN ASPERITY AND A SMOOTH 
PLANE IN ELASTIC-PLASTIC FIELD 
C***INTRODUCTION OF THE GEOMETRIC PROPERTIES 
R=3 !*ASK,R,THE RADIUS OF ASPERITY,3 
L=15 !*ASK,L,THE BASE LENGTH OF THE ASPERITY,10 
NX=5 !*ASK,NX,NUMBER OF ELEMENTS IN THE X DIRECTION,5 
NY=20 !*ASK,NY,NUMBER OF ELEMENTS IN THE Y DIRECTION,20 
PMAX=100 ![MPa] 
SPX=2 
SPY=4 
MYOUNGP1=210E+3 ![MPa] 
MYOUNGP2=80E+3 ![MPa] 
PO1=0.29 
PO2=0.2 
YS=360          ! Tensile Strength, Yield [MPa] 
MPLAST=5000     ! Tangent modulus Et [N/mm^2] 
NSTP=10  !Number of time steps 
C***ELEMENT DEFINITION OF THE PARABOLA 
ET,1,42,,,1 
MP,EX,1,MYOUNGP1 
MP,PRXY,1,PO1 
 
C***DEFINITION OF THE PARABOLA 
*DO,I,1,NY+1 
  N,I,((L/2)/NY)*(I-1),(-(1/8)*(L**2)*((I-
1)**2))/(R*(NY**2))+((1/4)*(L**2)*(I-1))/(R*NY) 
*ENDDO 
*DO,J,1,NX-1 
 M=-(L*NX)/(4*R*(-NX+J)) 
 B=((L**2)*J)/(8*R*(-NX+J)) 
 A=SQRT((-(L/2))**2+(-(L**2/(8*R)))**2) 
 X=(L/2)-(A/SQRT(1+M**2)) 
 A0=ABS(SQRT(1+(M**2))*(X-(L/2))) 
 A1=SQRT(((L*J)/(2*Nx)-(L/2))**2+(-(L**2)/(8*R))**2) 
 F=A1/A0 
 *DO,I0,1,NY+1 
  M=-(L*NX)/(4*R*(-NX+J)) 
  B=((L**2)*J)/(8*R*(-NX+J)) 
  X0=((L/2)/NY)*(I0-1) 
  Y0=(-(1/8)*(L**2)*((I0-
1)**2))/(R*(NY**2))+((1/4)*(L**2)*(I0-1))/(R*NY) 
  A=SQRT((X0-(L/2))**2+(Y0-(L**2/(8*R)))**2) 
  X=((L/2)-(F*A/SQRT(1+M**2))) 
  Y=(M*X+B) 
  N,(NY+1)*J+I0,X,Y 
 *ENDDO 
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*ENDDO 
J=NX-1 
M=-(L*NX)/(4*R*(-NX+J)) 
B=((L**2)*J)/(8*R*(-NX+J)) 
A=SQRT((-(L/2))**2+(-(L**2/(8*R)))**2) 
X=(L/2)-(A/SQRT(1+M**2)) 
A0=ABS(SQRT(1+(M**2))*(X-(L/2))) 
A1=SQRT(((L*J)/(2*Nx)-(L/2))**2+(-(L**2)/(8*R))**2) 
F=A1/A0 
*DO,I0,1,NY+1 
 M=-(L*NX)/(4*R*(-NX+J)) 
 B=((L**2)*J)/(8*R*(-NX+J)) 
 X0=((L/2)/NY)*(I0-1) 
 Y0=(-(1/8)*(L**2)*((I0-1)**2))/(R*(NY**2))+((1/4)*(L**2)*(I0-
1))/(R*NY) 
 A=SQRT((X0-(L/2))**2+(Y0-(L**2/(8*R)))**2) 
 X=((L/2)-(F*A/SQRT(1+M**2))) 
 Y=(M*X+B) 
 N,(NY+1)*(J+1)+I0,L/2,Y 
*ENDDO 
E,1,NY+2,NY+3,2 
EGEN,NY-1,1,1 
E,NY,2*NY+1,NY+1,NY+1 
EGEN,NX,NY+1,1,NY 
C***ELIMINATION OF KNOTS DUPLICATED IN THE CENTER OF THE SPHERE 
NSEL,,LOC,Y,(L**2/(8*R))-0.00001,(L**2/(8*R))+0.00001 
NUMMRG,NODE,0.0001 
C****DEFINITION oF THE PLANE 
*DO,K1,1,3 
 *DO,K,1,NY+1 
  N,(NX+1)*(NY+1)+K+(K1-1)*(NY+1),((L/2)/NY)*(K-
1),L**2/(8*R)*(1+((K1-1)/16)) 
 *ENDDO 
*ENDDO 
C***DEFINITION OF THE ELEMENT TO USE IN THE PLANE AND THEIR 
PROPERTIES 
ET,2,42,,,1 
MP,EX,2,MYOUNGP2 
MP,PRXY,2,PO2 
MAT,2 
C***ELEMENTS OF THE PLANE (GLASS) 
E,(NX+1)*(NY+1)+1,(NX+1)*(NY+1)+2,(NX+1)*(NY+1)+2+NY+1,(NX+1)*(NY+
1)+1+NY+1 
EGEN,NY,1,(NX*NY)+1 
EGEN,2,NY+1,(NX*NY)+1,(NX*NY)+NY 
C***INTRODUCTION OF GAP ELEMENTS 
ET,3,12,0,0,0,1 
R,2,0,1E+10,  
TYPE,3 
REAL,2  
E,2,(NX+1)*(NY+1)+2   
EGEN,NY-1,1,NX*NY+2*NY+1 
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EPLOT 
FINISH 
C*** The Solution Processor 
/SOLU 
C*** 
C***DOF Constraints 
NSEL,,LOC,Y,-0.001,+0.001 
D,ALL,UY,0     !DOF constraints at nodes in the base 
NSEL,ALL 
NSEL,,LOC,X,(L/2)-0.001,(L/2)+0.001 
DSYM,SYMM,X   !Symmetry  
NSEL,ALL 
C***LOADS 
NLGEOM,ON !Large-deflection effects are to be included in the 
model 
TB,BISO,1   !Bilinear isotropic hardening using von Mises 
plasticity  
TBDATA,1,YS,MPLAST       !Yield stress and Tangent modulus  
C*** 
C*** Options for no-linear analysis  
C*** 
NROPT,FULL         ! Use full Newton-Raphson 
NSTP=1 
*DO,T,1,NSTP 
 TIME,T  
 NSEL,,LOC,Y,(L**2/(8*R))*(1+(2/16))-
0.001,(L**2/(8*R))*(1+(2/16))+0.001 
 SF,ALL,PRESS,(-PMAX*T)/NSTP     !Load for time step I 
 NSEL,ALL 
 NSUBST,30               !Number substeps 
 AUTOTS,ON               !Use automatic time stepping 
 KBC,0                   !Specifies stepped or ramped loading 
within a load step     
 OUTRES,ALL,ALL     !All solution items except SVAR and LOCI 
records for every substep 
 NEQIT,50                !Specifies the maximum number of 
equilibrium iterations 
 LSWRITE,T  
 CNVTOL,U,,0.001     ! Sets convergence: displacement-U   
 NCNV,0           
*ENDDO 
LSSOLVE,1,NSTP        ! solve the NSTP load steps. 
FINISH 
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Appendix 4 – Matlab® model for approach roughness profiles using the 
Aramaki formulation 

