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a b s t r a c t 

The thermal boundary layer flow is a canonical flow with characteristics that are present in most natural 

and industrial convection flows. An approximate self-similar solution is proposed for the first time for the 

thermal boundary layer of steady laminar flow of viscoelastic fluids, described by the finitely extensible 

nonlinear elastic constitutive equation with Peterlin’s closure (FENE-P model). This semi-analytical ther- 

mal solution is obtained by performing an order of magnitude analysis and ensuing simplifications of the 

governing equations by assuming that the fluid properties are independent of temperature therefore de- 

coupling the flow governing equations from the energy equation. The effects of viscoelasticity quantified 

with the Weissenberg number based on the streamwise coordinate ( x ) ( W i x ) up to W i x = 1 and viscous 

dissipation (results are presented for Brinkman numbers between -40 and + 40) on thermal boundary 

layer characteristics are investigated comprehensively for both constant wall temperature and constant 

wall heat flux. At low elasticity levels ( W i x < 0 . 01 ) the solution exhibits a global self-similar behavior in 

which flow and thermal quantities collapse on the corresponding Newtonian curves, and the polymer 

characteristics show a unique behavior if adequately normalized. However, by increasing flow elasticity 

the unique self-similar behavior of the approximate solution is lost, with the elasticity dependent results 

exhibiting local variations. In addition, the effects of elasticity are intensified by viscous dissipation. For 

the present study cases, it is observed that elasticity may change Nusselt numbers by more than 8%, and 

the thermal boundary layer thickens by up to 10%. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer in viscoelastic flows is relevant for applications in 

hermal science. Under turbulent flow conditions, where polymer 

olutions exhibit intense drag reduction [1] , the concomitant heat 

ransfer reduction can reduce the effectiveness of heat transfer, and 

his has both disadvantages as well as advantages depending on 

he application [2–7] . Turbulent flows, by the typical range of their 

eynolds numbers, lead to the formation of boundary layers. How- 

ver, of concern to this work are high Reynolds number boundary 

ayer flows in the laminar regime, which are easily found because 

he addition of polymers, or other additives like surfactants, that 

mpart viscoelastic behavior to the otherwise Newtonian solvent, 

aises the viscosity of the solutions. Of interest are dilute or semi- 

ilute polymer or surfactant solutions that are not excessively vis- 

ous to allow sufficiently high Reynolds number flows, but since 
∗ Corresponding author at: CEFT/FEUP, Universidade do Porto, Rua Dr. Roberto 

rias, Porto 4200-465, Portugal. 
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hey are more viscous than the solvent there might still be some 

ffects of viscous dissipation [8] . However, if the range of tem- 

eratures in the flow is not too large the assumption of tempera- 

ure independent fluid properties provides sufficiently accurate so- 

utions while significantly simplifying the solution from a mathe- 

atical perspective, as discussed in [9–11] . The available literature 

oncerning the thermal behavior of boundary layer flows of vis- 

oelastic fluids is rather limited as reviewed next, hence the cur- 

ent contribution. 

Early studies on thermal boundary layer flows with non- 

ewtonian fluids involve inelastic fluids as in Massoudi [12] , who 

tudied the heat transfer of a power law fluid in the laminar 

oundary layer flow over a wedge. Power law fluids were also con- 

idered by Khan et al. [13] who utilized the integral von Kármán- 

ohlhausen approach to study the heat transfer in flows over cir- 

ular cylinders, but restricted their analysis to sufficiently low 

eynolds numbers to allow laminar flow in the whole domain: 

hey reported drag reduction and heat transfer enhancement due 

o shear-thinning. Shokouhmand and Soleimani [14] investigated 

he heat transfer over a moving flat plate of power-law fluids 

hile considering arbitrary injection/suction and viscous dissipa- 

ion. They showed the large impact of viscous dissipation in heat 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.122248
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
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Nomenclature 

Latin letter 

Br Brinkman number (-) 

C i dimensionless coefficients (-) 

C i j conformation tensor (-) 

c p specific heat (J �kg −1 �K 

−1 ) 

f ( C kk ) Peterlin function (-) 

f e (L ) second scalar function of L (-) 

f x , f y expansion/contraction factors of the mesh (-) 

G similarity function of momentum (-) 

h x local convection coefficient (W.m 

−2 .K 

−1 ) 

K similarity function of Peterlin function (-) 

L dumbbell maximum extensibility (-) 

L length of the flat plate (m), cf. Figure 1 

n x , n y , n z number of grid points in the x, y, z directions (-) 

Nu Nusselt number (-) 

P pressure (Pa) 

P r Prandtl number (-) 

q w 

constant wall heat flux (W.m 

−2 ) 

Re Reynolds number (-) 

| S| norm of the strain rate tensor (s −1 ) 

S i j strain rate tensor (s −1 ) 

T temperature (K) 

T w 

constant wall temperature (K) 

T ∞ 

temperature of free stream flow (K) 

u,v,w velocity in streamwise, normal, and spanwise di- 

rections (m.s −1 ) 

u i velocity vector (m.s −1 ) 

U ∞ 

free stream flow velocity (m.s −1 ) 

Wi Weissenberg number (-) 

x i the i th space coordinate (m) 

x, y streamwise and transverse/cross-stream coordi- 

nates (m) 

Greek letter 

α fluid thermal diffusivity (m 

2 .s -1 ) 

α∗ energy partitioning coefficient (-) 

βp ratio of kinematic viscosities (-) 

δi j Kronecker delta 

δu dynamic boundary-layer thickness (m) 

δT thermal boundary-layer thickness (m) 

�x , �y , �z grid spacing in the x, y, z directions (m) 

η dimensionless cross-stream coordinate (-) 

θ dimensionless temperature (-) 

λ relaxation time of polymer (s) 

ρ fluid density (kg.m 

−3 ) 

τi j total stress tensor (Pa) 

τ P 
i j 

polymer stress tensor (Pa) 

τ S 
i j 

solvent stress tensor (Pa) 

ν0 the zero-shear rate kinematic viscosity (m 

2 .s −1 ) 

υp polymer kinematic viscosity (m 

2 .s −1 ) 

υs solvent kinematic viscosity (m 

2 .s −1 ) 

ψ the stream function (m 

2 .s −1 ) 

