TRANSITIONS IN SOME STAGNATION FLOWS OF VISCOELASTIC FLUIDS AT LOW REYNOLDS NUMBERS

Alexandre M. Afonso
CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: aafonso@fe.up.pt

Daniel O. Cruz
Departamento de Engenharia Mecânica, Universidade Federal do Pará
Campus do Guamá, Belém, Pará, Brazil, E-mail: doac@ufpa.br

Manuel A. Alves
CEFT, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: mmalves@fe.up.pt

Fernando T. Pinho
CEFT, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal, E-mail: fpinho@fe.up.pt

Flow Instabilities and Turbulence in Viscoelastic Fluids
Leiden, Holland
July 19-23, 2010
OUTLINE

• Objective
• Experimental and numerical results
 • Cross slot
 • Flow focusing
• Some analytical thoughts: Stagnation + “vortex” flow
• Closure
OBJECTIVE

• **Elastic instabilities** \((\text{Re}=0)\): enhanced mixing or upper limit in devices

• Transition from steady symmetric to steady asymmetric flow is our main interest

• When it occurs and what are the effects of solvent, inertia and extensional viscosity. Brief review in some simple flows

• Some findings about the asymmetric flow: decoupling into simpler flows

• Results: mostly numerical (some experiments) and analytical (work in
REVIEW

Viscoelastic instabilities in shear flows

Taylor-Couette flow Larson et al., JFM 218 (1990) 573
Cone-plate flow McKinley et al., JNNFM 40 (1991) 201
Lid driven cavity flows Pakdel & McKinley, PRL 77 (1996) 2459

Underlying mechanism McKinley et al, JNNFM 67 (1996) 19
 Pakdel & McKinley, PRL 77 (1996) 2459

\[
\left(\frac{\lambda U}{R} \frac{\tau_{11}}{\tau_{12}} \right) \geq M_{\text{crit}}^2
\]

curved streamlines

Instability growth to elastic turbulence

Microfluidics & viscoelasticity
Squires & Quake, Rev. Mod. Phys. 77 (2005) 977

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids
Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
NUMERICAL METHODS: SOLUTION OF THE GOVERNING EQUATIONS

- Finite-volume method (in-house code)
- Collocated block-structured mesh
- Non-orthogonal coordinates (Cartesian velocity and stress tensor)
- Diffusion: central differences (2nd order in uniform mesh)
- SIMPLEC algorithm
- Rhie-and-Chow to couple velocity and pressure
- Special scheme to couple velocity and extra stress

- Advection: CUBISTA high-resolution scheme (based on QUICK, 3rd order)

- Standard formulation and log-conformation formulation (allows higher De)

CROSS SLOT
Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
2D CROSS SLOT WITH UCM: EFFECT OF INERTIA

Poole et al., PRL 99 (2007) 164503

$De = \frac{\lambda U}{H}$

Inertia decreases degree of asymmetry and stabilizes the flow

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
Increasing the solvent viscosity

Increases $D e_{\text{CR}}$

For $\beta > 3/9$ flow becomes asymmetric unsteady (as in flow focusing)
Increasing Re

Increases D_{eCR}
Decreases degree of asymmetry
For $Re > 2$ unsteady asymmetric flow

Poole et al., SoR 2007
2D CROSS SLOT: OLDROYD-B — STABILITY MAP

\[\beta = \frac{1}{9} \]

Symmetric

Unsteady asymmetric

Steady asymmetric

Transitions in some stagnation viscoelastic flows at \(Re = 0 \)
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23{superscript}th July 2010
Increasing ε
Increases $D_{e_{CR}}$
Decreases degree of asymmetry ($\varepsilon<0.04$)
Increases degree of asymmetry and extension in D_{e} ($\varepsilon>0.04$)
Asymmetric stable flow disappears for $\varepsilon>0.08$

Transitions in some stagnation viscoelastic flows at $Re=0$
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
$\beta = 1/9; \, Re = 0$

Transitions in some stagnation viscoelastic flows at $Re=0$

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
FLOW FOCUSING
(extensional flow “without” shear)
Cross-slot with 3 inlets and 1 outlet

