1. Introduction

In this work a methodology to automatically balance the flow in profile extrusion dies is used. For this purpose a computational code, based on the finite-volume method, was developed and used to perform the required three-dimensional numerical simulations of the flow.

The methodology is illustrated using two case studies, each one leading to the adoption of a different constructive solution (with and without the inclusion of flow separators).

In order to evaluate the quality of the automatically generated die geometries, an objective function, that takes into account the flow balancing and the ratio L/t of the parallel zone, is proposed.

2. Methodology

- Division of die in four main zones, namely the die land or parallel zone (PZ), the pre-parallel zone (PPZ), the transition zone (T2) and the adapter (A).
- The non-conventional PPZ was inserted between the TZ and the PZ, in order to facilitate the local control of the flow resistance without influencing the final extrudate dimensions.
- Change PPZ geometry until flow balancing is reached.
- Perform the numerical modelling of the flow in the domain ‘PPZ+PPZ’.

3. Case Study

Objective function

The value of the objective function decreases with increasing performance of the die, being zero for a balanced die having all the ES lengths in the admissible range.

\[F_{obj} = \sum \left[\frac{V_{avg}}{V_{ref}} \right]^2 + k \left[1 - \frac{L_{ES}}{L_{ref}} \right]^2 \]

- Change PPZ geometry until flow balancing is reached.
- Perform the numerical modeling of the flow in the domain ‘PPZ+PPZ’.

4. Results

5. Conclusion

- In this work a methodology for the automatic flow balance of profile extrusion dies was tested.
- It was shown that the insertion of a pre-parallel zone facilitates the search of a flow balanced geometry.
- The objective function used has shown to be adequate to evaluate the performance of the extrusion dies used in this work.
- The insertion of flow separators was shown to be a good solution in terms of flow balancing, but it must be well pondered in order to minimise the risk of mechanical failure of the extrudate.