Model to approach the roughness real profile by polynomial functions using the 
Aramaki formulation [25]: 

%model for approach the roughness profile by mathematical functions 
%function [rug_a]=approach(data_x,data_z) 
%the real profile will go approach by one profile with parabolas using the 
%======================== 
%===Aramki formulation=== 
%======================== 
%Input data: vector data_z with the roughness points and vector 
%data_x with the respective coordinates 
%Output data: vector rug_a with the approached roughness and the respective 
%vector X with the coordinates 
x=data_x; 
x=data_x; 
rug=data_z; 
%determination of ACF length and the coefficient of ACF, ACF length is the 
%length where autocorrelation function is 0.368 (=1/e) 
[ACF,Lags,Bounds] = autocorr(rug,length(x)-1); 
index_ACF_0368=1; 
while ACF(index_ACF_0368)>0.368 
    index_ACF_0368=index_ACF_0368+1; 
end 
%plot(x,ACF); %plot whith the fuction of autorrelation 
length_ACF=x(index_ACF_0368)-x(1); 
alfa=1/length_ACF; 
%standard deviation: 
sigma=std(rug); 
%definition of a vector L_peak (peaks), obtained considering the cross with 
the reference line: 
n=length(x); 
k=1; 
for i=1:n-1 
    if ((rug(i)<=0)&(rug(i+1)>0)); 
       j=i+1; 
       while ((rug(j)>=0)&(j+1<n)) 
           if  rug(j+1)<0 
               Lpeak(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lpeak(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_peak(k)=Lpeak(k,2)-Lpeak(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%definition of a vector L_valley (valleys), obtained considering the cross 
with the reference line: 
k=1; 
for i=1:n-1 
   if ((rug(i)>=0)&(rug(i+1)<0)); 
       j=i+1; 
       while ((rug(j)<=0)&(j+1<n)) 
           if  rug(j+1)>0 
               Lvalley(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lvalley(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_valley(k)=Lvalley(k,2)-Lvalley(k,1); 
               k=k+1; 
           end 
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           j=j+1; 
       end 
   end 
end 
%create one vector whith the x positions of the all crossings whith the 
%reference line 
for i=1:(length(L_peak)) 
    Lp(i)=Lpeak(i,1); 
    Lp(i+length(L_peak))=Lpeak(i,2); 
end 
for i=1:(length(L_valley)) 
    Lv(i)=Lvalley(i,1); 
    Lv(i+length(L_valley))=Lvalley(i,2); 
end 
%vector X that contain all x positions (positions of rough points and the 
%crossings) 
X=[]; 
X=[x';Lp';Lv']; 
X=unique(X); 
X=sort(X); 
 
