OUTLINE

- CEFT: brief outline of research areas
- CEFT: Non-Newtonian Fluid Mechanics and Microfluidics
- Definition, applications and motivation. Non-dimensional numbers.
- Experimental and numerical methods
- Some results
 - Hyperbolic contraction: single & fluidic diode, Newtonian & viscoelastic
 - Blood analogues in hyperbolic contraction
 - Elastic instabilities: cross slot, flow focusing
 - Deformation of RBCs in a hyperbolic channel
 - Motion of RBCs in µ-converging bifurcation (another presentation/poster)
 - Microfluidic device for RBC separation (another presentation/poster)
- Closure
RELEVANCE & MOTIVATION

- (1) Complex fluids: biological systems, man-made systems (micro and macro systems), challenging/interesting

- (2) Microfluidics with complex fluids: new phenomena, new applications: ex. operation of micro-rheometers

Viscoelastic flow instabilities

Mixing at very low Re

Absence of turbulence

Absence of chaotic advection

Other non-linear effects may help mixing: elasticity

Liquids

\[
Re = \frac{pUL}{\eta} = \frac{UL}{V}
\]

\[
De = \frac{t_{\text{fluid}}}{t_{\text{flow}}} = \frac{\lambda}{L} = \frac{\lambda U}{L}
\]

Small \(\Gamma, Pe \) is large

\[
Pe = \frac{U}{L} = \frac{UL}{L} = Re \cdot Pr = Re \cdot Sc
\]

Short transit times

Poor mixing

DEFINITION AND APPLICATIONS

- Fluid mechanics at the micro-scale: 100 nm - 500 \(\mu \)m
 nanofluidics: 10 nm - 1 \(\mu \)m

- Handles nano- & pico-liters of fluid, miniaturization, coupling w/ electronics

- Applications: inkjet printing, analytical chemistry, micro-rheology, biology, DNA separation and sequencing, medicine, control systems, heat dissipation of micro-electronics, fuel cells, energy & display technology

Inkjet printing, spray drying, precise reactant delivery

EXPERIMENTAL METHODS: MICROFABRICATION BY SOFT LITHOGRAPHY

1. Silicon Wafer

2. Spin coat photosist SU-8 and prebake

3. Spin coat barrier coat (CEM-BC7.5) and contrast enhancer (CEM 38SSS) (vertical walls).

4. Chrome Mask over coated wafer

5. UV Exposure – cross-link SU-8

6. Wash barrier coat and contrast enhancer

7. Post-bake and develop SU-8

8. Pour PDMS over substrate and cure (80°C, 25 mins)

9. Peel off substrate

10. Treat surfaces with air plasma, seal with glass slide

Boiling heat transfer

\[\text{Zhang et al., JMS 11 (2002) 12-19} \]

Cross-slot:

extension of single DNA molecules

\[\text{Perkins et al. Science 276 (1997)2016} \]

More Applications

Capillary instabilities:
flow focusing and droplet formation

\[\text{Anna et al., APL 82 (2003) 364} \]

Research on Complex Flows of Complex Fluids

Pinho, Lima, Alves & Oliveira - CEFT/FEUP

Porto & Bragança, Portugal, 3 & 6th June 2011
MICROGEOMETRIES

Planar hyperbolic contraction-sudden expansion

Abrupt contraction-expansion (CR=ER=16)

Hyperbolic contraction (ε = 2)

Accuracy of dimensions to within 5%
Near vertical walls: tapering angle 87° < θ < 92°

SEM Images

400 µm

54 µm

50 µm

87° < θ < 92°

Cross-slot and flow focusing devices

Confocal µPIV

Streakline imaging
1 µm fluorescent particles
Mercury lamp
Long exposure
10X lens (NA=0.3, measurement depth= 30 µm

µPIV
500 nm fluorescent particles
Double-pulsed laser, Volume illumination
Double-frame camera
20X lens (NA=0.5, measurement depth= 12 µm
32x32 pixel interrogation, 50% overlap

EXPERIMENTAL METHODS: FLOW VISUALIZATION & MICRO-PIV

Digital camera (Leica DFC 350 FX)
Syringe pump (Harvard apparatus PHD 2000)

Data acquisition card (NI-6218)
Microscope Leica DMI5000 M

Filter cube
Emission filter BP 530-545 nm
Dichroic 565 nm
Barrier filter 610-675 nm