Subscripts and superscripts 

[ s ] refers to solvent 

[ p] refers to polymer 

x refers to local value 

L refers to whole plate 

∞ refers to free stream 

ransfer, especially when velocity gradients are large, which can 

ause a reversal of the wall heat flux and substantial variations in 

usselt number. Other additional analytical works on heat trans- 
2 
er in the presence of viscous dissipation, and showing its strong 

mpact in various different canonical flows, such as pipe [15] , fixed 

arallel plates [16] , and Couette–Poiseuille flows [17] involve again 

he power law fluid, i.e., a fluid model devoid of elastic effects. Re- 

arding the thermal boundary layer flows of viscoelastic fluids over 

at surfaces, Olagunju [18] investigated the specific case of Falkner- 

kan flows with constant wall temperature and viscous dissipation 

or the finitely extensible nonlinear elastic constitutive equation 

ith Peterlin’s closure (henceforth called FENE-P model). In his in- 

estigation, although he only used the fluid shear stress in the ap- 

roximate momentum equation, the corresponding polymer con- 

ribution was affected by his neglect of the full advection terms in 

he simplified constitutive equation calculating the conformation 

ensor. An increase in the elasticity level reduced the skin friction 

nd enhanced heat transfer. 

More recently, Benzi et al. [19,20] studied the thermal laminar 

oundary layer flow of Oldroyd-B and FENE-P fluids, respectively, 

gain for a constant wall temperature but without considering vis- 

ous dissipation effects, and for other forms of Peterlin’s functions 

21,22] . Their solution was also an approximate similarity solution 

23–28] that depended on local Reynolds and Weissenberg num- 

ers. Benzi et al. [20] used the shear component of the confor- 

ation tensor to compute a position-dependent effective viscos- 

ty, but the advection term of the conformation tensor considered 

y Benzi et al. [20] lead to some unphysical results of their effec- 

ive viscosity near the free stream region. To fix that, they used an 

laborate mathematical simplification to obtain the physical solu- 

ion. Although they could obtain the peak values of polymer stress, 

hey used different polymer characteristics in their simulations and 

ould not precisely calculate the polymer stresses near the wall, 

hich effectively prevents the use of their solution for validation 

urposes. It is worth mentioning that neither Olagunju [18] nor 

enzi et al. [20] investigated in a complete form the effect of elas- 

icity on thermal layer thickness and in addition they did not in- 

estigate the thermal case with imposed wall heat flux. It is also 

oteworthy that there are also some other analytical studies about 

he effect of viscoelasticity and viscous dissipation on heat transfer 

f viscoelastic fluid described, for instance by the simplified form 

f the Phan-Thien–Tanner constitutive equation (PTT) as in fully- 

eveloped pipe [29] or channel flow [30] for which a complete an- 

lytical solution can be obtained without the need for simplifica- 

ions on account of the simpler geometries. Such fully-developed 

olutions can actually be adapted for some forms of the FENE-P 

odel following the idea of Oliveira [31] , but their fully-developed 

ature and ensuing simplicity makes them somehow out of scope 

or the present study. 

Since we are dealing with fluid flows in the liquid phase, 

he momentum equation is uncoupled from the energy equation 

hrough the assumption of temperature independent fluid prop- 

rties, the main issue in the investigation of heat transfer of vis- 

oelastic fluids is essentially the accurate solution of the flow 

overning equations. To obtain the appropriate solution a large 

eynolds number ( Re ) is required and Re/W i � 1 is also verified, 

here Wi is the Weissenberg number defined as the ratio of elastic 

ver viscous forces. These conditions were reported by Rajagopal 

t al. [32] in their investigation of Falkner-Skan flows of second or- 

er fluids. In addition, Olagunju [18,33] found that the approximate 

imilarity solution of laminar boundary layer flow of FENE-P fluid 

emains dependent on local coordinates, in contrast to the corre- 

ponding approximate similarity solution for Newtonian fluids, ex- 

ept in the limit of low elasticity behavior [34] . 

While studying boundary layer-type flows of viscoelastic fluids, 

arvar et al. [35–37] observed that Olagunju [18,33] had neglected 

ome non-negligible terms in his final simplified constitutive equa- 

ion that distorted the prediction of some polymer stress compo- 

ents and could affect velocity profiles at large elasticity, while 
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Fig. 1. Schematics of the flat plate flow with definitions of dynamic and thermal boundary layer thicknesses and coordinate system. 
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educing the range of validity of his solution. The more precise 

implifications of the constitutive equation by Parvar et al. [35–

7] for the planar jet and boundary layer flows allowed for im- 

roved and more complete solutions that remained valid up to 

arger Weissenberg numbers than in Olagunju [18] and form the 

asis of the current contribution. In the present study, similar to 

lagunju [18,33] and Benzi et al. [19,20] , again only the total fluid 

hear stress is considered in the final simplified approximate mo- 

entum equation, but the more relevant advection terms of the 

onformation tensor evolution equations are considered and the 

quations derived are for general Peterlin functions. Nevertheless, 

he numerical results presented pertain to a specific set of Peter- 

in functions for better understanding and to facilitate compari- 

on with Olagunju’s solution [18,33] . In addition to a more accu- 

ate thermal solution for the constant wall temperature condition, 

he case for a constant wall heat flux is included here and in both 

ases due account is taken of stress work effects on the thermal 

nergy equation. These are necessary because polymers solutions 

re typically more viscous than the (single) Newtonian solvent so- 

utions. 

The main aim of the present work is to obtain a semi-analytical 

olution to study and improve our understanding of the ther- 

al boundary layer characteristics of viscoelastic polymer solu- 

ion flows. In particular, this result will assist us to investigate the 

ombined effects of viscoelasticity and viscous dissipation on heat 

ransfer characteristics as for Newtonian fluids [40,41] . The semi- 

nalytical solution is also a useful tool for validation purposes and 

o benchmark results when developing computational codes for 

iscoelastic fluid flow and heat transfer. 

This work starts with the planar laminar boundary layer flow 

olution of Parvar et al. [37] for FENE-P fluids, which was also ver- 

fied against predictions by the RheoFoam toolbox of the freeware 

penFoam code [38,39] and proceeds to the corresponding ther- 

al boundary layer flow problem through the solution of the en- 

rgy equation. 

