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ABSTRACT

This paper reports the development of a methodology for
calculating the flow of upper convected Maxwell fluids using a
finite-volume based method. The algorithm was developed for a
general non-orthogonal coliocated grid, and the pressure-velocity-
stress coupling was addressed by a special interpolation technique
inspired by Rhie and Chow's (1982) method. The differencing
schemes are second order accurate and calculations were carried on
for a two-dimensional entry channel flow in order to assess the
performance of the method. The interpolation technique specially
devised for the stresses was found to work well and the results of the
simulation compared favourably with those of the literature
(Eggleton et al, 1996). Convergence was attained for Deborah and
Reynolds numbers identical to those reported in the literature for a
similar flow problem using other numerical methods.

Viscoelasticity was responsible for the development of very
intense normal stresses, which were tractive in the wall region. As
a consequence the viscoelastic fluid was forced to move away from
the wall, in a more intense way than with Newtonian fluids, thus
reducing locally the shear rates and the role of viscosity in
redeveloping the flow.

KEYWORDS: finite-volume, collocated grids, non-orthogonal
coordinates, Upper Convected Maxwell model, slip- stick flow

1. INTRODUCTION

Finite-volume methods are known to be advantageous in terms
of space and time requirements for the calculation of fluid flow, as
well as for reasons of numerical stability, in comparison to finite-
element methods, Huang et al (1996). Various such finite volume
methods have been developed and used in Newtonian fluid
mechanics from the late sixties, as can be assessed by any
Specialised book on the subject (Versteeg and Malalasekera, 1995).

119

1 to whom all correspondence should be addressed

In spite of its many advantages, finite-volume methods were
not used in the computation of non-Newtonian viscoelastic fluid
flows for quite a long time but, recently, various research groups
have started developing finite-volume based algorithms.

One recent numerical work based on the finite-volume approach
was the investigation of the flow of an Upper Convected Maxwell
model fluid around a circular cylinder by Hu and Joseph (1990). A
staggered orthogonal grid and the SIMPLER (Semi-Implicit Method
for Pressure Linked Equations Revised) algorithm were used and
adapted for calculating the stress equation. The inertia terms of the
momentum equation were neglected because the calculations were
limited to low Reynolds number flows, of the order of 0.4 to 10,
with convergence attained for Weissenberg numbers up to 10.

Inclusion of inertia terms in the momentum equation is required
for higher Reynolds number flows, but may have consequences on
the convergence rate at low Reynolds number flows. Hence, it is
important to include inertia in the development of general
algorithms, as done by Yoo and Na (1991) in their predictions of
the sudden contraction. As Hu and Joseph, these authors also
considered first order interpolation schemes, which are known to
cause numerical diffusion whenever the flow is not aligned with the
grid orientation (Raithby, 1976). The use of staggered grids has
also been the normal practice in the above works, as well as in
other instances of finite-volume based calculations of non-
Newtonian fluids (Sasmal, 1995, Gervang and Larsen, 1991 and Xue
et al, 1995).

The advantage of a formulation based on colocated non-
orthogonal grids for handling handling the flow of non-Newtonian
fluids in complex geometries has been recently recognized by
Huang et al (1996), who used a so-called non-structured method for
predicting the flow of Phan-Thien-Tanner fluids in eccentric
bearings, but the inertia terms of the momentum equation were
neglected again.

The use of simple non-linear models, such as the Upper
Convected Maxwell (UCM) equations can only partially predict real
fluid rheology, but they are very challenging models from the




numerical point of view, because of their singularities in sharp
boundaries. Thus, they are espécially adequate for developing
accurate and robust numerical methods that can be upgraded later to
more realistic constitutive equations. Indeed, it is generally
accepted (eg. Huang et al, 1996) that the UCM equations pose the
most severe numerical difficulties compared with other constitutive
differential models, and so a good numerical method for the UCM is
expected to work well with the other models.

The finite-volume method is applied to the simulation of
viscoelastic entry flow into a 2-D plane channel. Here, two options
may be taken: either a uniform velocity profile is imposed right at
the channel entrance, or, following Eggleton et al (1996), an
initial unbounded region is considered upstream, where the flow is
allowed to relax to adapt itself to the channel entrance conditions.
This last option was adopted here because it is less demanding in
numerical terms and it is a situation in which the stresses in the
fluid are closer to what happens in a real entry flow. Few authors
(see Gaidos and Darby, 1988 and references within) tried the former
problem, mainly with view to study possible occurence of
bifurcation points in the solution. The finite-element meshes were
very coarse (often only 3 elements accross the channel width) thus
reducing the numerical problems. Even so, Gaidos and Darby
(1988) were obliged to impose a piecewise continuous polynomial
which would make a smooth transition between the uniform
velocity and the zero value at the wall singularity; thus the imposed
inlet velocity profile was only an approximation to the plug
profile.