Objectives used:
10X:0.25NA
5X:0.12NA

Differential pressure sensor (Honeywell 26FC series)

Research on Complex Flows of Complex Fluids Japan-Portugal Nano BME Symposium 2011
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Porto & Bragança, Portugal, 3 & 6th June 2011
EXPERIMENTAL METHODS: PRESSURE MEASUREMENTS

Acquisition Card

Voltage output, V

Pressure output

Calibration

Pressure sensor

Average steady state region to obtain a single data point (Q, ΔP)

Research on Complex Flows of Complex Fluids

Japan-Portugal Nano BME Symposium 2011

Porto & Bragança, Portugal, 3 & 6th June 2011

Pinho, Lima, Alves & Oliveira - CEFT/FEUP

EXPERIMENTAL METHODS: RHEOLOGY

DATA FOR FLOW FOCUSING

Viscoelastic fluid: PAA 125 ppm + 1% NaCl

Newtonian fluid: water

Shear, *Physica MCR 301*

(cone-plate, d= 75 mm, 1°)

T = 20°C

GOVERNING EQUATIONS (1)

- Continuity: \(\frac{\partial u}{\partial x} = 0 \)
- Momentum: \(\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial x} = -\frac{\partial p}{\partial x} + \frac{\partial \tau_{i,j}}{\partial x_j} \)
- Constitutive equation: \(\tau_{i,j} = 2\eta \frac{\partial D_{i,j}}{\partial x_j} + \tau_{i,j}^{\varepsilon} \)

where:

- \(\tau_{i,j}^{\varepsilon} \) is the stress tensor due to the polymer
- \(\eta \) is the dynamic viscosity
- \(D_{i,j} \) is the rate of strain tensor

\[D_i = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \]

Newtonian solvent

Polymer

Research on Complex Flows of Complex Fluids

Japan-Portugal Nano BME Symposium 2011

Porto & Bragança, Portugal, 3 & 6th June 2011

Pinho, Lima, Alves & Oliveira - CEFT/FEUP

Shear rheology, Physica MCR 301

Extensional rheology, Haake CaBER 1
GOVERNING EQUATIONS (2)

Scalar (energy, species):

\[\frac{\partial (\rho \phi)}{\partial t} + \frac{\partial (\rho u_i \phi)}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\Gamma \frac{\partial \phi}{\partial x_i} \right) + S \]

Modifications for standard conformation and log-conformation

\[\rho \frac{\partial t}{\partial t} + \rho u_i \frac{\partial t}{\partial x_i} = - \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 t}{\partial x_i^2} + \frac{\partial}{\partial x_i} \left(\frac{\partial t}{\partial x_i} \right) \]

\[\Gamma = \frac{\eta}{\lambda} \left(A_v - \delta_y \right) \]

\[v = -Y \left(A_y \right) \left(A_y - \delta_y \right) \]

\[Y \left(A_y \right) = 1 + e \left(A_y - 3 \right) \]

\[\Theta_j = \log A_j \]

More details for FVM:

NUMERICAL METHODS: SOLUTION OF THE GOVERNING EQUATIONS

- Finite-volume method (in-house code)
- Collocated block-structured mesh
- Non-orthogonal coordinates (Cartesian velocity and stress tensor)
- Diffusion: central differences (2nd order in uniform mesh)
- SIMPLEC algorithm
- Rhie-and-Chow to couple velocity and pressure
- Special scheme to couple velocity and extra stress

Advection: CUBISTA high-resolution scheme (based on QUICK, 3rd order)

Alves et al. [NMF, 41 (2003) 47-75.

Standard formulation and log-conformation formulation (higher De)

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

HYPERBOLIC SINGLE CHANNEL FLOW
Newtonian & Viscoelastic

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

HYPERBOLIC CONTRACTION: NEWTONIAN FLUIDS (1)

Water

\[Q = 1 \text{ mL/h} \]

\[Re = 3.21 \]

Centre plane (y=0): experimental versus numerical

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011
HYPERBOLIC CONTRACTION: NEWTONIAN FLUIDS (2)