After presenting the flow setup and coordinate system in 

ection 2 , the full set of governing equations are presented in 

ection 3 , then the assumptions and corresponding simplifications 

or each flow case are discussed in Section 4 , leading to the final

et of simplified equations. The numerical methods used to solve 

hem are given in Section 5 and their results and discussion are 

he subject of Section 6 . 

. Flow setup 

Fig. 1 shows the schematics of the two-dimensional laminar 

hermal boundary layer flow over a flat plate under conditions 

f zero pressure gradient. A free stream of uniform velocity ( U ∞ 

) 
3 
nd temperature ( T ∞ 

) flows over a thin motionless semi-infinite 

at plate of length L , which is either at a constant temperature 

 T w 

) or subject to a constant wall heat flux ( q w 

). The dynamic and

hermal boundary-layer thicknesses are δu and δT , respectively. The 

rigin of the coordinate system is located at the plate leading edge, 

ith x , y denoting the streamwise and transverse/cross-stream co- 

rdinates, respectively. No-slip and no temperature jump bound- 

ry conditions are imposed at the wall. The fluid velocity increases 

ith wall distance across the boundary layer and the tempera- 

ure varies according to thermal conditions with both approach- 

ng asymptotically the free-stream velocity and temperature values 

38,39] . 

The dynamic boundary-layer thickness ( δu ) is defined as the 

ransverse distance from the wall to a location where the local 

treamwise velocity equals 99% of the free stream velocity. To de- 

ne the thermal boundary layer thickness, it is necessary to intro- 

uce first a dimensionless temperature θ which depends on the 

all thermal boundary conditions as explained in Section 3.2 . In 

ny case, the thermal boundary layer thickness ( δT ) is defined as 

he transverse distance from the wall to the location of | θ (η) | = 

 . 01 (negative and positive values of θ may exist for some cases 

ith viscous dissipation), where η is an adequate dimensionless 

ross-stream coordinate yet to be defined. 

. Governing equations 

To describe the rheology of the viscoelastic fluids the finitely 

xtensible nonlinear elastic model with Peterlin’s closure (FENE- 

) [9,42] was adopted. This kinetic theory based constitutive equa- 

ion is used for dilute polymer solutions and provides the main in- 

redients of viscoelasticity such as memory effects, shear-thinning 

ehavior, shear-dependent normal stresses and bounded elastic 

tresses. Although the original FENE-P model depends on tempera- 

ure, it is assumed that temperature variations are small enough to 

onsider a simpler temperature independent version of the FENE-P 

odel [9–11] . 

The governing equations are presented next in Einstein’s nota- 

ion. The conservation of mass for incompressible fluids is 

∂ u k 

∂ x k 
= 0 , (1) 

nd the Cauchy equation is written as (
∂ u i 

∂t 
+ u k 

∂ u i 

∂ x k 

)
= − ∂P 

∂ x i 
+ 

∂ τik 

∂ x k 
, (2) 

here u i is the velocity vector, P is the pressure and ρ is the fluid 

ensity. The fluid total extra stress τi j is given by 

i j = τ s 
i j + τ p 

i j 
, (3) 
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he sum of the Newtonian solvent stress ( τ s 
i j 

) with the polymer 

tress ( τ p 
i j 

). The Newtonian solvent stress tensor is written as 

s 
i j = 2 ρυs S i j , (4) 

here υs is its kinematic viscosity and S i j is the rate-of-strain ten- 

or defined by 

 i j = 

1 

2 

(
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 

)
. (5) 

The polymer stress tensor is given by the FENE-P model, here 

ritten as 

p 
i j 

= 

ρυp 

λ

[
f ( C kk ) C i j − f e ( L ) δi j 

]
, (6) 

here υp is the zero shear rate polymer kinematic viscosity co- 

fficient, λ is the relaxation time, δi j is the identity tensor, C i j is 

he dimensionless conformation tensor, f ( C kk ) is a scalar function 

nown as Peterlin’s function, that depends on the trace of the con- 

ormation tensor and on the square of the maximum normalized 

umbbell extensibility ( L 2 ) and f e (L ) is a second scalar function of 

 . Several variants of the FENE-P model are presented in the litera- 

ure, however, by considering L 2 � 3 they essentially provide iden- 

ical results. Three of those models are given by 

f ( C kk ) = 

L 2 

L 2 − C kk 

and f e ( L ) = 1 , (7-a) 

f ( C kk ) = 

L 2 

L 2 − C kk 

and f e ( L ) = 

L 2 

L 2 − 3 

, (7-b) 

f ( C kk ) = 

L 2 − 3 

L 2 − C kk 

and f e ( L ) = 1 . (7-c) 

The first set of functions is considered as the original form, but 

as modified by Bird et al. [42] who used Eq. (7-b) as discussed 

n Beris and Edwards [8] . The third variant has also been used in

articular to study turbulent flows of polymer solutions such as in 

irect numerical simulations [43–46] , and in turbulence modeling 

or large eddy simulations [47,48] and Reynolds-averaged Navier–

tokes simulations [49–51] . In the present investigation the math- 

matical formulations are general and independent of the set of 

unctions, but the presented numerical results are for the third 

ariant ( Eq. (7-c) ). 

In kinetic theory based constitutive equations the connector 

orce within the dumbbells depends on fluid temperature, but its 

nfluence is null for isothermal flows and negligible if the temper- 

ture variation is not too large. Also the relaxation time and vis- 

osity coefficients of the polymer may depend on temperature, es- 

ecially for temperatures that are within 100 K of the glass tem- 

erature, but all these are excluded from our analysis. 