The objective of this paper is to further advance finite-volume
based numerical methods for predicting non-Newtonian flows and
to include non-orthogonal colocated grids and second order accurate
interpolation schemes. A non-linear constitutive model, the White-
Metzner constitutive equation, is adopted and in the next section
the equations are presented and their discretization outlined. Then,
the numerical method, the interpolation schemes, the methodology
developed to address the pressure-velocity-stress coupling and the
definition of boundary conditions are presented and discussed. The
numerical procedure is then applied to investigate numerically the
two-dimensional Poiseuille entry flow, the inverse configuration
relative to the well-known stick-slip case and which may thus be
called the slip-stick flow.

2. GOVERNING EQUATIONS

The basic equations are those for three-dimensional,
incompressible and isothermal laminar flow of an upper convected
Maxwell model fluid, hereafter referred as the UCM fluid. Unless
otherwise stated or for outlined indices, the summation convention
for repeated indices will apply to either Cartesian components (i, j,
...) or non-Cartesian (/, m, ...) directions.

The continuity equation is

Ju:
ot _ 0 6))
ox;
and the momentum conservation equation is given by
dpy; 0 dp aTij
—+—\puu; |=——+—=+pg; 2)
ot ox; (p ! J) dx;  ox; pé;

where the extra stress tensor Tj; is defined by the UCM constitutiye
equation
Qg Oy | 20wy 5
ox; dx; | 3 ox,

The last term on the rhs of the constitutive equation is zero for
incompressible fluids, such as those analysed here, but it is kept
because it is not exactly zero in the numerical approximation ang
improves the convergence rate. In (3) 7(;); denotes Oldroyd's upper
convected derivative of 7; given by

a7; af,.j ou. ou;
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The mass and momentum conservation equations and the
constitutive equation obey the principle of invariance and are
written for an orthogonal coordinate system (x,X;,x3). Their
discretization on a general computational finite-volume mesh
composed of non-orthogonal six-faced cells requires their prior
transformation to a general non-orthogonal coordinate system (&,
€3, &3) (see Fig. 1) and it is advantageous from a numerical point of
view (Peric, 1985) to write them in a strong conservation form to
impose conservation of all quantities in the final algebraic
equations. The required transformation rules are
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Figure 1- Schematic representation of the transformation of a
rectangular Cartesian coordinate system to a non-orthogonal
coordinate system which follows the mesh lines.

In the discretised equations the Jacobian J will be represented
by cell volume Vp and the metric coefficients by; by areas By; (i-
component of area vector along direction 1, calculated at cell faces f
or at cell centres P). The derivatives 9/0§; will simply be
represented by differences along direction 1. After applying the
rules of transformation (5) to Egs. (1) to (4), these can be written in
compact form, as follows:

- continuity

d
3‘51‘(1’/56‘6‘) =0 ©

- momentum
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In Eq. (7) the terms which will be dealt with implicitly in the
numerical procedure are written on the lhs. It is well known that
some diffusion can be very efficient in promoting the stability of
finite-volume schemes when applied to transport equations, and
since viscous diffusion is not explicitly present in Eq. (7) it was
decided to add and subtract a normal diffusion term to it. This
procedure departs from usual practice in non-Newtonian
calculations, where the stress term is splitted into viscous and
elastic contributions, and the viscous contribution is made to
appear explicitly in the momentum equation. The two procedures
may lead to analogous equations in some instances, but it should be
noted that here the inclusion of the normal viscous term is just a
numerical trick, based on experience gained in Newtonian flow
calculations with the deferred correction approach (Khosla and
Rubin, 1974) and computation of turbulent flows with the
Reynolds-stress model (Basara and Younis, 1995). Eq. (7) is then
substituted by Eq. (9) (1= ! and no summation over subscript 1)
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in which all terms in the lhs are implicitly dealt with (incorporated
into the coefficients) and those in the rhs are treated explicitly
(incorporated into the source term) as explained hereafter. More
details on this can be found in Pinto (1996).