Centre plane (y=0): experimental versus numerical

Q = 3 ml/h
Re = 9.62

Nearly constant acceleration on centreline

Predicted Streamlines
- Numerical
- Experimental

Velocity Magnitude Contour Plot
- Numerical
- Experimental

Velocity magnitude (m/s)
- 0.55
- 0.50
- 0.45
- 0.40
- 0.35
- 0.30
- 0.25
- 0.20
- 0.15
- 0.10
- 0.05
- 0.00

Purely extensional flow

HYPERBOLIC CONTRACTION: VISCOELASTIC FLUIDS (1)

0.3% PEO

0.3% PEO: Q=0-0.2 ml/h
0.3% PEO: Q=7 ml/h

0.3% PEO
- Q = 1 ml/h, Re = 13.2, De = 1.13
- Q = 3 ml/h, Re = 39.6, De = 3.40
- Q = 5 ml/h, Re = 66.0, De = 5.66

- Q = 7 ml/h, Re = 92.3, De = 7.93
- Q = 9 ml/h, Re = 119, De = 10.2
- Q = 11 ml/h, Re = 145, De = 12.5

Research on Complex Flows of Complex Fluids
Porto & Bragança, Portugal, 3 & 6th June 2011

HYPERBOLIC CONTRACTION: VISCOELASTIC FLUIDS (2)

0.3% PEO:
- Q=0-0.2 ml/h
- Q=7 ml/h

Research on Complex Flows of Complex Fluids
Porto & Bragança, Portugal, 3 & 6th June 2011

MICROFLUIDICS: RELEVANT PAST WORK ON ELASTIC INSTABILITIES

Taylor-Couette flow Larson et al., JFM 218 (1990) 573

Cone-plate flow McKinley et al., JNNFM 40 (1991) 201

Lid driven cavity flows Pakdel & McKinley, PRL 77 (1996) 2459

Underlying mechanism

\[
\frac{\lambda U}{\nabla \cdot e_{11}} \geq M_{\text{crit}}^2
\]

on curved streamlines

Instability growth to elastic turbulence

Groissman & Steinberg, Nature 405 (2000) 53

Microfluidics & viscoelasticity

Squires & Quake, Rev. Mod. Phys. 77 (2005) 977

Research on Complex Flows of Complex Fluids
Porto & Bragança, Portugal, 3 & 6th June 2011
HYPERBOLIC FLUID RECTIFIER

FLUIDIC DIODE: HYPERBOLIC CONTRACTION
- Planar geometry with hyperbolic shape
- Nearly constant acceleration on centreline

 \[\text{Hencky strain, } \varepsilon_H = \ln\left(\frac{D_1}{D_2}\right) = 2.18 \]

Purely extensional flow

42 identical elements, uniform depth = 50 µm

HYPERBOLIC FLUIDIC DIODE: NEWTONIAN FLUID (1)

\[Q = 0.1 \text{ ml h}^{-1} \quad Re = 0.594 \]
\[Q = 5 \text{ ml h}^{-1} \quad Re = 29.7 \]
\[Q = 20 \text{ ml h}^{-1} \quad Re = 119 \]

No fluidic rectification effect

HYPERBOLIC FLUIDIC DIODE: NEWTONIAN FLUID (2)

Pressure drop

\[\Delta P / \text{kPa} \]

\[Q / \text{ml h}^{-1} \]

No fluidic rectification effect
BLOOD ANALOGUES: RHEOLOGY

Sousa et al., BioMicrofluidics 5 (2011) 14108

500 ppm XG + water
125 ppm PAA + water

POLYACRYLAMIDE (PAA) ANALOGUE: FORWARD

Sousa et al., BioMicrofluidics 5 (2011) 14108

XANTHAM GUM (XG) ANALOGUE: FORWARD

Sousa et al., BioMicrofluidics 5 (2011) 14108
ELASTIC INSTABILITIES

CROSS SLOT
2D CROSS SLOT WITH UCM: EFFECT OF INERTIA

Poole et al., PRL 99 (2007) 164503

Inertia with UCM

Inertia decreases degree of asymmetry and stabilizes the flow

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

2D CROSS SLOT: OLDROYD-B — EFFECT OF SOLVENT — CREEPING FLOW

Poole et al., SoR 2007

Increasing the solvent viscosity
Increases \(\beta \)
For \(\beta > 3/9 \) flow becomes asymmetric unsteady (as in flow focusing)

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

2D CROSS SLOT: OLDROYD-B — SOLVENT AND INERTIA

Poole et al., SoR 2007

Increasing Re
Increases \(\beta \)
Decreases degree of asymmetry
For Re > 2 unsteady asymmetric flow

