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Abstract 
 

In this work we investigate the flow of Newtonian and viscoelastic fluids in a 

mixing-separating geometry consisting of two opposed channel flows interacting 

through a gap in the common separating wall. This type of flow was experimentally 

investigated by Cochrane et al. [1] using Newtonian and viscoelastic fluids at low 

Reynolds number flows (Re < 40). In the present numerical study we assess the 

effects of Deborah and Reynolds numbers and gap size on the two-dimensional flow 

dynamics. The normalized gap size was varied between 0 and 5, Re varied between 

0 and 50 and De varied between 0 and the maximum attainable value. 

For Newtonian fluids the creeping flow is anti-symmetric, due to the anti-symmetry 

of the fully-developed inlet conditions and the symmetry of the flow geometry. 

Increasing the gap size increased the reversed flow rate ratio (Rr), here defined as the 

ratio between the reversed and total flow rates. In this investigation we also 

investigate in detail the creeping flow of viscoelastic fluids obeying the 

upper-convected Maxwell model for which two distinct flow patterns are found. For 

normalized gap sizes below a critical value the reversed flow is slightly enhanced by 

viscoelasticity, followed by a decrease in Rr towards zero as De further increases. 

For a supercritical gap size viscoelasticity is responsible for a continuous increase in 

Rr. This flow type transition can be exploited to promote mixing, and this 

application will also be addressed in this work. 

 

Keywords: mixing-separating, low Reynolds number, viscoelastic fluids, UCM 

model, elastic instabilities, flow bifurcation. 

 
1  Introduction 
 

A simple constitutive model, the upper-convected Maxwell (UCM) model, is used to 

simulate viscoelastic flows in a mixing and separating geometry [1]. This flow has 

been previously investigated experimentally and numerically by Cochrane et al. [1], 
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Walters and Webster [2] and in purely numerical studies by Baloch et al. [3] and 

Fiétier [4]. In their numerical contribution Cochrane et al. [1] used a finite-

difference discretization with the UCM model to represent the behavior of a highly-

elastic constant-viscosity “Boger” fluid [5]. They investigated the effects of gap 

width (g) for two different flow configurations: one with equal flow rates in the two 

inlet channel arms and the other with unbalanced flow rates. In a sequel paper [2], 

consideration was given to flows using thin insert plates with rounded edges. In both 

experimental works, this complex flow displayed remarkable flow features and 

distinct Newtonian and elastic-flow behaviors, with the presence of unidirectional 

and reversed flows in varying degrees. Later, Baloch et al. [3] used the 

Phan-Thien−Tanner (PTT) model [6] to simulate this flow also using thin insert 

plates with rounded edges and equal flow rates at the inlet channels. Fiétier [4] used 

a spectral element method to simulate the flow of a FENE-P model [7] for the case 

with a thick insert plate with rounded edges.  He was able to capture qualitatively 

the experimental results of [2].   

In this work we extend the limited information on the variety of viscoelastic fluid 

flow behavior in the mixing and separating geometry, clarifying and mapping flow 

configurations for different gap sizes under conditions of low inertia and high 

viscoelasticity. We also attempt to assess the existence and extent of purely-elastic 

flow instabilities. These types of instability are present in extension-dominated 

flows, in particular in flows containing a stagnation point, such as the cross-slot [8-

10], and the viscoelastic opposed jet [11]. Poole et al. [9] simulated the two-

dimensional cross-slot flow of an UCM fluid under creeping-flow conditions, and 

were able to capture qualitatively the onset of a bi-stable steady asymmetric flow, 

above a first critical Deborah number, followed by a later transition to a time 

dependent flow. These numerical results were in qualitative agreement with the 

experimental findings of Arratia et al. [7]. Poole et al. [10] incorporated the effect of 

solvent viscosity, leading to the Oldroyd-B constitutive equation, and finite 

extensibility (using the PTT model), and proposed -Re-De and -Re-De maps 

delimiting different flow pattern types. These maps showed the existence of a 

narrow region of steady asymmetric flow in the --Re-De space and identified the 

limiting De for onset of time-dependent flow.  

In this work we focus on the mixing-separating flow geometry with zero thickness 

insert plates and equal flow rates at the two channel inlets.   

 
 

2  Governing equations and numerical method 
 

The equations we need to solve are those of conservation of mass 
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and momentum 
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coupled with an appropriate constitutive equation for the extra stress, τ . Here, for 

reasons of rheological simplicity, we use the UCM model,  
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where  and  are the relaxation time and shear viscosity of the fluid, respectively.  