ﬁh aé[ aé

3. NUMERICAL METHOD

3.1 Discretization of the equations

The calculation domain is divided into cells and Egs. (6), (8) and
(9) are volume-integrated in each cell to ensure a conservative
discretization. This is accomplished via Gauss' theorem, as
explained in Patankar (1980), and the discretization is performed
with some differencing scheme applied to a universe of nodes
constituted by those located at the centre of the cells and at the
centre of their faces.

The discretised mass conservation Eq. (6) is required for the
calculation of the pressure and becomes

6
S F =0 (10)
f

where the (- 1)fis used to yield positive outgoing convective fluxes
F , calculated as

F =§(pr].£¢]-){ (11)
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with face index f = 1 to 6 for w, e, s, n, b and t, where compass
notation is used.

The momentum Eq. (9) can be casted under the common
linearised form for the velocity component u;

Vv
(‘D&P +a Sp)u =Y agu_¢ + S, + 'D&P ulp (12a)
where
a, =2,a¢ (12 b)
For Newtonian fluids the neighbour terms (f) originate in the
convective and diffusive contributions in the original equations
with (f) standing for the near neighbour cells (W,E,S,N,B,T for f=1
to 6). Here, the diffusion of momentum coming through the
constitutive equation is treated explicitly and it is the added
diffusion term on the lhs of Eg. (9) which gives rise to the diffusion
contribution to coefficients a; An identical diffusion term is added

to the rhs of Eq. (9), leading to terms afD u;_np that go to the source
S,; of the momentum equation, generally given by:

S =8 +5 +S + 5D+ Y agu;_g (13)

ui Ui—pressure Ui—gravity Ui—stress
with the pressure, gravity and stress field quantities represented by
Sui-pressures Syi-graviry and Sui-siress» Tespectively. These source terms
are readily obtained from Eq. (9), and are

3
— P P
Ui—pressure - lzillBIi [Ap]l (14)
Wi—gravity =pgivP (15)
- _nf f ~f
Ui—stress %’( 1) %“Bﬁ Tij (16)

S£ is the added diffusion term that compensates for the added
aPu;_; on the Ihs of Eq. (9) and is thus given by
SP=-Yap(u_¢ —u;_p) 17
£

The last term on the rhs of Eq. (13) involves far-neighbour
points which originate from the use of a second-order accurate
linear upwind scheme (LUDS) as the interpolation scheme for the
convective terms. With the linear upwind scheme used for the
convective terms and central differences for diffusive terms, the
coefficients a,; become

a =af +af (18 a)
where here f is the index of the cell neighbour to cell P accross face
f. The convective coefficients afc are assembled from the force

fluxes (11) following standard expressions for the LUDS scheme
which are also given in Pinto (1996). The diffusive coefficient of
Eg. (18 a), based on a central-difference integration, is computed as

af = s (Bf) (18 b)
f

where the scalar cell-face area is By = ’Z By;By; and the volume
j

f
centered at the face f is calculated as Vi =Eij[ij]f .The
J

f
quantity [ij]f refers to a difference, calculated at face f, along

direction ; of component j of vector X, as follows




f _ _F P
[Ax;1f = xj —xj,

forj=2andf=1, [Ax, }] = X35 — X3p (18 ¢)
The central coefficient of the momentum Eq. (12-a) is given by

V
aP=p6—tP+ao+SP

with Sp the linearized part of the average value of the source

e.g.,
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(8“ =S5,; — Spu;) over the control volume. Sp considers those
terms of a general source multiplying u; p, and it also includes, for
the LUDS scheme, the summation over the far-neighbour (ff) nodes

(Zaff)
b

The discretized stress equation has a similar outlook to the
momentum Eq. (12 a)
apTyp=20a{ Tj¢ + St (20
f
except for the absence of diffusive terms in the stress coefficients
a;. These coefficients are identical to those in the momentum
equation (from 18) except that they need to be multiplied by A/p,
i.e., any

A
a; for stress =——afc for momentum 2n
All the other contributions to the constitutive equation go to
the source. The central coefficient of cell P is computed from Eq.
(22) with near- and far-neighbour points in the summation due to
the higher order scheme LUDS.