Flow Focusing

Operational Variables

\[Q_1, Q_2 \]
\[Q_3 = 2 \times Q_2 + Q_1 \]

Dimensionless Variables

\[FR = \frac{Q_2}{Q_1} \]
\[VR = \frac{U_2}{U_1} \quad (= FR) \]
\[Re = \frac{\rho U_2 D}{\eta_0} \]
\[El = \frac{De}{Re} \]
\[De = \frac{\lambda U_2^2}{D} \]

All dimensions kept constant in experiments and calculations
FLOW FOCUSING: NEWTONIAN

Separation streamlines: nearly hyperbolic shape

\[\varepsilon_H = \ln \left(\frac{D_1}{D_3} \right) = \ln \left[\frac{3}{2} (1 + 2VR) \right] \]

\[Q_1 = 0.01 \text{ ml/h} \]

\[Q_2 = 0.3 \text{ ml/h} \]
\[VR = 1, \text{ Re}_3 = 2.8 \]

\[Q_2 = 0.9 \text{ ml/h} \]
\[VR = 3, \text{ Re}_3 = 6.5 \]

\[Q_2 = 15 \text{ ml/h} \]
\[VR = 50, \text{ Re}_3 = 94.2 \]

\[Q_2 = 18 \text{ ml/h} \]
\[VR = 60, \text{ Re}_3 = 112.8 \]

Microfluidic flows of viscoelastic fluids
V BCR 2010

Oliveira et al. JNNFM 160 (2009) 31-39

Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP
Rio de Janeiro, Brazil, 14-16th July 2010
FLOW FOCUSING: PAA125

17

Oliveira et al. JNNFM 160 (2009) 31-39

$$Q_1 = 0.01 \text{ ml/h}$$

Increasing $$Q_2$$

Viscoelastic

$$Q_2 = 0.05 \text{ ml/h}, \ VR = 5$$
$$Re = 0.23, \ De = 0.38$$
Symmetric

$$Q_2 = 0.2 \text{ ml/h}, \ VR = 20$$
$$Re = 0.87, \ De = 1.41$$
Steady Asymmetric

$$Q_2 = 0.5 \text{ ml/h}, \ VR = 50$$
$$Re = 2.15, \ De = 3.479$$
Unsteady 3D

Microfluidic flows of viscoelastic fluids
V BCR 2010

Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP
Rio de Janeiro, Brazil, 14-16th July 2010
FLOW FOCUSING: PAA125

\[Q_1 = 0.01 \text{ ml/h} \]

<table>
<thead>
<tr>
<th>(Q_2)</th>
<th>VR</th>
<th>Re</th>
<th>De</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 ml/h</td>
<td>5</td>
<td>0.23</td>
<td>0.38</td>
</tr>
<tr>
<td>0.1 ml/h</td>
<td>10</td>
<td>0.45</td>
<td>0.723</td>
</tr>
<tr>
<td>0.2 ml/h</td>
<td>20</td>
<td>0.87</td>
<td>1.41</td>
</tr>
</tbody>
</table>

Oliveira et al. JNNFM 160 (2009) 31-39

Microfluidic flows of viscoelastic fluids
V BCR 2010

Sousa, Afonso, Oliveira, Alves & Pinho - CEFT/FEUP
Rio de Janeiro, Brazil, 14-16th July 2010
FLOW FOCUSING: VISCOELASTIC

\[\xi = \frac{1 - R}{1 + R} \]

\[R = \frac{tr \tilde{V}^2}{tr D^2} \]

Astarita, JNNFM 6 (1979) 69
Thompson et al., JNNFM 86 (1999) 375
Mompean et al., JNNFM 111 (2003) 151

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
FLOW FOCUSING: EFFECT OF VR

\[F^* = \frac{F_W - F_E}{F_3} \]

Bistable flow
High VR:
constant \(D_{ec} \)
evolution independent of VR
supercritical pitchfork bifurcation

\[F^* = 0.59 \sqrt{D_e} - 0.33 \]