A fully-implicit finite-volume method was used to solve Equations (1) – (3). The 

method is based on a time marching pressure-correction algorithm formulated with 

the collocated variable arrangement and is explained in detail in Oliveira et al. [12] 

and Alves et al. [13]. Briefly, the governing equations are transformed first to a non-

orthogonal coordinate system, but retaining the Cartesian velocity and stress 

components. This approach is advantageous from a numerical point of view because 

the equations are written in a strong conservative form, which helps to ensure the 

conservation of physical quantities through the conservativeness of the final 

algebraic equations. Then, the equations are integrated in space over the control 

volumes (cells with volume PV ) forming the computational mesh, and in time over a 

time step ( t ), so that sets of linearised algebraic equations are obtained, having the 

general form: 
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to be solved for the velocity components, and            
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to be solved for the polymeric contribution to the extra stress components, ij .  In 

these equations Fa  are coefficients accounting for convection and diffusion, S are 

source terms encompassing all contributions that are not included in the terms with 

coefficients, the subscript P denotes the cell under consideration and subscript F its 

corresponding neighbouring cells. The central coefficient of the momentum 

equation, Pa , is given by      
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After assembling all coefficients and source terms, the linear sets of equations (4) 

are solved sequentially for the Cartesian velocity components. These newly-

computed velocity components do not, in general, satisfy the continuity equation 

and need to be corrected by an adjustment of the pressure differences which drive 

them. This adjustment is accomplished by means of a pressure-correction field 
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obtained from a Poisson pressure equation according to the SIMPLEC algorithm 

[14]. Once a velocity field satisfying continuity has been obtained, the implicitly-

discretized constitutive equations for the polymeric contribution to the extra stress 

components (i.e. Eq. 5) are solved sequentially. To formulate the convective fluxes, 

the code uses the CUBISTA high-resolution scheme, especially designed for 

differential rheological constitutive relations [13]. 

Along with inertial effects, in this work we will also focus on creeping-flow 

conditions, in which case the advective term in the momentum equation is neglected.  

  

3  Geometry and computational meshes 
 

The flow domain and problem is that of two opposed channel flows interacting 

through a gap of nondimensional width ( = g/H) in the middle of the thin 

separating wall of thickness a (defining the nondimensional thickness  = a/H), as 

shown schematically in Figure 1. The two inlet channels have the same width (H) 

and lengths L = 20 H.  

 
Figure 1: Diagram of the mixing-and-separating flow geometry. 

 
At the inlets fully-developed velocity and stress profiles are imposed and the inlet 

length is more than sufficient for the flow in the central region to be independent of 

the inlet condition. No-slip conditions are imposed at all channel walls and at the 

outlet planes Neumann boundary conditions are applied to all variables including the 

pressure gradient, i.e. ∂φ/∂x = 0.  

For all  values the computational domain was mapped using six blocks, one in each 

channel and two in the central region. The main characteristics of the two meshes 

used in this work for   1 are given in Table I, including the total number cells 

(NC), the number of control volumes in the central region in both x and y directions 

(NCS), and the minimum cell spacing which occurs also in this central region (xmin 

and ymin). For other plate thicknesses the meshes were adapted to have the same 

characteristics. 

For each value of  different meshes were used with different number of cells in the 

x and y directions, but always ensuring consistent mesh refinement and that the 

minimum cell spacing in both directions remained essentially the same (i.e. square 
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control volumes). As a consequence, for all meshes used, in the central region the 

cell spacing was uniform and progressively refined from xmin = ymin  0.04 H for 

mesh M25L to xmin = ymin  0.02 H for mesh M51L. These two-dimensional 

meshes contain 25 704 and 35 904 cells corresponding to about 179 928 and 251 328 

degrees-of-freedom (DOF), for low and large adimensional gap width, respectively.  

 

Table 1: Main characteristics of the computational meshes (  1).  

 

The results presented in the next section are in dimensionless form, unless otherwise 

stated. Velocities are normalised by the bulk velocity in the inlet channels (U) and 

the stresses are normalised by U/H. The Deborah number is the ratio between the 

fluid relaxation time () and a flow time scale, here taken as g/U, i.e., De = U/g. For 

flows with inertia the Reynolds number is defined as Re = UH/. To quantify the 

degree of flow reversal relative to unidirectional flow existing in the absence of a 

gap in the middle wall, the parameter Rr = q2/Q1 = q4/Q2 is used, where q2 and q4 

correspond to the partial flow rates that reverse from each inlet arm and Q1 = Q2 are 

the total flow rates at each inlet channel, as illustrated in Figure 1. 