Vv
ap=—2L+ Yaf (22)

The single cell volume Vp in Eq. (22) comes from the first term
on the lhs of Eq. (8) and the source term is evaluated at the centre of

a cell, as
3 P
sty =3Bl - 5Efo )

33 2 33
l%%Bﬁ(T&,[AuJ—]:’ + rjk[Au,.]f) —gnp(ﬁl:%BIE[Auk]:})&j

(23)

Convective terms of the momentum and stress equations
involve first derivatives of the quantities being convected, and thus
lead to values of those quantities at the faces of the cells. These face
values need to be computed from nodal values, a procedure which is
based on an interpolation scheme. In this work the second order
accurate linear upwind scheme, explained in Ferziger and Peric
(1996), was used and the reader is also referred to Pinto (1996) for
the equations for the convective coefficients.

The handling of the convective fluxes adopted here is based on
the special interpolation scheme of Rhie and Chow (1982), with
some modifications designed to avoid the problem of the final
solution being dependent on the particular time-step used in the
calculations, as explained in Issa and Oliveira (1994). Thus, the
cell-face velocities (ﬁi_f) are obtained and the wall fluxes are

computed from (11), with the assurance that no pressure-velocity
decoupling may occur.
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3.2 Cell- Face Stresses

In the momentum equation it is necessary to compute the
stresses at the cell faces from the stresses at nodal values, name] for
the term (16) and there is a similar stress-velocity coupling
problem, akin to the pressure-velocity coupling, that needs to be
properly addressed. If a linear interpolation of nodal values of
stress is used to compute face values, a possible lack of
connectivity between the stress and velocity fields may result, ang
this can be solved by a practice inspired by that of Rhie and Choy
(1982). Starting with Eq. (20) all terms are arithmetic-averaged to 5
particular cell-face f, except those multiplying velocity difference
across the face (see Eq. 23), which are evaluated directly through

a;%ifj =H(t;)+ E[Aui]?r + b_ﬁ[A”j]fr +

2 p, 2 P
Y blj[Aui]I + Y, bli[Al‘j]l
=f I%f

(24)
where H(’[ij) and the b- coefficients are defined as
H(Tij)E%a:b(Tij)nb (25)
n
3
b; =nB; + /l% By 7y (26)

In Eq. (24) the velocity differences are evaluated according to
the notation adopted and cell-centered ([Au]®) and face-centered

([Au]f) values must be carefully separated. It is computationally

more efficient to use the face stress given by Eq. (27) below,
obtained after arithmetic-averaging (20) and subtracting from (24),
instead of Eq. (24) itself.

ag Ty +bglAuly + bl du;Ty - (bylAu 1, +bslAu;];)

~f _
i =

ap
27)
The divergent of the stress term in the momentum equation,
belonging to source Sy;giresss (EQ. 18) should then be explicitly
evaluated with the stresses on the cell faces.

3.3-The SIMPLEC Algorithm Extended to the Stress

The calculation of the pressure is carried out indirectly, since
the momentum equation, where the pressure is explicitly present, is
used for computing the velocity vector. Patankar and Spalding
(1972) devised a method for calculating the pressure out of the
continuity and a truncated momentum equations, known as the
SIMPLE algorithm. Improvements to this philosophy have been
developed in the following years and the SIMPLEC (SIMPLE
consistent) algorithm introduced by Van Doormal and Raithby
(1984) was adopted here and extended for the stress equation. This
algorithm was originally developed for iterative time-marching
but here we adopt instead the time-marching version explained in
Issa and Oliveira (1994).

The presence of a complex constitutive equation, after
introducing the fictitious diffusion term, produces little changes
upon the original SIMPLEC method, which is only concerned with
the calculation of the pressure. Two new steps are introduced in the




SIMPLE-like algorithm to account for the stress equation and they
are:

_ the calculation of the stress tensor from the six implicit
constitutive equations, which must be carried out just prior to the
first time the three momentum equations are handled. Here the
coefficients and source term are based on previous time-level
velocity and stress values.

. Then, the momentum equations are solved implicitly for each
velocity component with the stress obtained above going to the
source term. The important step here is to base the divergence term
(16) on the specially developed interpolation practice defined by
(27). According to the standard pressure-correction approach, the
pressure gradient term is based on previous time-level values and is
singled out of the remaining source term for later use. The
velocities obtained now do not satisfy the continuity equation and
the algorithm proceeds as in the classical SIMPLEC case with
further corrections of the velocity and pressure in order to satisfy
momentum and mass continuity.