Oliveira et al. JNNFM 160 (2009) 31-39
FLOWS FOCUSING: EFFECT OF β

$$\beta = \frac{\eta_s}{\eta_s + \eta_p}$$

Oldroyd-B

β stabilizes the flow increases De_c
$\beta \geq 6/9$, no steady asymmetry

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23rd July 2010
FLOW FOCUSING: EFFECT OF ε

ε stabilizes the flow
increases De_c
decreases degree of asymmetry
$\varepsilon \geq 0.04$ steady asymmetry disappears
(Transition directly to unsteady flow)

Similar levels of normal stresses achieved near critical conditions
Extensional properties decisive for onset of flow asymmetry

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
FLOW FOCUSING: NUMERICAL VERSUS EXPERIMENTS (PAA 125)

Experimental
PAA 125 + NaCl

Numerical
UCM, 2D, Re=0

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
STAGNATION FLOW
Symmetry & asymmetry
Some observations from numerics on cross flow
DIFFERENCE OF TWO SYMMETRIC FLOWS FAR FROM TRANSITION

\[De = 0.20 - De = 0.19 \]
DIFFERENCE OF TWO SYMMETRIC FLOWS CLOSE TO TRANSITION

\[De = 0.308 - De = 0.307 \]
Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
STREAMLINES FOR SYMMETRIC FLOW

$De = 0.309$

Transitions in some stagnation viscoelastic flows at Re=0

Afonso, Cruz, Alves & Pinho - CEFT/FEUP

Flow Instabilities and turbulence in viscoelastic fluids

Leiden, Holland, 19-23th July 2010
STREAMLINES FOR CRITICAL FLOW

\[De = 0.310 \]

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
SMALL DIFFERENCE BETWEEN TWO ASYMMETRIC FLOWS

\[De = 0.312 - De = 0.311 \]

\[De = 0.315 - De = 0.314 \]

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
LARGER DIFFERENCES

Asymmetric- critical
\[De = 0.32 - De = 0.31 \]

Asymmetric- asymmetric
\[De = 0.34 - De = 0.32 \]

Transitions in some stagnation viscoelastic flows at \(Re=0 \)
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23\(^{\text{th}}\) July 2010
STAGNATION + VORTEX FLOW
An analytical solution
PROBLEM FORMULATION: UCM

Stagnation flow
\[u_{sta} = ax \]
\[v_{sta} = -ay \]

“Vortex” flow
\[u_{vor} = b_u y \]
\[v_{vor} = b_v x \]

Stagnation + “vortex” flow
\[u = ax + b_u y \]
\[v = -ay + b_v x \]

Transitions in some stagnation viscoelastic flows at Re=0

Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
GENERAL SOLUTION & CONSTANT SOLUTION

\[
\begin{align*}
\tau_{xx} + De \left[(b_u y + ax) \frac{\partial \tau_{xx}}{\partial x} + (b_v x - ay) \frac{\partial \tau_{xx}}{\partial y} - 2 \left(a \tau_{xx} + b_v \tau_{xy} \right) \right] &= 2a \\
\tau_{xy} + De \left[(b_v x - ay) \frac{\partial \tau_{xy}}{\partial x} + (b_u y + ax) \frac{\partial \tau_{xy}}{\partial y} - \left(b_u \tau_{xx} + b_v \tau_{yy} \right) \right] &= b_u + b_v \\
\tau_{yy} + De \left[(b_v x - ay) \frac{\partial \tau_{yy}}{\partial x} + (b_u y + ax) \frac{\partial \tau_{yy}}{\partial y} - 2 \left(b_u \tau_{xy} - a \tau_{yy} \right) \right] &= -2a
\end{align*}
\]

\[
\begin{align*}
\frac{\partial \tau_{ij}}{\partial x_k} &= 0 \Rightarrow \\
\tau_{xx} &= -\frac{2 \left[a + 2a^2 De + b_v \left(b_u + b_v \right) De \right]}{-1 + 4 \left(a^2 + b_u b_v \right) De^2} \\
\tau_{xy} &= -\frac{b_u + b_v + 2a \left(b_u - b_v \right) De}{-1 + 4 \left(a^2 + b_u b_v \right) De^2} \\
\tau_{yy} &= \frac{2 \left[a - 2a^2 De - b_u \left(b_u + b_v \right) De \right]}{-1 + 4 \left(a^2 + b_u b_v \right) De^2}
\end{align*}
\]