To close the polymer model, the conformation tensor is de- 

cribed by the following evolution equation 

∂ C i j 

∂t 
+ u k 

∂ C i j 

∂ x k 
= C jk 

∂ u i 

∂ x k 
+ C ik 

∂ u j 

∂ x k 
− 1 

λ

[
f ( C kk ) C i j − f e ( L ) δi j 

]
(8) 

Finally, the general form energy equation, is 

c p 

(
∂T 

∂t 
+ u k 

∂T 

∂ x k 

)
= 

∂ 

∂ x k 

(
k 

∂T 

∂ x k 

)
+ τik 

∂ u i 

∂ x k 
, (9) 

n which T is the temperature, k is the thermal conductivity, c p 
s the specific heat and ρ is density. The second term on the 

ight-hand side of Eq. (9) is the viscous dissipation term that par- 

ially accounts for entropic elastic effects of the polymer and there- 

ore contributes to temperature changes (Peters and Baaijens [52] ). 

hrough the split of the total fluid stress into solvent and poly- 

er contributions on the last term on the right-hand-side, with 
4 
he polymer stress contribution multiplied by the energy partition- 

ng coefficient α∗, and an additional term on the right-hand-side, 

ne could also consider the effects of the energy stored elastically 

s internal energy. This elastically stored energy would not con- 

ribute to temperature changes but could be released in other flow 

ocations, i.e., different from the locations where energy is stored. 

Sarti and Esposito [53] have experimentally shown that for 

ome polymer melts (and naturally less so for dilute polymer solu- 

ions), only the viscous dissipative term matters when we are well 

bove the glass temperature and therefore α∗ = 1 . Peters and Baai- 

ens’ [52] calculations showed the negligible impact of the need to 

ccount for both elasticity effects unless the Weissenberg number 

ecomes very high and even then those effects are not very in- 

ense. However, under very high Weissenberg number flow condi- 

ions the approximate dynamic boundary layer flow solution, upon 

hich this thermal solution is based, breaks down. In conclusion, 

he thermal energy Eq. (9) used here is adequate for the range of 

alidity of this work, to be discussed in the results section, which 

oes not extend to very high Weissenberg number flows. Never- 

heless, note that this form of the energy equation was also uti- 

ized by Wachs and Clermont [54] to study heat transfer in flows 

t large Weissenberg numbers and Pimenta and Alves [11] in de- 

eloping the RheoFoam toolbox of OpenFoam [40,41] . 

.1. The simplified governing equations 

The procedure of simplifying the governing equations for 

sothermal boundary layer type flows of FENE-P fluids was car- 

ied out in detail by Parvar et al. [35–37] . Therefore, in the fol-

owing, those steps are briefly summarized and adapted to include 

he simplification of the thermal energy equation. 

The momentum equation in the streamwise direction ( x ) and 

he energy equation are simplified considering that the stream- 

ise gradients of stress and heat flux are negligible in comparison 

o the transverse gradients, i.e., ∂ τ s 
xx /∂ x << ∂ τ s 

xy /∂ y , ∂ τ
p 
xx /∂ x <<

 τ p 
xy /∂ y , and ∂ 2 T /∂ x 2 << ∂ 2 T /∂ y 2 . Furthermore, the analysis of

he y -momentum equation leads to negligible ∂ p/∂ y , and since the 

ow of interest to this work has a free stream with d p ∞ 

/dx = 0 ,

here is no need to consider further the pressure gradients and to 

olve the y -momentum equation. 

The zero-shear rate kinematic viscosity ( ν0 ) of the solution is 

he sum of the solvent and polymer kinematic viscosities defining 

he following ratio of viscosities ( βp ) as 

p = 

νp 

νs + νp 
= 

νp 

ν0 

. (10) 

At this stage it is beneficial to introduce the Reynolds number 

 R e L ) of the plate, 

 e L = 

U ∞ 

L 

ν0 

, (11) 

nd the Weissenberg number ( W i L ), 

 i L = 

λU ∞ 

L 

, (12) 

here U ∞ 

is the free stream velocity and L is the length of the flat 

late. The local coordinate x will also be used later as a character- 

stic length scale. 

In the 2D planar boundary layer flow continuity is immediately 

nforced by the introduction of the stream function ψ

 = 

∂ψ 

∂y 
, v = −∂ψ 

∂x 
, (13) 

hich, upon substitution into the x -momentum balance and con- 

idering steady state flow conditions, leads to the following simpli- 
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ed equation: 

∂ψ 

∂y 

)(
∂ 2 ψ 

∂ x∂ y 

)
−

(
∂ψ 

∂x 

)(
∂ 2 ψ 

∂ y 2 

)

= (1 − βp ) υ0 

(
∂ 3 ψ 

∂ y 3 

)
+ 

βp υ0 

λ

∂ ( f ( C kk ) C xy ) 

∂y 
, (14) 

here the solvent and polymer shear stresses have been substi- 

uted by their definitions in Eqs. (4) and (6) . The variations of C xy 

nd f ( C kk ) from the conformation tensor equation are required to 

et a closed form solution. 

The validity of the boundary layer approximation in the mo- 

entum equation requires large Reynolds number flows. Addition- 

lly, since both shear stresses were kept in the equation, there is 

o restriction on the Weissenberg number, as discussed in Parvar 

t al. [37] . 

An order of magnitude analysis of the evolution equation for 

he conformation tensor was also carried out by Parvar et al. 

37] for this flow. As discussed there in detail, by considering the 

elocities through the stream function, and assuming ∂ ψ / ∂ x << 

 ψ / ∂ y and further assuming the Weissenberg number to be suffi- 

iently low that the normal components of the conformation ten- 

or are much larger than the shear components (at rest C xx = C yy = 

 zz 
∼= 

1 and C i j ( i � = j ) = 0 (to ensure null deviatoric stress)), the sim- 

lified evolution equations for the components of the conformation 

ensor for steady-state flow become 

2 λC xx 
∂ 2 ψ 

∂ x∂ y 
− 2 λC xy 

∂ 2 ψ 

∂ y 2 
+ f ( C kk ) C xx = f e ( L ) , (15) 

 λC yy 
∂ 2 ψ 

∂ x∂ y 
+ f ( C kk ) C yy = f e ( L ) , (16) 

f ( C kk ) C zz = f e ( L ) , (17) 

λC yy 
∂ 2 ψ 

∂ y 2 
+ f ( C kk ) C xy = 0 . (18) 

So, a restriction on the Weissenberg number is imposed by the 

onstitutive equation through the quality of its predictions of C i j , 

s discussed later. Further manipulation provides the following al- 

ebraic equations for the components of C i j which depends on the 

ow characteristics via the stream function, other C i j components 

nd the trace of the conformation tensor ( C kk ) via the Peterlin func- 

ion, which is obtained from Eq. (7-c). 