 
 

4  Results and discussion 
 

4.1   Calculation accuracy 
 

In this section we assess the convergence with mesh refinement in order to provide a 

measurement of the numerical uncertainty. Figure 2 plots the predicted transverse 

profiles of the normalised velocity and first normal-stress difference at x/H = 0, i.e., 

in the stagnation point at the middle of the gap. The data from the two meshes 

pertain to the flow of an UCM fluid at De = 0.35, Re = 0, 2   and    0 , which 

corresponds to a sub-critical flow gap condition. The velocity profiles from both 

meshes are almost undistinguishable from each other and exhibit excellent 

agreement. The stress profiles show a slight mesh dependency near the stagnation 

point due to the high stress gradients developing in that region, but elsewhere the 

agreement between both meshes is very good. In the remaining of the paper, unless 

otherwise stated, the results presented were obtained with mesh M51L. 

 

4.2   Newtonian results  
 

From a purely geometric point of view the mixing-and-separating geometry can be 

idealized as a cross-slot [9] with one pair of aligned arms rotated by 90° towards the 

other pair, leading to a nondimensional gap size of 2   and a vanishing 

separation plate thickness ( 0  ). Had the flow type been maintained in this 

 NC DOF NCSX NCSY xmin/H ymin/H 

M25L (  1) 6 300 44 100 26 25 0.0385 0.04 

M51L (  1) 25 704 179 928 52 51 0.0186 0.0196 
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operation, the ratio between the reversed to unidirectional flow would have been 

Rr = 0.5 to keep full similarity with the cross-slot, i.e, the flow that would be 

reversing and mixing in both the upper and lower exit sections would be identical as 

in the cross-slot geometry [9]. Obviously this is not the case as is well shown in 

Figure 3, where Rr is plotted as a function of normalised gap width, , for various 

plate thicknesses, , for Newtonian inertialess flow. However, the difference is not 

that large because Rr = 0.5 for  ≈ 1.75 or equivalently when 2  the degree of 

reverse to unidirectional flow is Rr = 0.29 (≠ 0.5). Figure 3 also shows that the effect 

of plate thickness for thin plates is small as found experimentally [1,2]. Figure 3 

highlights the transition from a straight unperturbed no-reverse-flow situation at low 

  to a full flow reversal when the gap is large.  

The differences between the results for the cross-slot and the separating-mixing 

geometries may be understood from the different angles of the approaching flows 

near the stagnation points. In the present geometry these approach flows are not 

aligned with the channels and are not orthogonal as in the cross-slot flow. As a 

consequence in the present geometry shear flow plays a role in the stagnation point 

region which was absent from the cross-slot flow geometry which is purely 

extensional in character. This difference may also be important for understanding 

the appearance of the purely-elastic instabilities in the cross-slot geometry. These 

comments are better understood from inspection of Figure 4, where streamlines for 

the inertialess flow of Newtonian fluids at low, medium and large gap widths 

( = 1, 2 and 2.83) are shown corresponding to  = 0. These patterns correspond to 

the line for  = 0 in Figure 3. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transverse profiles of the normalised velocity and first normal stress 

differences at x/H = -2, for De = 0.3 (Re = 0,  = 1.74 and 0  ). 
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Figure 3: Degree of reverse to unidirectional flow for several gap widths, , and 

plate thickness, , for the Newtonian case at Re=0.  
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                2.83   

 

 

 

 

Figure 4: Streamlines for the mixing-and-separating geometry for several gap 

widths, , with  = 0, for the Newtonian case at Re = 0 using mesh M51.  

 

The influence of flow inertia on Rr for Newtonian fluids is presented in Figure 5 as a 

function of the normalized gap width, . Regardless of the Reynolds number, Rr 

varies from 0 to 1 in the evolution from a small to a large gap in agreement with 

experiments [1,2]. For Re ≤ 1 the variation of Rr with  is independent of Reynolds 

number, but at higher Re inertia enhances flow reversal and this is observed to take 
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place for Re = 10 at  ≥ and for Re = 50 at  ≥ 1.2 respectively. At some 

representative Reynolds numbers data from both meshes (M25L and M51L) are 

plotted in Figure 5. The good agreement confirms again that the use of mesh M51L 

is adequate for accurate predictions. 