3.4- Boundary Conditions

At inlets the velocity field is known and given. The stress field
depends of the velocity field, but since a general constitutive
equation is implicit on the stress, further assumptions are required.
For the particular flow configuration here considered, the inlet is far
away upstream of the slip-stick junction and the velocity profile is
uniform, thus leading to a zero stress field. The stress field will
develop then as a consequence of the flow development.

The outlet is far away downstream of the region of interest,
where profiles become approximately fully developed, so the
values of velocity and stress at the outlet cells become exactly equal
to those of the previous upstream cells.

For the symmetry planes fictitous cells may be created in which
reflexion laws apply, thus defining the following boundary
conditions at the cell-face f lying on the boundary:

- for the velocity component u;
(u,-)P = (ui)P - (un)P n; with (u, )P =Suin; (28
j

- for the pressure or other scalar quantity

pf=p° (29)
As far as the stress field (‘L',-j) is concerned that gives
f
S () me = Z(Z(Tjk)Pnjni)nk (30)
k ko

which is an implicit equation set on the unknown stress
components on the boundary face (t;f). However, not each
individual component of the stress tensor is required at f as deduced
from inspection of the momentum equations. After integration on
cell P the stress term in the momentum equation results

f f
(Su,-—xtre.m‘) = sz(le) nj : €2
j
Wwhere the cell-face unit normal vector is computed from the area
components as

B

n; 32)
] Bf
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For solid walls the no-slip condition applies. i.e., using the
fictituous cell one gets

() = uzy (33)
where u;_, is the wall velocity (here taken as zero).
As far as the pressure is concerned, its value at the wall is
linearly extrapolated from the two nearest neighbour cells.
For the stress field the following wall boundary conditions
apply for the case of a wall perpendicular to the i-direction

auj 2 auj
Tﬁ=0,T}~}<=—21n g‘ ) Tij —_——2775,
Ju, ou;
and Ty = —2111?”‘"—87’ for i%jk G4)

Note that in Eq. (34) the repeated indices summation rule does
not apply.

NUMERICAL RESULTS AND DISCUSSION

4.1 Flow Conditions and Convergence Issues

The algorithm was applied to the solution of the entry flow
problem of an Upper Convected Maxwell fluid (UCM) like that of
Eggleton et al (1996). The model fluid properties were A= 0.001 s,
p= 0.5 Pas and p= 1000 kg/m3, and the channel half height (H) and
inlet bulk velocity (U;;) were such that the Deborah (De) and
Reynolds (Re) numbers of

De—}—g"i 0.1
H

and Re = LYt _ oo
n

were defined.

The two dimensional geometry outlined in Fig. 2 had an inlet
length of 5 half-heights and an outlet length of 10 half-heights.
The figure also defines the nomenclature used for the mesh size and
the coordinate system. For purposes of mesh generation, the
geometry was divided into two blocks, with block 1 in the wall-free
region having NX; by NY cells patched to block 2 in the wall
region with NX, by NY cells.

In order to assess the grid-size effect, various grids were defined
but only the results pertaining to three of them (meshes 3, 5 and 7)
are presented here. Characteristics of all grids are briefly presented
in table I where f, and f, are geometrical factors used to concentrate
nodes close to the wall leading edge.

Figures 3 a) and b) show axial profiles of the stress along a line
(y/H=0.985) close to the symmetry plane and wall, normalised
according to Eq. (35)

T

T = —te 35
Ly (35)

H
The main feature of the flow is the large peak in all components
of the stress as the flow approaches the wall. As far as grid
refinement is concerned, with mesh 3 the flow is not yet grid
independent, whereas the differences between the results from
meshes 5 and 7 are only on the magnitude of the peak values of the




Table I- Summary of the main characteristics of the grids. 5:., 5; are the cell dimensions normalised by the channel half-height