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

2D CROSS SLOT: OLDROYD-B — STABILITY MAP

Poole et al., SoR 2007

\(\beta = \frac{\eta_s}{\eta_s + \eta_p} \)

Unsteady asymmetric
Steady asymmetric
Symmetric

Research on Complex Flows of Complex Fluids
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011
Increasing ε increases degree of asymmetry ($\varepsilon < 0.04$).
Decreases degree of asymmetry and extension in De ($\varepsilon > 0.04$).
Asymmetric stable flow disappears for $\varepsilon > 0.08$.

Qualitatively as in flow focusing.

ELASTIC INSTABILITIES
FLOW FOCUSING
(Alternative extensional flow)

FLOW FOCUSING

Outflow Q_3,

Inflow Q_1, Q_2

$Q_3 = 2 \times Q_2 + Q_1$

Operational Variables

$FR = \frac{Q_3}{Q_1}$

$VR = \frac{U_2}{U_1}$

$Re = \frac{\rho U_1 D}{\eta_0}$

$De = \frac{\lambda U_1 D}{\eta_0}$

$El = \frac{De}{Re}$

Dimensionless Variables

All dimensions kept constant in experiments and calculations.

Operational Variables

Q_1, Q_2

$Q_3 = 2 \times Q_2 + Q_1$

Dimensionless Variables

$FR = \frac{Q_3}{Q_1}$

$VR = \frac{U_2}{U_1}$

$Re = \frac{\rho U_1 D}{\eta_0}$

$De = \frac{\lambda U_1 D}{\eta_0}$

$El = \frac{De}{Re}$

All dimensions kept constant in experiments and calculations.
FLOW FOCUSING: NEWTONIAN

Separation streamlines: nearly hyperbolic shape

\[\epsilon = \ln \left(\frac{D_1}{D_3} \right) = \ln \left(\frac{3}{2} (1 + 2V_R) \right) \]

Increasing \(Q_2 \)

\(Q_1 = 0.01 \text{ ml/h} \)

\(Q_1 = 0.3 \text{ ml/h} \)
\(VR = 1, Re_3 = 2.8 \)

\(Q_1 = 0.9 \text{ ml/h} \)
\(VR = 3, Re_3 = 6.5 \)

\(Q_1 = 15 \text{ ml/h} \)
\(VR = 50, Re_3 = 94.2 \)

\(Q_1 = 18 \text{ ml/h} \)
\(VR = 60, Re_3 = 112.8 \)

FLOW FOCUSING: 3D EFFECTS & NEWTONIAN (2)

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

No Recirculations
Recirculations

\(VR = 50 \)
\(Re = 0 \)

\(VR = 50 \)
\(Re = 47 \)

FLOW FOCUSING: VISCOELASTIC INSTABILITIES

UCM, 2D, Re=0

Astarita, JNNFM 6 (1979) 69
Thompson et al., JNNFM 86 (1999) 375
Mompean et al., JNNFM 111 (2003) 151

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

Flow focusing: 3D effects & Newtonian (2)

Oliveira et al. JNNFM 160 (2009) 31-39

Flow focusing: effect of VR

\(F^* = \frac{F_W - F_E}{F_1} \)

Bistable flow
High VR:
constant De:
evolution independent of VR:
supercritical pitchfork bifurcation

\[F^* = 0.59 \sqrt{De - 0.33} \]

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Porto & Bragança, Portugal, 3 & 6th June 2011

Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
FLOW FOCUSING: EFFECT OF β

$\beta = \frac{\eta_s}{\eta_s + \eta_p}$

β stabilizes the flow increases D_e

$\beta \geq \frac{6}{9}$, no steady asymmetry

FLOW FOCUSING: EXPERIMENTS FOR PAA125 (1)

$Q_1 = 0.01 \text{ ml/h}$

$Q_2 = 0.05 \text{ ml/h}$, $VR = 5$

$Re = 0.23$, $De = 0.38$

$Q_2 = 0.2 \text{ ml/h}$, $VR = 20$

$Re = 0.87$, $De = 1.41$

$Q_2 = 0.5 \text{ ml/h}$, $VR = 50$

$Re = 2.15$, $De = 3.479$

FLOW FOCUSING: NUMERICAL VERSUS EXPERIMENTS (PAA 125)