 
4.4  Viscoelastic/Inertial effects: 
 

The creeping flow of UCM fluids exhibits an interesting bifurcation pattern, which 

depends on the gap width, as illustrated in Figure 6. For high non-dimensional gap 

sizes, but below a critical value ( ≤ 1.7), the reversed flow is initially slightly 

enhanced by viscoelasticity, followed by a strong decrease in Rr towards zero as De 

further increases. This flow behavior is characterized by a significant deviation from 

streamline parallelism in the gap region although with the fluid still tending to flow 

unidirectionally as reported in previous experiments [1,2]. This is typified by the 

flow pattern shown in Figure 7 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Degree of reverse to unidirectional flow for several gap widths, , and 

Reynolds numbers, for the Newtonian case. M25 (symbols) and M51 (lines). 

 

In contrast to the subcritical condition, for a supercritical non-dimensional gap size 

( ≥ 2) viscoelasticity is now responsible for a continuous increase in Rr and the 

flow pattern here is similar to that of Figure 7 (b). It is important to note here that 

this supercritical pattern has not yet been observed experimentally because of the 

stabilising effect of inertia that will be discussed later. 

For inertialess flow and intermediate gap widths (1.7 ≤  ≤ 2, cf. Figure 6 for 

 = 1.74) a steady bi-stable bifurcation flow pattern is observed, with a sudden jump 

between the two flow configurations at slightly different Deborah numbers. The 

corresponding streamline plots are shown in Figure 7 for De = 0.351 and  = 1.74. 

On the upper plot the flow is quasi unidirectional (Rr = 0.047) and at the bottom plot 

the flow is highly reversed (Rr = 0.85). The bifurcation between these two flow 

patterns is due to a purely-elastic instability since Re = 0, as also observed for a 



9 

cross-slot geometry [9]. Incidentally, for  = 1.74 we find Rr = 0.5 and this 

corresponds to the situation where for a Newtonian fluid the approach flows at the 

stagnation point were closer to perpendicular. Here, the critical Deborah number is 

0.316, a value close to that reported for the cross-slot geometry instability 

(Decrit ≈ 0.31 [9]). The predictions also showed that in this intermediate region the 

critical De decreases in inverse proportion to . Regarding the effect of flow inertia, 

the critical De for a bi-stable bifurcation increases with Re, as shown in Figure 8 for 

   and Re = 1. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Degree of reverse to unidirectional flow for several gap widths, , and 

Deborah numbers, for Re = 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Streamlines for   = 1.74, with  = 0, Re = 0 and De = 0.351 in mesh M51: 

the two bifurcated solutions have (a) Rr = 0.047 and (b) Rr = 0.85. 

(a) 

(b) 
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The combined effects of inertia and elasticity are illustrated in Figure 8, where Rr is 

plotted as a function of De for three different gap widths ( 2  , 1.74 and 2) and 

for Re up to 10. As for Newtonian fluids the degree of flow reversal is independent 

of Reynolds number for Re ≤ 1. At higher Reynolds numbers (Re = 5 and 10) and 

 = 2 an inversion in the flow configurations is observed: whereas at low Re 

viscoelasticity was seen to be responsible for an increase in Rr, at large Reynolds 

numbers Rr decreases with De and becomes more unidirectional because the flow is 

subcritical. This is also in contrast with the Newtonian behavior where for the same 

value of  = 2 an increase in the Reynolds number increased the reversed flow. This 

opposed effect of inertia explains why the supercritical behavior has not yet been 

observed and suggests the need for further experiments, using a highly viscous and 

elastic fluid, to attain lower Reynolds numbers with high Deborah number flows.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8: Degree of reverse to unidirectional flow for several gap widths, , and 

Deborah numbers, for Re = 0, 1, 5 and 10. 

 
5  Conclusions 
 

The UCM model was used to simulate viscoelastic flows in a mixing and separating 

geometry [1] and, for a combination of critical flow geometries, it was possible to 

identify a new steady bi-stable bifurcation pattern at low inertia and high elasticity.  

The creeping flow of UCM fluids showed two distinct flow patterns. For normalized 

gap sizes below a critical value the reversed flow is slightly enhanced by 

viscoelasticity, followed by a strong decrease in Rr towards zero as De further 

increases. In contrast, above a supercritical gap size viscoelasticity is responsible for 

a continuous increase in Rr. For near-critical flow geometries it was possible to 

observe a sudden jump between the two flow conditions at slightly different 

Deborah numbers. Flow inertia was found to increase the critical Deborah number 

for steady flow bifurcation at a particular value of . Inertia naturally enhances the 
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straight flow case and at Re = 5, Rr always decreased with Deborah number for De≤ 

0.6 and for the investigated gap sizes. These predictions suggest the need for 

experiments with very viscous elastic fluids (or at microscale where Re is naturally 

low and De enhanced) in order to detect the supercritical behavior, which has so far 

not been reported in the literature. 
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