Block 1 Block 2
Grid NXjxNY fx1 ty1 * * NXoxNY fx2 fyz * *

51,mjn/5y,min 6x,min/6)'.min
mesh | 20 x 20 0.9131 0.95 0.1/ 0.03 40 x 20 1.0422 0.95 0.17 0.03
mesh 2 20 x 20 0.8712 0.95 0.05/ 0.03 40 x 20 1.0701 0.95 0.05/ 0.03
mesh 3 30 x 20 0.9085 0.95 0.03/ 0.03 60 x 20 1.0486 0.95 0.03/ 0.03
mesh 4 30 x 40 0.9085 0.9595 0.03/ 0.01 60 x 40 1.0486 0.9595 0.0370.001
mesh 5 50 x 40 0.9293 0.9595 0.01/0.01 80 x 40 1.0505 0.9595 0.01/ 0.01
mesh 6 50 x 60 0.9293 0.9657 0.01/ 0.005 80 x 60 1.0505 0.9657 0.01/ 0.005
mesh 7 70 x 60 0.9428 0.9657 0.005/ 0.005 100 x 60 1.0465 0.9657 0.005/ 0.005

stress near the geometrical discontinuity. Far from the location of
the slip-stick interface, there are no major differences between the
various predictions and the flow development is independent of the
mesh refinement, except for the three coarser grids of the table L.

region [ region I
wall

/
En>sym. Plalf:_ }\\_IV//’Z_//T/ s

[ SR [ I I

current method needs to be undertaken at different Reynolgg
numbers and the effect of the grid non-orthogonality should also he
investigated.

The novel method devised to obtain the cell-face stresses
(section 3.2) proved to be advantageous in more than one way. Iis
use coupled efficiently the velocity, pressure and stress fields,
eliminating the oscilations found when the linear interpolation ig
used instead, as can be seen in the transverse profile of the
transverse velocity component of Fig. 5. For the longitudinal
velocity and stress tensor components similar effects to those seeg
in Fig. 5 were observed. The use of these special interpolation

r

|

|

: NXy x NY NXy x NY l = scheme also speeded up convergence in comparison to the linear
I y scheme, with the decay of the residuals of the different equations
! sym. plane x_ Symmetry plane | being roughly 4 times as fast in the example of Fig. 5..

|< L1=5_>l< 1,2:10}{_ ;I

Figure 2- Schematic representation of the slip-stick geometry.

The current calculations were carried out with a much finer grid
than those of Eggleton et al (1996) (their finest grid has a
normalised spacing of 0.02). A comparison with their results close
to the slip-stick junction is difficult because of the large scatter in
their predictions. However, downstream of the junction, our
calculations compare well with Eggleton et al's, as shown in the
comparison of lateral profiles of two stress components at x/H=0.6
(Figs. 4-a and -b). Although these profiles are at a station some
distance downstream from the wall leading edge, it can still be seen
that the predictions with mesh 3 are slightly different than those
with meshes 5 and 7, indicating that mesh 3 is inadequate to yield
mesh-idependent results.

Still further downstream from the wall leading edge, the flow
tends to a fully developed situation and our predictions of uy, Ty,
and T, at x/H=10 are undistinguishable from the theoretical
profiles, thus giving some support to the coding of the UCM model
in the original finite-volume program.

Viscoelasticity is responsible for convergence difficulties
(Crochet, 1994) and this was no exception. For finer grids,
convergence was found to be more difficult: for mesh 7 converged
solutions could be obtained for Deborah numbers of 0.1 and 1.0 at a
Reynolds number of 20, whereas for the coarser mesh 3 Deborah
numbers in excess of 1.0 could be reached for the same Reynolds
number, and Deborah numbers higher than 0.5 for a Reynolds
number of 100, although with the first order accurate interpolation
scheme known as the upwind differencing scheme. These limiting
values are of the same order of magnitude as those found in the
literature, pertaining to the same flow geometry (Eggleton et al,
1996). A more systematic study of the limits of convergence of the

4.2 The Deborah number effect

The Deborah number effect was investigated in a comparison
between the Newtonian flow case (De= 0.0) and the viscoelastic
flow with a Deborah number of 0.1; in both cases mesh 7 and the
linear-upwind scheme were used.

For this variation of the Deborah number changes of the mean
flow pattern were rather small, as can be seen in the streamline plot
of Fig. 6 a). However, an intense effect was encountered for higher
Deborah numbers, as in the comparison between the Newtonian and
De=1.0 flow cases of Fig. 6-b). Inspection of these and other
figures not shown here show two different flow features which are
worth mentioning: viscoelasticity causes a strong deviation of the
fluid from the wall, thus creating a small layer depletied of fluid near
the wall, in comparison to the Newtonian case; downstream of the
slip-stick discontinuity, the viscoelastic flow aligns itself with the
wall sooner than the Newtonian fluid flow case.