C xx = 

f e ( L ) + 2 λC xy 
∂ 2 ψ 

∂ y 2 (
f ( C kk ) − 2 λ ∂ 2 ψ 

∂ x∂ y 

)

= f e ( L ) 

f ( C kk ) 

(
2 λ ∂ 2 ψ 

∂ x∂ y 
+ f ( C kk ) 

)
+ 2 λ2 

(
∂ 2 ψ 

∂ y 2 

)2 

f ( C kk ) 

(
f ( C kk ) 

2 −
(

2 λ ∂ 2 ψ 

∂ x∂ y 

)2 
) , (19) 

 yy = 

f e ( L ) (
2 λ ∂ 2 ψ 

∂ x∂ y 
+ f ( C kk ) 

) , (20) 

 zz = 

f e ( L ) 

f ( C kk ) 
, (21) 

 xy = 

λC yy 
∂ 2 ψ 

∂ y 2 

f ( C kk ) 
= 

λ f e ( L ) 
∂ 2 ψ 

∂ y 2 

f ( C kk ) 

(
f ( C kk ) + 2 λ ∂ 2 ψ 

∂ x∂ y 

) . (22) 
5 
Summing the three normal components gives the trace of con- 

ormation tensor C kk 

 kk = f e ( L ) 

3 f ( C kk ) 
2 + 2 λ2 

(
∂ 2 ψ 

∂ y 2 

)2 

− 4 λ2 

(
∂ 2 ψ 

∂ x∂ y 

)2 

f ( C kk ) 

(
f ( C kk ) 

2 − 4 λ2 

(
∂ 2 ψ 

∂ x∂ y 

)2 
) . (23) 

For a steady state thermal boundary layer flow ∂ 2 T /∂ x 2 << 

 

2 T /∂ y 2 as in a Newtonian boundary layer flow. In addition, since 

xx 
∂u 
∂x 

<< τxy 
∂u 
∂y 

and further assuming a constant thermal conduc- 

ivity fluid, the boundary layer approximations applied to the en- 

rgy Eq. (9) reduce it to 

u 

∂T 

∂x 
+ v 

∂T 

∂y 

)
= 

k 

ρc p 

(
∂ 2 T 

∂ y 2 

)
+ 

1 

ρc p 

(
τxy 

∂u 

∂y 

)
. (24) 

In reality fluid properties may depend on temperature, how- 

ver the temperature variation is postulated to be small in the 

resent study, therefore thermodynamic and transport fluid prop- 

rties such as k and c p are assumed to be constant. Here it is also 

ssumed that the effect of the viscous dissipation term is non- 

egligible since polymer-based fluids are often reasonably viscous. 

Expressing the total shear stress on the basis of solvent and 

olymer quantities, and introducing the stream function and the 

xpression for C xy , we arrive at the following form of the energy 

quation 

∂ψ 

∂y 

∂T 

∂x 
− ∂ψ 

∂x 

∂T 

∂y 

)
= α

(
∂ 2 T 

∂ y 2 

)
+ 

υ0 

c p 

(
∂ 2 ψ 

∂ y 2 

)2 

×

⎛ 

⎝ 

( 1 − βp ) f ( C kk ) + 2 λ( 1 − βp ) 
∂ 2 ψ 

∂ x∂ y 
+ βp f e ( L ) (

f ( C kk ) + 2 λ ∂ 2 ψ 

∂ x∂ y 

)
⎞ 

⎠ (25) 

here α is the fluid thermal diffusivity ( α = k/ ( ρc p ) ) . 

.2. Transformed governing equations 

Inspired by the self-similarity of the corresponding approximate 

olution for Newtonian fluids [38,39] , which only depends on the 

imilarity variable (η) , the above governing equations can be fur- 

her manipulated to facilitate their numerical solution as originally 

one by Olangunju [18,33] . However, as discussed in detail there 

nd in Parvar et al. [35–37] , the FENE-P solution depends not only 

n η but also on x . Hence the similarity variables to be used are η
nd function G ( η, x ) defined as 

= 

√ 

U ∞ 

2 ν0 

y 

x 
1 

/ 2 

, G ( η, x ) = 

ψ √ 

2 U ∞ 

ν0 x 
1 

/ 2 

. (26) 

The flow streamwise and normal velocities are obtained from 

heir definitions, as 

 = U ∞ 

G 

′ ( η, x ) , (27) 

 = 

√ 

ν0 U ∞ 

2 x 

(
ηG 

′ ( η, x ) − G ( η, x ) 
)
, (28) 

here the derivatives of G ( η, x ) with respect to η are shown with 

rimes. Even though G ( η, x ) depends on both η and x , to avoid an

xcessively complicated solution and since its streamwise deriva- 

ive is smaller than its cross-stream derivative, the former is here 

ssumed negligible ( ∂G ( η,x ) 
∂x 

≈ 0 ) , to allow a simpler differential 

quation that is more easily solved numerically, as previously done 

y Olagunju [18,33] and Parvar et al. [35–37,55] . 

Regarding the constitutive equation, the transformed Peterlin 

unction becomes also dependent on both η and x when using the 
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imilarity variables, as explained by Olagunju [18,33] and Parvar 

t al. [35–37,55] , and is here redefined as 

 ( η, x ) = f ( C kk ) (29) 

n order to emphasize the local nature of the solution. Using any 

f the Peterlin functions in Eq. (7-c) leads to the following third 

rder algebraic equation for K( η, x ) 

 

3 + C 0 K 

2 − W i x 
2 
(
ηG 

′′ )2 
K + C 1 G 

′′ 2 + C 2 

(
ηG 

′′ )2 = 0 (30) 

ith dimensionless coefficients 

 0 = 

(
3 I − 3 f e ( L ) − L 2 

L 2 

)
, 

 1 = −λ2 f e ( L ) U ∞ 

3 

ν0 L 2 
x −1 = − f e ( L ) Re x W i x 

2 

L 2 
, 

 2 = 

λ2 
(
L 2 + f e ( L ) − 3 I 

)
U ∞ 

2 

L 2 
x −2 = 

(
L 2 + f e ( L ) − 3 I 

)
W i x 

2 

L 2 
. (31) 

here I = 1 for the Peterlin function of Eq. (7-c) , and I = 0 for (7-

) and (7-b) . 