$Q_1 = 0.01 \text{ ml/h}$

$Q_2 = 0.05 \text{ ml/h}$, $VR = 5$

$Re = 0.23$, $De = 0.38$

$Q_2 = 0.1 \text{ ml/h}$, $VR = 10$

$Re = 0.45$, $De = 0.723$

$Q_2 = 0.2 \text{ ml/h}$, $VR = 20$

$Re = 0.87$, $De = 1.41$
FLOW FOCUSING: UCM VERSUS OLDROYD-B

\[Q_1 = 0.01 \text{ ml/h} \]

UCM 2D Calculations

\[Q_2 = 0.05 \text{ ml/h, } VR = 5 \]
\[Re = 0.23, \quad De = 0.38 \]

\[Q_2 = 0.2 \text{ ml/h, } VR = 20 \]
\[Re = 0.87, \quad De = 1.41 \]

\[Q_2 = 0.35 \text{ ml/h, } VR = 35 \]
\[Re = 0.87, \quad De = 1.41 \]

Oldroyd-B 2D Calculations

Unsteady 3D

Oliveira et al., JNNFM 160 (2009) 31-39

FLOW FOCUSING: NUMERICAL VERSUS EXPERIMENTS (PAA 125)

Experimental

PAA 125 + NaCl

Numerical

UCM, 2D, Re=0

Re = 0.23, De = 0.38

Re = 0.87, De = 1.41

Unsteady 3D

Oliveira et al., JNNFM 160 (2009) 31-39

3D CROSS SLOT

Uniaxial and biaxial

Afonso et al., JNNFM 165 (2010) 743-751

3D CROSS SLOT: FLOW CONFIGURATIONS

Planar extension

\[l_o = 2:4 \]

\[m = 1 \]

\[\mathbf{e}_1 = \mathbf{e}_6 \begin{bmatrix} -(m+1) & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Uniaxial extension

\[l_o = 4:2 \]

\[m = -\frac{1}{2} \]
3D CROSS SLOT: UNIAXIAL VERSUS BIAXIAL EXTENSION
Afonso et al., JNNPM 165 (2010) 743-751

Uniaxial
Biaxial

FLUIDS, GEOMETRY & SET-UP
Yaginuma et al. Nanotech Microtech (2011)

Deformation Index

DI = \frac{X - Y}{X + Y}

DI = 0
DI = 0.5

DEFORMATION OF RED BLOOD CELLS IN A HYPERBOLIC SYSTEM

FLOW

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Porto & Bragança, Portugal, 3 & 6th June 2011

June 2011

June 2011
FLOW: ZOOMING

Research on Complex Flows of Complex Fluids
Japan-Portugal Nano BME Symposium 2011
Pinho, Lima, Alves & Oliveira - CEFT/FEUP
Porto & Bragança, Portugal, 3 & 6th June 2011

CLOSURE

- Microfluidics: low Re & large De (contrasts with macro fluid dynamics)
- Microfabrication: essential to have good quality & clean environment
- Elastic instabilities observed & calculated at Re ≈ 0 → improved mixing
- Distinct transitions: steady symmetric to steady asymmetric; steady asymmetric to unsteady flow; steady symmetric to unsteady
- Log-conformation allows numerical calculations at very high De/Wi flows
- Rich transitions in plane sudden contraction: path to elastic turbulence?
- Effect of flow on RBC distribution and deformation history (extensional flow)

- Challenges: complex fluids with electrokinetic effects, surface tension gradients, surface patterning, magnetic fields, acoustics
- Flow of blood and blood analogues: complex, requires good rheology

ACKNOWLEDGEMENTS

- Fundação para a Ciência e a Tecnologia & Feder:
- Prof. Gareth McKinley, Dr. Chris Pipe and Dr. Johannes Soulages, Hatsopoulos Microfluidics Laboratory at MIT, USA
- Dr. Patricia Sousa and Dr. Alexandre Afonso at CEFT
- Prof. Takami Yamaguchi and Prof. Takuji Ishikawa, PFSL, Tohoku University, Japan
- Prof. Paulo Oliveira, Universidade da Beira Interior, Portugal
- Dr. Rob Poole, University of Liverpool, UK

REFERENCES

Yaginuma et al. Nanotech Microtech (2011)