This solution absorbs the constants on the rhs of constitutive equation.
HOMOGENEOUS SOLUTION (1)

\[
\begin{align*}
\tau_{xx} + De \left[(b_u y + ax) \frac{\partial \tau_{xx}}{\partial x} + (b_v x - ay) \frac{\partial \tau_{xx}}{\partial y} - 2(a \tau_{xx} + b_v \tau_{xy}) \right] &= 0 \\
\tau_{xy} + De \left[(b_v x - ay) \frac{\partial \tau_{xy}}{\partial x} + (b_u y + ax) \frac{\partial \tau_{xy}}{\partial y} - (b_u \tau_{xx} + b_v \tau_{yy}) \right] &= 0 \\
\tau_{yy} + De \left[(b_v x - ay) \frac{\partial \tau_{yy}}{\partial x} + (b_u y + ax) \frac{\partial \tau_{yy}}{\partial y} - 2(b_u \tau_{xy} - a \tau_{yy}) \right] &= 0
\end{align*}
\]

Solution hypothesis (1): \(\tau_{ij}(x, y) = \tau_{ij}(\phi) \) with \(\phi = kx + Ty \)

\[
\begin{align*}
m\phi De \sqrt{a^2 + b_u b_v} \frac{d\tau_{xx}}{d\phi} &= (-1 + 2a De) \tau_{xx} + 2b_v De \tau_{xy} \\
m\phi De \sqrt{a^2 + b_u b_v} \frac{d\tau_{xy}}{d\phi} &= b_u De \tau_{xx} + b_v De \tau_{yy} \\
m\phi De \sqrt{a^2 + b_u b_v} \frac{d\tau_{yy}}{d\phi} &= -(1 + 2a De) \tau_{yy} + 2b_u De \tau_{xy}
\end{align*}
\]

\[
\begin{align*}
k &= \frac{Tb_v}{-a \pm \sqrt{a^2 + b_u b_v}} \\
m &= \pm 1
\end{align*}
\]
HOMOGENEOUS SOLUTION (2)

Solution hypothesis (2): \(\tau_{ij}(\phi) = \alpha_{ij}\phi^q \)

as in stagnation flow \(^1,^2\)

\(^1\) Renardy JNNFM 138 (2006) 204-205
\(^2\) Becherer, Morozov, van Saarloos JNNFM 153 (2008) 183-190

\[
\begin{align*}
\left[-1 + 2aDe - mqDe\sqrt{a^2 + b_u b_v} \right] \alpha_{xx} + 2b_v De\alpha_{xy} \right] \phi^q &= 0 \\
\left[b_u De\alpha_{xx} + b_v De\alpha_{yy} - \left(1 + mqDe\sqrt{a^2 + b_u b_v} \right) \alpha_{xy} \right] \phi^q &= 0 \\
\left[2b_u De\alpha_{xy} - \left(1 + 2aDe + mqDe\sqrt{a^2 + b_u b_v} \right) \alpha_{yy} \right] \phi^q &= 0
\end{align*}
\]

\[
\begin{align*}
\alpha_{xx} &= \frac{2b_v De\alpha_{xy}}{-1 + 2aDe - mqDe\sqrt{a^2 + b_u b_v}} \\
\alpha_{yy} &= \frac{2b_u De\alpha_{xy}}{-1 + 2aDe + mqDe\sqrt{a^2 + b_u b_v}}
\end{align*}
\]
HOMOGENEOUS SOLUTION (3)