%create one new vector RUG with the same length that X 
RUG=[]; 
for i=1:length(X) 
    for j=1:length(x) 
        if X(i)==x(j) 
            RUG(i)=rug(j); %the others positions RUG=0 
        end 
    end 
end 
%generation of the one profile approach by parabolas 
csi_peak=L_peak*sqrt(2/pi)*alfa*sigma; %equation 8 Aramki part I 
csi_valley=L_valley*sqrt(2/pi)*alfa*sigma; 
mean_L_peak=(mean(L_peak)); 
mean_L_valley=(mean(L_valley)); 
mean_L=1/2*(mean(L_peak)+mean(L_valley)); 
K1_peak=8*(csi_peak)./(L_peak.^2); %equation 9-b Aramki part I 
K1_valley=8*(csi_valley)./(L_valley.^2); 
%generation of the vector with points that represent parabolas 
%start the vectors with zeros and the same length that X 
parabola=zeros(1,length(X)); 
parabola_peak=zeros(1,length(X)); 
parabola_valley=zeros(1,length(X)); 
for i=1:length(L_peak) 
    j=find(X==(Lpeak(i,1))); 
        while (X(j)>=Lpeak(i,1)&X(j)<=Lpeak(i,2)) 
        parabola(j)=-(4*csi_peak(i)/(L_peak(i)^2))*(X(j)-Lpeak(i,1)-
L_peak(i)/2)^2+csi_peak(i); 
        parabola_peak(j)=parabola(j); 
        j=j+1; 
        end 
end 
for i=1:length(L_valley) 
    j=find(X==(Lvalley(i,1))); 
        while (X(j)>=Lvalley(i,1)&X(j)<=Lvalley(i,2)) 
        parabola(j)=(4*csi_valley(i)/(L_valley(i)^2))*(X(j)-Lvalley(i,1)-
L_valley(i)/2)^2-csi_valley(i); 
        parabola_valley(j)=parabola(j); 
        j=j+1; 
        end 
end 
rug_a=parabola; 
plot(X,RUG,X,parabola) 
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Appendix 5 – Matlab® model for approach roughness profiles using the 
least mean squares 
 

Model to approach the roughness real profile by polynomial functions using the 
method of the least mean squares with reference lines at a distance c1 of the mean line 
for the peaks and c2 for the valleys: 