An understanding of these differences relies on the comparison
between the Newtonian and viscoelastic fluid flow stress fields,
corresponding to the Deborah numbers of Fig. (6-a). Countours of
the normalised shear stress (T},), longitudinal normal stress (T{1h
transverse normal stress (To;) and the first normal stress difference
(N;= T - Ty) are presented in Figs. 7 to 10, respectively. Their
careful inspection shows that an element of Newtonian and non-
Newtonian fluid is subjected to the stress fields schematically
outlined in Fig. 11, in the two regions I and II. Note that the mesh
is concentrated near the computational wall and the slight
oscilations seen in the figure contours close to the symmetry plane
(at bottom of figures) are a mere artifact of the contouring program
together with the coarser mesh there.

In region I, components of the stress tensor for the Newtonial
and the viscoelastic fluids have identical signs and similal
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Figure 4- Comparison between the current predictions and those of Eggleton et al at x/H= 0.6. a) Transversal profile of the
normalised axial normal stress b) Transversal profile of the normalised shear stress.

Magitudes, except close to the wall leading edge where the non-
Newtonian stresses reach much higher values. Similar stresses
Pertaining to the Newtonian fluid occur earlier in the flow than for
the viscoelastic fluid, i.e., an element of Newtonian fluid is stressed
further upstream than an element of viscoelastic fluid. All the
Components of the stress tensor act to deccelerate the flow and
deviate jt away from the symmetry plane, at y/H= 1 as the wall is
approached: the building up of negative shear stress (Fig. 7) brakes
the fluid flow as is typical of a situation where there is a wall at rest;
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a negative longitudinal normal stress (fig. 8) acts compressively
thus retarding the flow longitudinally and simultaneously there is
traction acting on the y-direction (positive T,,, Fig. 9), which
forces the fluid away from the symmetry plane. So, the stress field
acts upon both fluids in the same way, with similar stresses
occuring further upstream for the Newtonian fluid. It should be
emphasized that the identical qualitative contribution of the two
normal stresses upon the flow translates into the summation of




their absolute values to compute the first normal stress difference,
which is negative everywhere in region (Fig. 10).
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Figure 5- Comparison of transverse velocity components near
the slip-stick boundary (x/H=-0.015, mesh 3) based on the
linear and the new interpolation scheme for the stresses.

a)

However, very close to the wall the viscoelastic fluid exhibig
higher stresses and it is thus forced to deviate more from the wq)
than the Newtonian fluid as can be seen in the velocity profile of
Fig. 12-a). For such a low elasticity fluid (De= 0.1) this effect ¢cay
only be detected very close to the wall leading edge (inspect Fig, 6.
a).

In region 1I a different situation arises: very close to the
uncoming wall the shear stress (Tjy) and the transverse normg]
stress (Tpp) retain their directions, but are intensified, especially
with the viscoelastic fluid. On moving downstream from the waj
leading edge, the magnitudes of those two stresses quickly drop to
similar levels, but a different behaviour is observed with the
longitudinal normal stress (Tj;). This stress is compressive
(negative) for the Newtonian fluid but tractive (positive) and one
order of magnitude higher for the viscoelastic fluid. Then, for the
Newtonian fluid both normal stresses still act to deviate the fluid
away from the wall, i.e., they both contribute negatively to the
first normal stress difference, whereas an element of nop-
Newtonian fluid suffers a strong traction in the longitudinal
direction, forcing the streamlines to align with the main flow
direction. Figs. 8 and 9 show that Ty is much larger than T79 for
the viscoelastic fluid, as reflected in the normal stress difference of
Fig. 10, so, in spite of the tractive transverse normal stress acting
to force the fluid away the from the wall the predominant effect is
that of Ty and as a result the non-Newtonian flow becomes parallel
to the wall faster than the Newtonian flow (see streamline plots of
Fig. 6).

b)

Figure 6- Streamlines for (a) De= 0 (dashed line) and De= 0.1 (full line); (b) De= 0 (dashed line) and De= 1.0 (full line). (zoom in the
region x=-H to +2H) in mesh7 and Re= 20.
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l