With further mathematical manipulation (see [37] for details), 

he following final form of the momentum equation is obtained 

 

′′′ = −
GG 

′′ + βp f e ( L ) G 

′′ ( W i x C 4 G 
′′ +2 C 3 ( C 2 −Wi 2 x K ) ) 

( K−W i x ηG ′′ ) 2 C 4 (
( 1 − βp ) + βp f e ( L ) 

( C 4 K+2 G ′′ 2 ( C 1 + η2 ( C 2 −Wi 2 x K ) ) ) 
( K−W i x ηG ′′ ) 2 C 4 

) (32) 

ith 

 3 = ηG 

′′ 2 , C 4 = 

(
3 K 

2 + 2 C 0 K − W i 2 x 

(
ηG 

′′ )2 
)

(33) 

The numerical solution of Eqs. (30) and (32) is explained in the 

ext Section. 

Regarding the heat transfer equation, its normalization depends 

n the imposed wall thermal boundary condition. Here we study 

wo popular boundary conditions in heat transfer, the constant 

all temperature ( T w 

) and constant wall heat flux ( q w 

), leading to 

ifferent definitions for the dimensionless temperature. For the for- 

er case, the constant wall temperature case, the dimensionless 

emperature is defined as 

( η) = 

T ( x, y ) − T ∞ 

T w 

− T ∞ 

, (34) 

here T ∞ 

is the temperature of the free stream flow over the thin 

otionless semi-infinite flat plate kept at a constant temperature 

 T w 

). Substituting Eqs. (26) –(29) and Eq. (34) into Eq. (25) the final

ransformed energy equation becomes 

′′ + P rGθ ′ + Br 

(
( 1 − βp ) K − ( 1 − βp ) W i x ηG 

′′ + βp f e ( L ) 

( K − W i x ηG 

′′ ) 

)
G 

′′ 2 = 0 

(35) 

here P r is the Prandtl number ( P r = υ0 /α) and Br is the global 

rinkman number defined as 

r = 

P r U ∞ 

2 

c p ( T w 

− T ∞ 

) 
(36) 

For the latter case of the thermal flow problem with a constant 

all heat flux ( q w 

) the dimensionless temperature is defined dif- 

erently as 

( η) = 

T ( x, y ) − T ∞ 

�T ( x ) 
= 

T ( x, y ) − T ∞ 

q w 
k 

√ 

2 υ0 x 
U ∞ 

= 

T ( x, y ) − T ∞ 

q w x 
√ 

2 

k 
√ 

R e x 

(37) 
a

6 
nd by substituting Eqs. (26) –(29) and Eq. (37) into Eq. (25) the 

nal transformed energy equation becomes 

′′ − P r 
(
θG 

′ − Gθ ′ )
+ B r x 

(
( 1 − βp ) K − ( 1 − βp ) W i x ηG 

′′ + βp f e ( L ) 

( K − W i x ηG 

′′ ) 

)
G 

′′ 2 = 0 (38) 

hich also depends on a local Brinkman number based on the lo- 

al temperature difference ( �T (x ) ) and here defined as 

 r x = 

P r U ∞ 

2 

c p �T ( x ) 
= 

P r U ∞ 

2 

c p 
√ 

2 q w x 

k 
√ 

R e x 

= 

P r U ∞ 

2 k 
√ 

R e x 

c p 
√ 

2 q w 

x 
(39) 

To summarize, for the same flow condition (steady boundary 

ayer flow over a flat plate with zero pressure gradient of viscoelas- 

ic FENE-P fluids) we are solving two different and independent 

hermal cases, the constant wall temperature case Eqs. (34) –(36) 

nd the constant wall heat flux case Eqs. (37) –(39) , for both prob-

ems always considering constant thermal fluid properties. Each 

hermal case has its own definition of the dimensionless tempera- 

ure and Brinkman number leading to a specific form of the sim- 

lified thermal energy equation, which are more complex than 

or the corresponding Newtonian fluid cases (cf. [38,39,56] ) on ac- 

ount of the fluid viscoelasticity. As mentioned in the introduction, 

 more accurate version of the simplified constitutive equation is 

sed in this work than originally by Olagunju [18,33] leading to 

mproved predictions of the stress tensor and this has implications 

oth on the velocity profile, but especially upon the stress work 

erm in the thermal energy equation, which differs from that in 

lagunju [18] . 

. Numerical solution of the governing equations 

The simplified governing equations for the dynamic problem 

re a third-order differential equation on G ( η, x ) and an alge- 

raic cubic equation for K( η, x ) , the same equations as in Par- 

ar et al. [37] . Consequently, they are solved numerically follow- 

ng the same procedure namely, the third-order differential equa- 

ion is converted to a system of first-order differential equations by 

onsidering the following transformations, G 1 = 

∂ 2 G 
∂ η2 , G 2 = 

∂G 
∂η

and 

 3 = G (x, η) , alternatively written as 

d G 1 

dη
= G 

′′′ , (40) 

d G 2 

dη
= G 1 , (41) 

d G 3 

dη
= G 2 (42) 

ince ∂ G/∂ x = 0 . First, the Cardan-Tartaglia formula [57,58] pro- 

ides the real solution of the cubic algebraic equation. This solu- 

ion must be physically correct, i.e., the normal components of the 

onformation tensor must be positive, and its trace should lie be- 

ween 3 (the value at rest) and the square of the maximum dumb- 

ell extensibility ( L 2 ). Then, the system of differential equations 

s numerically solved with a fourth-order Runge–Kutta procedure 

oupled with a shooting method to apply the boundary conditions 

59,60] . 