Back-substituting, three possible values of q and three possible stress fields

\[
q = \frac{2}{m} - \frac{1}{m \text{De} \sqrt{a^2 + b_u b_v}}
\]

\[
\alpha_{xx} = \frac{b_v \alpha_{xy}}{-a + \sqrt{a^2 + b_u b_v}}
\]

\[
\alpha_{yy} = \frac{b_u \alpha_{xy}}{a + \sqrt{a^2 + b_u b_v}}
\]

\[
q = -\frac{1}{m \text{De} \sqrt{a^2 + b_u b_v}}
\]

\[
\alpha_{xx} = \frac{-b_v \alpha_{xy}}{a}
\]

\[
\alpha_{yy} = \frac{b_u \alpha_{xy}}{a}
\]

\[
q = -\frac{2}{m} - \frac{1}{m \text{De} \sqrt{a^2 + b_u b_v}}
\]

\[
\alpha_{xx} = \frac{-b_v \alpha_{xy}}{a + \sqrt{a^2 + b_u b_v}}
\]

\[
\alpha_{yy} = \frac{b_u \alpha_{xy}}{a - \sqrt{a^2 + b_u b_v}}
\]

Homogeneous solution is sum of all

Momentum not yet enforced

No boundary conditions imposed
MOMENTUM EQUATION (1)

\[\frac{\partial}{\partial y} \left(-\frac{\partial p}{\partial x} + \frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} \right) - \frac{\partial}{\partial x} \left(-\frac{\partial p}{\partial y} + \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} \right) = 0 \]

Case 1

\[b_u = \frac{a^2}{b_v} \]

\[b_u = b_v \]

\[b_u = \frac{1 - 9a^2 De^2}{9b_v De^2} \]

\[b_u = \frac{1 - 4a^2 De^2}{4b_v De^2} \]

\[m = -1 \] avoids singularity at \(x=0, y=0 \) when \(De \ll 1 \)

singularities at all \(De \)

\[b_u = b_v \]

possible forms to obey simultaneously momentum & UCM

Stagnation + “vortex” flow

\[u = ax + b_u y \]

\[v = -ay + b_v x \]

Note change of signs at \(De= 1/(3a) \) and \(1/(2a) \)

Transitions in some stagnation viscoelastic flows at \(Re=0 \)
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
MOMENTUM EQUATION (2)

Case 2

\[b_u = -\frac{a^2}{b_v} \]
\[b_u = \frac{1 - a^2 De}{b_v De^2} \]
\[b_u = -2ia - b_v \]
\[b_u = 2ia - b_v \]

\[\text{singularities} \]

ok, but needs to be compatible with case (1)
(restrict values of \(a\) and \(De\))

We will consider no contributions from case 2
to the solution (k=0 and \(\alpha_{xy}=0\))

Case 3

After substitution of stresses all terms in equation are multiplied by \((1+m)\).
Since \(m=-1\), momentum is automatically satisfied

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
\[\tau_{xx} = \frac{b_v \alpha_{xy1}}{-a + \sqrt{a^2 + b_u b_v}} \frac{2}{m} \frac{1}{mDe \sqrt{a^2 + b_u b_v}} \phi - \frac{b_v \alpha_{xy3}}{a + \sqrt{a^2 + b_u b_v}} \frac{2}{m} \frac{1}{mDe \sqrt{a^2 + b_u b_v}} \phi - \frac{2(a + 2Dea^2 + b_u b_v De + b_v^2 De)}{4a^2 De^2 - 1 + 4b_u b_v De^2} \]

\[\tau_{xy} = \alpha_{xy1} \phi + \alpha_{xy3} \phi - \frac{b_u + b_v + 2aDe(b_u - b_v)}{4a^2 De^2 - 1 + 4b_u b_v De^2} \]

\[\tau_{yy} = \frac{b_u \alpha_{xy1}}{a + \sqrt{a^2 + b_u b_v}} \frac{2}{m} \frac{1}{mDe \sqrt{a^2 + b_u b_v}} \phi + \frac{b_u \alpha_{xy3}}{a - \sqrt{a^2 + b_u b_v}} \frac{2}{m} \frac{1}{mDe \sqrt{a^2 + b_u b_v}} \phi - \frac{2(-a + 2Dea^2 + b_u b_v De + b_u^2 De)}{4a^2 De^2 - 1 + 4b_u b_v De^2} \]

with \(\alpha_{xy1} = \alpha_{xy1}(a, b_u, b_v), \alpha_{xy3} = \alpha_{xy3}(a, b_u, b_v) \) such as

\[\alpha_{xy1} = \frac{\alpha_1(-a + \sqrt{a^2 + b_u b_v})}{b_v} \]
\[\alpha_{xy3} = \frac{\alpha_3(a + \sqrt{a^2 + b_u b_v})}{b_v} \]