 
%Approach the roughness profile by functions 
%using the method of least mean squares 
%and using reference lines at c1 for peaks and c2 for valleys 
%function [mean_sq]=mean_sq(data_x,data_z) 
%Input data: vector data_z with the roughness points and vector 
%data_x with the respective coordinates 
%Output data: vector rug_a with the approached roughness and the respective 
%vector X with the coordinates 
x=data_x; 
per=30;%percent 
x=data_x; 
rug=data_z; 
%calculate of the ADF function 
resolution=500; %number of function points 
maxr=max(rug); 
minr=min(rug); 
temp=maxr; 
dis=length(rug); 
increment=(maxr-minr)/resolution; 
adf=zeros(resolution+1,1); 
j=1; 
while temp>0 
    for i=1:dis 
        if rug(i)>temp 
            adf(j)=adf(j)+1; 
        end 
    end 
    j=j+1; 
    temp=temp-increment; 
end; 
while temp>minr 
    for i=1:dis 
        if rug(i)<temp 
            adf(j)=adf(j)+1; 
        end 
    end 
    j=j+1; 
    temp=temp-increment; 
end; 
A=sum(adf)*increment; %area of the adf 
%normalizing adf 
for i=1:resolution+1 
    adf_n(i)=adf(i)/A; 
end 
%calculate the height c1 
Ate=per/100; 
c1=maxr; ctemp=0;i=1; 
while ctemp<Ate 
    ctemp=ctemp+adf_n(i)*increment; 
    c1=c1-increment; 
    i=i+1; 
end 
%calculate the height c1 
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c2=minr; ctemp=0;i=length(adf_n); 
while ctemp<Ate 
    ctemp=ctemp+adf_n(i)*increment; 
    c2=c2+increment; 
    i=i-1; 
end 
%definition of a vector L_peak (peaks), obtained considering the cross 
%with the line (z=c1): 
n=length(x); 
k=1; 
for i=1:n-1 
    if ((rug(i)<=c1)&(rug(i+1)>c1)); 
       j=i+1; 
       while ((rug(j)>=c1)&(j+1<n)) 
           if  rug(j+1)<c1 
               Lpeak(k,1)=x(i)+(c1-rug(i))*((x(i+1)-x(i))/(rug(i+1)-
rug(i))); 
               Lpeak(k,2)=x(j)+(c1-rug(j))*((x(j+1)-x(j))/(rug(j+1)-
rug(j))); 
               L_peak(k)=Lpeak(k,2)-Lpeak(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%definition of a vector L_valley (valleys), obtained considering the cross 
%with the line (z=c2): 
k=1; 
for i=1:n-1 
   if ((rug(i)>=c2)&(rug(i+1)<c2)); 
       j=i+1; 
       while ((rug(j)<=c2)&(j+1<n)) 
           if  rug(j+1)>c2 
               Lvalley(k,1)=x(i)+(c2-rug(i))*(x(i+1)-x(i))/(rug(i+1)-
rug(i)); 
               Lvalley(k,2)=x(j)+(c2-rug(j))*(x(j+1)-x(j))/(rug(j+1)-
rug(j)); 
               L_valley(k)=Lvalley(k,2)-Lvalley(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%create one vector with the x positions of the all crossings whith the 
%references lines 
for i=1:(length(L_peak)) 
    Lp(i)=Lpeak(i,1); 
    Lp(i+length(L_peak))=Lpeak(i,2); 
end 
for i=1:(length(L_valley)) 
    Lv(i)=Lvalley(i,1); 
    Lv(i+length(L_valley))=Lvalley(i,2); 
end 
%vector X that contain all x positions (positions of rough points and the 
%crossings) 
X=[]; 
X=[x';Lp';Lv']; 
X=unique(X); 
X=sort(X); 
%create one new vector RUG with the same length that X 
RUG=[]; 
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for i=1:length(X) 
    for j=1:length(x) 
        if X(i)==x(j) 
            RUG(i)=rug(j); 
        end 
    end 
end 
for i=1:length(Lpeak) 
    temp=find(X==Lpeak(i,1)); 
    RUG(temp)=c1; 
end 
for i=1:length(Lvalley) 
    temp=find(X==Lvalley(i,1)); 
    RUG(temp)=c2; 
end 
%determination of an vector with the values of the coefficient 'a' for 
%the parabola (z=ax^2+b^2+c), b=f(a) and c=f(a) 
%peaks: 
a=zeros(length(L_peak),1); 
for i=1:length(L_peak) 
    x0=Lpeak(i,1); 
    x1=Lpeak(i,2); 
    k=0;an=0; ad=0;an1=0; 
    for j=(find(X==x0)+1):(find(X==x1)-1) 
       an=an+(X(j)^2-(x0+x1)*X(j)+x0*x1)*RUG(j); 
       an1=an1+(X(j)^2-(x0+x1)*X(j)+x0*x1)*c1; 
       ad=ad+((X(j))^2-(x0+x1)*X(j)+x0*x1)^2; 
   end 
   a(i)=(an-an1)/ad; 
end 
%function parabola for approach the peaks 
parabola_fit=zeros(1,length(X)); 
parabola_peak_fit=zeros(1,length(X)); 
for i=1:length(L_peak) 
    j=find(X==(Lpeak(i,1))); 
        while X(j)<=Lpeak(i,2) 
        parabola_fit(j)=a(i)*(X(j))^2-
(Lpeak(i,1)+Lpeak(i,2))*a(i)*X(j)+c1+a(i)*(Lpeak(i,1)*Lpeak(i,2)); 
        parabola_peak_fit(j)=parabola_fit(j); 
        j=j+1; 
        end 
end 
%valleys: 
parabola_valley_fit=zeros(1,length(X)); 
av=zeros(length(L_valley),1); 
for i=1:length(L_valley) 
    x0=Lvalley(i,1); 
    x1=Lvalley(i,2); 
    k=0;an=0; ad=0;an1=0; 
    for j=(find(X==x0)+1):(find(X==x1)-1) 
       an=an+(X(j)^2-(x0+x1)*X(j)+x0*x1)*RUG(j); 
       an1=an1+(X(j)^2-(x0+x1)*X(j)+x0*x1)*c2; 
       ad=ad+((X(j))^2-(x0+x1)*X(j)+x0*x1)^2; 
   end 
   av(i)=(an-an1)/ad; %coefficient 'a' for the valleys parabolas fitting 
end 
for i=1:length(L_valley) 
    j=find(X==(Lvalley(i,1))); 
        while X(j)<=Lvalley(i,2) 
        parabola_fit(j)=av(i)*(X(j))^2-
(Lvalley(i,1)+Lvalley(i,2))*av(i)*X(j)+c2+av(i)*(Lvalley(i,1)*Lvalley(i,2)); 
        parabola_valley_fit(j)=parabola_fit(j); 
        j=j+1; 
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        end 
end 
for i=1:length(parabola_fit) 
    if parabola_fit(i)==0 
        parabola_fit(i)=RUG(i); 
    end 
end 
mean_sq=parabola_fit; 
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Appendix 6 – Matlab® model for approach roughness profiles using the 
same asperity area 