The boundary conditions for the momentum equation of lami- 

ar flat plate boundary layer flow are [38,39] : 

 

′ ( x, ∞ ) → 1 , G ( x, 0 ) = G 

′ ( x, 0 ) = 0 . (43) 

For the thermal problem, the second-order differential equa- 

ions on θ ( x, η) (each thermal problem has its own equation) are 

lso solved with the fourth order Runge-Kutta method and the 
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ame shooting method is used to apply the following two sets of 

hermal boundary conditions: 

(i) for the constant wall temperature 

( x, 0 ) = 1 , θ ( x, ∞ ) = 0 ; (44) 

ii) for the constant wall heat flux 

′ ( x, 0 ) = −1 , θ ( x, ∞ ) = 0 . (45) 

. Results and discussion 

.1. Verification: Newtonian fluids 

The governing equations for the boundary layer flow of the 

iscoelastic fluid reduce to those for a Newtonian flat plate flow 

38,39] for βp = 0 and this was used to verify the dynamic solution 

n Parvar et al. [37] , therefore only the energy equation is verified 

ext. In this work, similar to Parvar et al. [37] in terms of dynam-

cs, the length of the computational domain was set to η = 10 fol- 

owing White [38] , who showed that at η = 10 the flow character- 

stics approach the boundary conditions at infinity in his asymp- 

otic analysis. The number of grid points used in our simulations 

as 20 0 0 leading to a cell size �η = 0 . 005 , and the corresponding

umerical uncertainty is estimated to be below 0.001%. This was 

ssessed in a comparison of G and θ obtained in our mesh with 

he corresponding values in a simulation with 40 0 0 grids points 

nd cell size �η = 0 . 0025 , where the relative difference was of 

bout 1 × 10 −6 . 

Fig. 2 (a) shows excellent agreement in the comparisons be- 

ween the numerical values of dimensionless temperature from the 

urrent solution and the literature for the constant wall tempera- 

ure case and for Prandtl numbers ( Pr ) of interest in the context of

iscoelastic liquids [38] . 

The corresponding Nusselt number ( Nu ) variation, is defined as 

 u x = 

(
h x x 

k 

)
, (46) 

here h x is the local convection coefficient plotted in Fig. 2 (b). 

he local convection coefficient is defined by Newton’s cooling law, 

 x = ( q w 
T w −T ∞ 

) , and the wall heat flux is given by Fourier’s law at the

all, q w 

= −k ( ∂T 
∂y 

) y =0 . Further manipulation provides the following 

xpression for the local Nusselt number of the constant wall tem- 

erature case 

 u x = 

(
−θ ′ ( 0 ) 

)√ 

R e x 

2 

. (47) 

The comparisons in Fig. 2 (b) include the effect of Prandtl num- 

er P r and show excellent agreement with the literature [39] . 

For the constant wall heat flux ( q w 

) the wall temperature varies 

ith x and is part of the solution. Manipulation involving Newton’s 

aw of cooling and Fourier’s law at the wall leads to the local Nus-

elt number of 

 u x = 

1 

θ ( 0 ) 

√ 

R e x 

2 

(48) 

The comparison with the literature is again excellent, but is not 

hown for conciseness. As expected, for the Newtonian fluid case, 

he final solution is independent of the location (x). 

.2. FENE-P fluids 

In this section, we present results for the thermal solutions for 

he FENE-P fluid defined with the third set of Peterlin functions, 

q. (7-c) . 
7 
.2.1. Validation: FENE-P fluids 

We start with a comparison between the approximate local so- 

ution and the results of a numerical solution of the full set of 

overning equations using the RheoFoam toolbox of OpenFoam 

40,41] , which is based on a finite volume method. The full numer- 

cal solution relies on the high-order resolution scheme CUBISTA 

61] for the advective terms of the momentum, energy and confor- 

ation equations and central differences for the diffusive terms. 

he computational domain had a length 1 . 2 L , divided into two 

locks: block I upstream the plate leading edge was 0 . 2 L long, 

lock II along the plate had a length of L and the width of both

locks was larger and set at 2 . 0 L . In each block the non-uniform

omputational grid had N x × N y × N z cells in the x, y, z direc- 

ions, respectively as given in Table 1 together with the expan- 

ion/contraction factors f x = �i +1 
x / �i 

x and f y = �i +1 
y / �i 

y and ratios 

f mesh size over boundary layer thickness at some locations. As 

eported by Parvar [37] the mesh with N x × N y = 20 0 ×60 0 cells in
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Table 1 

Characteristics of the meshes used in the RheoFoam calculations for verification. 

The values of �x and �y listed pertain to the cells nearest the wall. 

Block N x N y N z f x f y 
�x x =0 

δu x = L 
, 

�y x =0 

δu x = L 
�x x = L 
δu x = L 

I 20 600 1 0.886 1.0088 - - 

II 200 600 1 1.0116 1.0088 0.0443,0.0051 0.443 

Fig. 3. Normalized transverse temperature profiles at x 
L = 0 . 2 for βp = 0 . 1 , L 2 = 

900 , Re x = 2 ×10 4 and Wi x = 1.0. Comparison between the present work (circles), Ola- 

gunju (squares), and RheoFoam (triangles) for the constant wall temperature prob- 

lem with Pr= 1 and Br= 0 (closed symbols), Br= 4 (open symbols). 
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he second block was selected after an assessment of mesh in- 

ependence using four grids 50 × 100, 100 × 300, 200 × 600, 

nd 400 × 1200. The discrepancy between the results of the nor- 

alized transverse u/ U ∞ 

velocity profiles of grids 200 × 600 and 

00 × 1200 is below 0.05% (the number of cells in block I and 

he expansion/contraction factors were consistently changed when 

efining/ coarsening grids). 

A uniform velocity was imposed at the inlet boundary and a 

ero gradient condition was set for all quantities at the outlet 

oundary, while no slip conditions were considered at the flat wall. 

t the boundary immediately upstream the wall, within block I, 

ymmetry conditions were set. Finally, for the far-field boundary 

ondition, i.e. the boundary opposite the wall, free stream velocity 

onditions were imposed, both in blocks I and II. 

The simulations were carried out for the Peterlin function of 

q. (7-c) with βp = 0 . 1 and L 2 = 900 and the results shown pertain

o x/ L = 0 . 2 , where the local Reynolds and Weissenberg numbers

 Re x and W i x ) defined as per Eqs. (11) and (12) , are Re x = 2 × 10 4 

nd Wi x = 1.0, respectively. Fig. 3 compares the normalized trans- 

erse temperature profiles of the constant wall temperature prob- 

em with P r= 1 and shows the excellent agreement between the 

urrent solution and RheoFoam simulations in the absence ( Br= 0) 

nd with viscous dissipation effects ( Br= 4). The comparison with 

lagunju’s work shows some discrepancy which tends to increase 

ith viscous dissipation ( Br= 4) especially in regions where such 

ffects are stronger, as near the wall, leading to 3% relative error 

ompared with Rheofoam results. For higher elasticity (not shown 

or conciseness), these differences will tend to increase. 