Figure 8- Contours of T11 for De=0.0 (a) and De=0.1 (b) at Re= 20.
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Figure 10- Contours of T44 - Tos for De=0.0 (a) and De= 0.1 (b) and Re= 20.
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Figure 11 a)- Stress field acting upon an element of viscoelastic fluid (De= 0.1) in regions | and Il of Fig. 3.
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Figure 11 b)- Stress field acting upon an element of Newtonian fluid (De= 0.0) in regions | and Il of Fig. 3.
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The tractive force in the elastic flow case delays the effect of
molecular diffusivity in the wall region, thus retarding flow
development. The depletion of the viscoelastic fluid that happened
just before the wall leading edge, within a small layer near the wall,
has reduced the shear rates, and thus radial transfer of momentum in
comparison to the Newtonian fluid case. The tractive force created
by the normal stresses actually enhances this flow feature and as a
consequence the velocity profile of Fig. 12-b) can be seen to have
lower velocities close to the wall and a slightly fuller profile away
from the wall. These effects upon the flow pattern are rather small
because the Deborah number is low but are very much amplified by
the fluid elasticity.

These comparisons were carried out for two flow configurations
that do not differ significantly as far as the mean flow pattern is
concerned, so the differences in the stress field can be attributed
mainly to the new terms of the constitutive equation and is not
affected by differences in the viscous term 2nD in equation (3).
This is also readily apparent by realizing that, due to continuity,
Ty = -Ty, for the Newtonian fluid; now, from fig. 9 it is seen that
T, does not differ much between the two fluids, but Ty for De=0.1
in zone II is completely different from Tp; for De= 0.0 (Fig. 8).
These differences can thus only be explained by the elastic terms in
the constitutive equation.

For increased viscoelasticity the differences in flow pattern
become rather large and though the viscous term may explain some
of the differences in the stress field, the higher value of the time
constant A would then also lead to a much stronger effect of the new
convective-like terms in the constitutive equation.

CONCLUSIONS

A new finite-volume methodology for the computation of the
flow of viscoelastic fluids has been developed and is presented with
some detail. The methodology is general in the sense that both 2-D
and 3-D simulations can be performed and the finite-volume mesh
may be non-orthogonal (and semi-structured) to conform to any
arbitrary flow-boundary geometry.

The interpolation techniques used for all terms of the
continuity, momentum and constitutive equations were second order
accurate. The problem of the pressure- velocity- stress coupling was
addressed and a new interpolation technique, inspired on Rhie and
Chow's (1982) practice developed for Newtonian flows, was devised
here for the stress terms appearing in the momentum equation.

Calculations for the channel entry flow of an upper convected
Maxwell model at a Reynolds number of 20 and Deborah numbers of
0.1 and 1.0 were carried out to assess the performance of the
programme; results for De= 0.1 were in good agreement with those
of Eggleton et al (1996). Very fine computational meshes have
been used, compared with those generally found in viscoelastic
computations; the non-linear mesh spacing near the boundary
discontinuity was 0.005 (compare with 0.02 in Eggleton et al work
which used already a very fine mesh).

The grid refinement studies showed that the profiles of the
calculated quantities were smooth (in contrast to Eggleton et al) and
that grid independent values could be obtained except in the near
vicinity of the wall discontinuity where stresses tended to infinity.
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The special interpolation technique developed for this work wag
seen to be effective in that no oscillations in the calculateq
quantities were detected and the convergence was faster than with 5
linear interpolation scheme. Convergence was attained for Deborap
and Reynolds numbers identical to those reported in the literature
for a similar flow problem using other numerical methods, namely
for Deborah numbers in excess of 1.0 and 0.5 for a Reynolds
number of 20 and 100, respectively.

The flow pattern at a Deborah number of 0.1 did not differ
significantly from that of a Newtonian fluid and the viscoelastic
fluids were seen to develop identical stresses much closer to the
slip-stick boundary due to the retardation effect brought by the new
elastic terms of the constitutive equation. However, as the wall was
approached the viscoelastic fluid developed higher stresses thus
being more effective in deviating the fluid away from the wall. In
the developing flow region within the channel the longitudinal
normal stress of viscoelastic fluids was seen to be tractive and very
intense, whereas it was compressive and one order of magnitude
smaller for Newtonian fluids, forcing the viscoelastic fluid to be
more parallel to the wall counteracting the role of molecular
diffusion. This, coupled with the previous depletion of fluid from
the wall region has the effect of delaying flow redevelopment.

Further research is deemed necessary to understand the flow
features very close to the wall discontinuity and deal with the very
high stresses occuring in that place. Improvements in the
performance of the model, especially in dealing with the stress
boundary conditions and to increase its convergence range are also
required. The effect of the non-orthogonality of the grid upon the
behaviour of the model and its convergence rate also needs to be
addressed in the future.
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