 
Function in Matlab to approach the real rough profile by quadratic functions with 

the same asperity area: 
 

%model for approach the roughness profile by mathematical functions 
%function [rug_a]=approach(data_x,data_z) 
%the real profile will go approach by one profile with parabolas using the 
%================================= 
%=======Same Asperity Area======== 
%================================= 
%Input data: vector data_z with the roughness points and vector 
%data_x with the respective coordinates 
%Output data: vector rug_a with the approached roughness and the respective 
%vector X with the coordinates 
x=data_x; 
rug=data_z; 
%definition of a vector L_peak (peaks), obtained considering the cross with 
the reference line: 
n=length(x); 
k=1; 
for i=1:n-1 
    if ((rug(i)<=0)&(rug(i+1)>0)); 
       j=i+1; 
       while ((rug(j)>=0)&(j+1<n)) 
           if  rug(j+1)<0 
               Lpeak(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lpeak(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_peak(k)=Lpeak(k,2)-Lpeak(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%definition of a vector L_valley (valleys), obtained considering the cross 
with the reference line: 
k=1; 
for i=1:n-1 
   if ((rug(i)>=0)&(rug(i+1)<0)); 
       j=i+1; 
       while ((rug(j)<=0)&(j+1<n)) 
           if  rug(j+1)>0 
               Lvalley(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lvalley(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_valley(k)=Lvalley(k,2)-Lvalley(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%create one vector with the x positions of the all crossings whith the 
%reference line 
for i=1:(length(L_peak)) 
    Lp(i)=Lpeak(i,1); 
    Lp(i+length(L_peak))=Lpeak(i,2); 
end 
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for i=1:(length(L_valley)) 
    Lv(i)=Lvalley(i,1); 
    Lv(i+length(L_valley))=Lvalley(i,2); 
end 
%vector X that contain all x positions (positions of rough points and the 
%crossings) 
X=[]; 
X=[x';Lp';Lv']; 
X=unique(X); 
X=sort(X); 
%create one new vector RUG with the same length that X 
RUG=[]; 
for i=1:length(X) 
    for j=1:length(x) 
        if X(i)==x(j) 
            RUG(i)=rug(j); %the others positions RUG=0 
        end 
    end 
end 
%vector with the area of the peaks and valleys 
na=length(L_peak)+length(L_valley); 
A=zeros(na,1); 
rug_0=find(RUG==0); 
for i=1:(length(rug_0)-1) 
    for j=rug_0(i):(rug_0(i+1)-1) 
        A(i)=A(i)+((RUG(j)+RUG(j+1))/2)*(X(j+1)-X(j)); 
    end 
end 
j=1; k=1; 
for i=1:length(A) 
    if A(i)>0 
        A_peak(j)=A(i); 
        j=j+1; 
    else 
        A_valley(k)=A(i); 
        k=k+1; 
    end 
end 
%generation of the vector with points that represent parabolas 
parabola=zeros(1,length(X)); 
parabola_peak=zeros(1,length(X)); 
parabola_valley=zeros(1,length(X)); 
%peaks: 
for i=1:length(L_peak) 
    j=find(X==(Lpeak(i,1))); 
        while (X(j)>=Lpeak(i,1)&X(j)<=Lpeak(i,2)) 
        parabola(j)=(-6*A_peak(i)/L_peak(i)^3)*(X(j)-
Lpeak(i,1))^2+(6*A_peak(i)/L_peak(i)^2)*(X(j)-Lpeak(i,1)); 
        parabola_peak(j)=parabola(j); 
        j=j+1; 
        end 
        csi_peak(i)=(-
6*A_peak(i)/L_peak(i)^3)*(L_peak(i)/2)^2+(6*A_peak(i)/L_peak(i)^2)*(L_peak(i
)/2); 
end 
%valleys: 
for i=1:length(L_valley) 
    j=find(X==(Lvalley(i,1))); 
        while (X(j)>=Lvalley(i,1)&X(j)<=Lvalley(i,2)) 
        parabola(j)=(-6*A_valley(i)/L_valley(i)^3)*(X(j)-
Lvalley(i,1))^2+(6*A_valley(i)/L_valley(i)^2)*(X(j)-Lvalley(i,1)); 
        parabola_valley(j)=parabola(j); 
        j=j+1; 
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        end 
end 
%Curvature of the asperities (k(x)=2*a) and the cordinate point of the 
maximum 
for i=1:length(L_peak) 
    K1_peak(i)=abs(-6*A_peak(i)/L_peak(i)^3); 
end 
rug_a=parabola; 
plot(X,RUG,X,parabola); 
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Appendix 7 – Results of stylus device measures 
Results of the stylus measures using the software Hommel Map Basic: 
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Appendix 8 – Models in Matlab® for contacts mechanics analysis 
Greenwood and Williamson Model: 