\(a = 1, b_u = 0, b_v = 0 \Rightarrow \text{Becherer et al. JNNFM 153 (2008) 183} \)
STREAMLINES AND STRESSES (1)

Stream function \[\psi = axy + b_u \frac{y^2}{2} - b_v \frac{x^2}{2} \]

Stream function of vortex \[\psi_1 = \psi_{total} - \psi_{stagnation} = b_u \frac{y^2}{2} - b_v \frac{x^2}{2} \]

\[b_u = b_v \]
\[b_u = \frac{1 - 9a^2 De}{9b_v De^2} \]
\[b_u = \frac{1 - 4a^2 De}{4b_v De^2} \]

(1) \[De < \frac{1}{\sqrt{9a^2}} \]

\[b_u = b_v = 2.85; a = -1; \]
\[De = 0.2 \]
Transitions in some stagnation viscoelastic flows at Re=0

Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
STRESSES (2)

(1a) $De < \frac{1}{\sqrt{9a^2}}$
$De = 0.2; a = -1$

$b_v = b_u = 2.5$

$b_v = b_u = 2.3$

$b_v = b_u = 1.5$

$b_v = b_u = 1.2$

Transitions in some stagnation viscoelastic flows at Re=0

Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
Transitions in some stagnation viscoelastic flows at Re=0

Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
(2) $De < \frac{1}{\sqrt{9a^2}}$

$$b_u = \frac{1 - 9a^2De^2}{9b_vDe^2}; a = -1; b_v = 5; De = \frac{1}{3\sqrt{a^2}} - 0.001$$
STREAMLINES AND STRESSES (4)

τ_{xx}

$b_v = 5$

τ_{yy}

τ_{yy}

$b_v = 0.5$

$y = 0.000025$

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
STREAMLINES AND STRESSES (5)

(3) $De > \frac{1}{\sqrt{9a^2}}$

$$b_u = \frac{1 - 9a^2De^2}{9b_vDe^2}; a = -1; b_v = 5; De = \frac{1}{3\sqrt{a^2}} + 0.001$$

b_u, b_v

Opposite signs

Vortex

$De < De_c$ Vortex enclosing stagnation point is not possible.

$De > De_c$ Vortex enclosing stagnation point is possible.

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
STREAMLINES AND STRESSES (6)

\[b_v = 5 \]
\[\tau_{xx} \]

\[\tau_{yy} \]

\[b_v = 0.5 \]
\[\tau_{xx} \]
\[\tau_{yy} \]

\[y = 0.000025 \]

Transitions in some stagnation viscoelastic flows at Re=0
Flow Instabilities and turbulence in viscoelastic fluids

Afonso, Cruz, Alves & Pinho - CEFT/FEUP
Leiden, Holland, 19-23th July 2010
(4) $De > \frac{1}{\sqrt{9a^2}}$ - Circular vortex

$$b_u = \frac{1 - 9a^2De^2}{9b_vDe^2}; a = -1; b_v = 0.23999; De = \frac{1}{3\sqrt{a^2}} + 0.01$$
Transitions in some stagnation viscoelastic flows at Re=0

Flow Instabilities and turbulence in viscoelastic fluids

y = 0.000025
CLOSURE

• Steady symmetric to steady asymmetric is a purely elastic instability. Inertia and solvent delays and eliminates this transition.

• This transition exists with bounded extensional viscosity, but is weakened with ε

• Steady asymmetric flow is a combination of a planar stagnation and a vortex

• Analytical solution obtained enforcing UCM constitutive equation and momentum. It shows closed vortex cannot exist below $De<1/(3a)$

• Behavior of the solution currently under investigation: need to impose BC

• Need for stability analysis on the analytical solution.
ACKNOWLEDGEMENTS

• CNpQ 200120/2009-3