%model Greenwood and Williamson (GW) 
%function [p_g]=greenwood 
%==================================== 
%===Greenwood and Williamson Model=== 
%==================================== 
%Input data: vector data_z with the roughness points and vector 
%data_x with the respective coordinates 
%Output data: percentage of contact real area, deformation, plot with the 
%original profile and deformed profile 
x=data_x; 
rug=data_z; 
%load aplied 
load=1.9894; %N/mm 
%properties of the material 
H=2785; %MPa 
E1=205000; %MPa 
E2=62750; %MPa (%Glass) 
niu1=0.29; 
niu2=0.2; 
Ecom=1/((1-niu1^2)/E1+(1-niu2^2)/E2); %[MPa] 
%rug is the vector with one profile of the roughness topography 
%the profile will be approached by polynomial functions using the 
%Aramki formulation 
%determination of ACF length and the coefficient of ACF, ACF length is the 
%length where autocorrelation function is 0.368 (=1/e) 
[ACF,Lags,Bounds] = autocorr(rug,length(x)-1); 
index_ACF_0368=1; 
while ACF(index_ACF_0368)>0.368 
    index_ACF_0368=index_ACF_0368+1; 
end 
%plot(x,ACF); %plot whith the fuction of autorrelation 
length_ACF=x(index_ACF_0368)-x(1); 
alfa=1/length_ACF; 
%standard deviation: 
sigma=std(rug); 
%definition of a vector L_peak (peaks), obtained considering the cross with 
the reference line: 
n=length(x); 
k=1; 
for i=1:n-1 
    if ((rug(i)<=0)&(rug(i+1)>0)); 
       j=i+1; 
       while ((rug(j)>=0)&(j+1<n)) 
           if  rug(j+1)<0 
               Lpeak(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lpeak(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_peak(k)=Lpeak(k,2)-Lpeak(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%definition of a vector L_valley (valleys), obtained considering the cross 
with the reference line: 
k=1; 
for i=1:n-1 
   if ((rug(i)>=0)&(rug(i+1)<0)); 
       j=i+1; 
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       while ((rug(j)<=0)&(j+1<n)) 
           if  rug(j+1)>0 
               Lvalley(k,1)=x(i)-rug(i)*(x(i+1)-x(i))/(rug(i+1)-rug(i)); 
               Lvalley(k,2)=x(j)-rug(j)*(x(j+1)-x(j))/(rug(j+1)-rug(j)); 
               L_valley(k)=Lvalley(k,2)-Lvalley(k,1); 
               k=k+1; 
           end 
           j=j+1; 
       end 
   end 
end 
%create one vector whith the x positions of the all crossings whith the 
%reference line 
for i=1:(length(L_peak)) 
    Lp(i)=Lpeak(i,1); 
    Lp(i+length(L_peak))=Lpeak(i,2); 
end 
for i=1:(length(L_valley)) 
    Lv(i)=Lvalley(i,1); 
    Lv(i+length(L_valley))=Lvalley(i,2); 
end 
%vector X that contain all x positions (positions of rough points and the 
%crossings) 
X=[]; 
X=[x';Lp';Lv']; 
X=unique(X); 
X=sort(X); 
 
%create one new vector RUG with the same length that X 
RUG=[]; 
for i=1:length(X) 
    for j=1:length(x) 
        if X(i)==x(j) 
            RUG(i)=rug(j); %the others positions RUG=0 
        end 
    end 
end 
%generation of the one profile approach by parabolas 
csi_peak=L_peak*sqrt(2/pi)*alfa*sigma; %equation 8 Aramki part I 
csi_valley=L_valley*sqrt(2/pi)*alfa*sigma; 
mean_L_peak=(mean(L_peak)); 
mean_L_valley=(mean(L_valley)); 
mean_L=1/2*(mean(L_peak)+mean(L_valley)); 
K1_peak=8*(csi_peak)./(L_peak.^2); %equation 9-b Aramki part I 
K1_valley=8*(csi_valley)./(L_valley.^2); 
%generation of the vector with points that represent parabolas 
%start the vectors with zeros and the same length that X 
parabola=zeros(1,length(X)); 
parabola_peak=zeros(1,length(X)); 
parabola_valley=zeros(1,length(X)); 
for i=1:length(L_peak) 
    j=find(X==(Lpeak(i,1))); 
        while (X(j)>=Lpeak(i,1)&X(j)<=Lpeak(i,2)) 
        parabola(j)=-(4*csi_peak(i)/(L_peak(i)^2))*(X(j)-Lpeak(i,1)-
L_peak(i)/2)^2+csi_peak(i); 
        parabola_peak(j)=parabola(j); 
        j=j+1; 
        end 
end 
for i=1:length(L_valley) 
    j=find(X==(Lvalley(i,1))); 
        while (X(j)>=Lvalley(i,1)&X(j)<=Lvalley(i,2)) 
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        parabola(j)=(4*csi_valley(i)/(L_valley(i)^2))*(X(j)-Lvalley(i,1)-
L_valley(i)/2)^2-csi_valley(i); 
        parabola_valley(j)=parabola(j); 
        j=j+1; 
        end 
end 
temp_rq=0; 
for i=1:length(rug) 
    temp_rq=temp_rq+(rug(i))^2; 
end 
 
increment=0.0001; %increment of the displacement delta [micron] 
%critic interference for each peak 
for i=1:length(L_peak) 
    delta_c(i)=(pi*k*H/(2*Ecom))^2*(1/K1_peak(i));%micron 
end 
y=max(parabola); 
lt=zeros(length(L_peak),1); %vector that indicate if the deformation is 
elastic (0) or plastic (1) 
ltemp=0; 
f=zeros(length(L_peak),1); %load applied in each asperity 
n_steps=0; 
while sum(f)<load 
    y=y-increment; 
    n_steps=n_steps+1; 
    for i=1:length(L_peak) 
        %elastic 
        if lt(i,1)==0 & (csi_peak(i)-y)>0 
            f(i)=(4/3)*Ecom*((1e-3/K1_peak(i))^(0.5))*((csi_peak(i)-y)*1e-
3)^(3/2); 
            if (csi_peak(i)-y)>delta_c(i) 
                lt(i,1)=1; 
            end 
        end 
        %plastic 
        if lt(i,1)==1 & (csi_peak(i)-y)>0 
            f(i)=2*pi*(1e-3/K1_peak(i))*(csi_peak(i)-y)*1e-3*H; 
        end 
    end 
end 
%contact area 
A_cont=0; 
for i=2:length(RUG) 
    if parabola(i)>=y 
        A_cont=A_cont+(X(i)-X(i-1)); 
    end 
end 
%percentage of contact area 
A_cont_a=A_cont/X(length(X)) 
%plot deformed profile 
for i=1:length(RUG) 
    if parabola(i)>y 
        parabola_de(i)=y; 
    else 
        parabola_de(i)=RUG(i); 
    end 
end 
plot(X,parabola,'k'); 
hold on; 
plot(X,parabola_de,'LineWidth',1.4); 
hold off; 
%deformation 
deformation=max(parabola)-abs(y) 
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Chang Model 
Only a part of the algorithm changes, the changes are in the last part are of the model: 
 
increment=0.001; %increment of the displacement delta [micron] 
%critic interference for each peak 
for i=1:length(L_peak) 
    delta_c(i)=(pi*k*H/(2*Ecom))^2*(1/K1_peak(i));%[micron] %Equation 14 
end 
y=max(RUG); 
lt=zeros(length(L_peak),1); %vector that indicate if the deformation is elastic 
(0) or plastic (1) 
ltemp=0; 
f=zeros(length(L_peak),1); %load applied in each asperity 
n_steps=0; 
while sum(f)<load 
    y=y-increment; 
    n_steps=n_steps+1; 
    for i=1:length(L_peak) 
        %elastic 
        if lt(i,1)==0 & (csi_peak(i)-y)>0 
            f(i)=(4/3)*Ecom*((1e-3/K1_peak(i))^(0.5))*((csi_peak(i)-y)*1e-
3)^(3/2);%Equation 9 
            if (csi_peak(i)-y)>delta_c(i) 
                lt(i,1)=1; 
            end 
        end 
        %plastic 
        if lt(i,1)==1 & (csi_peak(i)-y)>0 
            f(i)=pi*(1e-3/K1_peak(i))*((csi_peak(i)-y)*1e-3)*(2-
(delta_c(i)/(csi_peak(i)-y)))*k*H; %Equation 27 
        end 
    end 
end 
 
Zhao Model 
The changes to the algorithm of Greenwood and Williamson model in final part are: 

increment=0.001; %increment of the displacement delta [micron] 
%critic interference c1 for each peak 
for i=1:length(L_peak) 
    delta_c1(i)=(pi*k*H/(2*Ecom))^2*(1/K1_peak(i));%[micron] %Equation 8 
    delta_c2(i)=54*delta_c1(i); %[micron] %Equation 20 
end 
y=max(RUG); 
lt=zeros(length(L_peak),1); %vector that indicate if the deformation is 
elastic (0) or elastoplastic (1) or fully plastix (2) 
ltemp=0; 
f=zeros(length(L_peak),1); %load applied in each asperity 
n_steps=0; 
while sum(f)<load 
    y=y-increment; 
    n_steps=n_steps+1; 
    for i=1:length(L_peak) 
        %fully elastic 
        if lt(i,1)==0 & (csi_peak(i)-y)>0 
            f(i)=(4/3)*Ecom*((1e-3/K1_peak(i))^(0.5))*((csi_peak(i)-y)*1e-
3)^(3/2);%Equation 3 
            if (csi_peak(i)-y)>delta_c1(i) 
                lt(i,1)=1; 
            end 
        end 
        %elasto-plastic 
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        if lt(i,1)==1 & (csi_peak(i)-y)>0 
            f(i)=(H-H*(1-k)*((log(delta_c2(i))-log(csi_peak(i)-
y))/(log(delta_c2(i))-log(delta_c1(i)))))*(1-2*(((csi_peak(i)-y)-
delta_c1(i))/(delta_c2(i)-delta_c1(i)))^3+3*(((csi_peak(i)-y)-
delta_c1(i))/(delta_c2(i)-delta_c1(i)))^2)*pi*(1e-
3/K1_peak(i))*(csi_peak(i)-y); %Equation 36 
            if (csi_peak(i)-y)>delta_c2(i) 
                lt(i,1)=1; 
            end 
        end 
        %fully plastic 
        if lt(i,1)==2 & (csi_peak(i)-y)>0 
            f(i)=2*pi*(1e-3/K1_peak(i))*((csi_peak(i)-y)*1e-3)*H;  %Equation 
11 
        end 
    end 
end 
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Appendix 9 – Results from the mechanical contact apparatus  
Images from the contact analysis on the stereo microscope and high resolution 

CCD camera, the real area of the these image is 1.5x1.2 mm. 
Specimen 1 without filter: 
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Specimen 1 with yellow filter (λ=577 nm): 

0 N 40 N 80 N 

   

  
Specimen 2 without filter: 

0 N 40 N 80 N 
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Specimen 2 with yellow filter (λ=577 nm): 
0 N 40 N 80 N 

   

 
Specimen 3 without filter, zone 1: 

0 N 40 N 80 N 

   

 
Specimen 3 with yellow filter (λ=577 nm), zone 1: 

0 N 40 N 80 N 
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Specimen 3 without filter, zone 2: 
0 N 40 N 80 N 

   

 
Specimen 3 with yellow filter (λ=577 nm), zone 2: 

0 N 40 N 80 N 

   