Figs. 4 and 5 compare the streamwise variations of the normal- 

zed thermal boundary layer thickness ( δT /x ) and of the Nusselt 

umber (N u x ) , respectively obtained from the present study and 

rom RheoFoam for the same cases ( βp = 0 . 1 , L 2 = 900 , R e L = 10 5 

nd W i L = 0.2, P r= 1 for Br = 0 and 4). The comparisons of the
8 
resent work with RheoFoam are good for these cases in which the 

all temperature is higher than the free stream temperature. As 

hown, the present semi-analytical results can predict the normal- 

zed thermal boundary layer thickness more accurately than Ola- 

unju’s, but this difference is small in terms of this physical quan- 

ity, maximum 1% relative error for the presented results, tending 

o increase with viscous dissipation and flow elasticity. For the case 

ith Br = 4 viscous dissipation is sufficiently strong to make the 

uid near the wall warmer than the wall itself, therefore this thin 

ear wall layer of fluid is cooled simultaneously by the wall and 

y the free stream. Hence, and in relation to the negligible viscous 

issipation flow, there is an inversion in the direction of the wall 

eat flux from positive to negative (cf. coordinate system in Fig. 1 ) 

nd consequently the Nusselt number definition leads to negative 

alues of N u x ( Fig. 5 (b)). In the absence of viscous dissipation (cf. 

ig. 5 (a)), the disagreement in N u x between Olagunju’s work on 

ne side and RheoFoam and the present semi-analytical solution 

n the other, is slight but it significantly increases with the mag- 

itude of the Brinkman number, leading to maximum 10% relative 

rror for Br = 4, as shown in Fig. 5 (b). 

Before proceeding, it is important to discuss the characteristic 

ength scale used to define the Reynolds and Weissenberg num- 

ers. As explained by Parvar et al. [37] the boundary layer thick- 

ess ( δu ) is a more adequate characteristic length scale than x , but 

u is part of the solution making it more difficult to quantify a- 

riori , hence the use of R e x and W i x instead of R e δu 
and W i δu 

. Since

he numerical values of W i x are lower than the corresponding lo- 

al values of W i δu 
one may be misled into thinking that the limit 

f validity of the approximate solution corresponds to conditions 

f low elasticity flow, which is not the case. Indeed, for an appro- 

riate assessment of the magnitudes of W i x and W i δu 
Fig. 6 plots 

he variations of both quantities for the present flows showing that 

 i δu 
is at least one order of magnitude higher than W i x : for the

ases in Fig. 6 where 0 . 2 < W i x < 1.0, one gets 13 < W i δu 
< 29 hence

orresponding to significant elastic effects. 

The previous work [37] observed that above W i x = 0.2 to 0.3 

he semi-analytical solution starts to be unable to describe the 

omplex variations of the conformation tensor components within 

he boundary layer, but nevertheless it is still possible to predict 

he dynamic boundary layer thickness, the velocity profiles and 
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Fig. 5. Comparison between streamwise variation of the Nusselt number (N u x ) for βp = 0 . 1 , L 2 = 900 , R e L = 10 5 and W i L = 0.2 from the present work (circles), Olagunju 

(squares), and RheoFoam (triangles) for the constant wall temperature problem with: (a) Pr= 1 and Br= 0 (closed symbols), (b) Pr= 1 and Br= 4 (open symbols). The inset in 

(a) plots profiles for 5 × 10 4 ≤ R e x ≤ 7 × 10 4 . 

Fig. 6. Streamwise variation of W i x (triangles and solid lines) and local W i δ (circles 

and dashed line) for βp = 0 . 1 , L 2 = 900 . and R e L = 10 5 . Lines are a guide to the eye. 
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he friction coefficient to within 5% for W i x of up to 5. Similarly, 

or the thermal boundary layer, the semi-analytical solution is in 

ood agreement with the RheoFoam simulations in terms of di- 

ensionless temperature profile, thermal boundary layer thickness 

nd Nusselt number for W i x ≤5. 

Finally, it is noteworthy to compare the computational cost of 

he present approximate thermal solutions and of the correspond- 

ng RheoFoam simulations. The latter were carried out by a com- 

uter equipped with an Intel Xeon E5 processor with 12 MB L3 

ache and Turbo Boost up to 3.9 GHz, with parallel processing us- 

ng its 6 computer cores, which took approximately 5.0 hours to 

omplete. In contrast, the computational cost of the semi-analytical 

olutions was about one second using a single core in the same 

achine. 

.2.2. Thermal boundary layer flow of FENE-P fluids with constant 

all temperature 

Without the presence of viscous dissipation the normalized 

hermal behavior is the same regardless the fluid is heating or 

ooling, but since the current solution includes the stress work 

ontribution this section deals first with wall heating followed by 

all cooling (designation based on the case with viscous dissipa- 
9 
ion). In both cases results are compared with data without viscous 

issipation ( Br = 0). 

(a ) T w 

> T ∞ 

(wall heating) 

Transverse profiles of normalized temperature ( θ ) at two differ- 

nt locations are shown in Fig. 7 (a),(b). By using the dimension- 

ess transverse coordinate η, quasi-unique profiles are obtained at 

ow elasticity levels for each value of Br, which coincide with the 

orresponding Newtonian profiles. However, by enhancing the elas- 

icity level, small deviations from the low elasticity asymptote are 

bserved, associated with the simultaneous dependence of the so- 

ution on x which is proportional to flow elasticity. 

Since the wall is warmer than the free stream fluid, viscous 

issipation corresponds to a positive Brinkman number ( Br > 0 ) 

hich increases the dimensionless temperature. For weak viscous 

issipation the maximum temperature is still at the flat plate, but 

he fluid near the wall becomes warmer than for Br = 0 . At a suf-

ciently high value of Br a local peak temperature within the fluid 

xceeds the wall temperature leading to an inversion of the wall 

eat flux and a thin layer of near wall warm fluid is now simul- 

aneously cooled by the wall and by the free stream. The critical 

alue of Br marking this transition ( Br c ) corresponds to a zero-wall 

eat flux and, as shown in Fig. 7 -(a) for a Newtonian fluid at Pr = 1

e have Br c = 2. Br c increases with Pr , so that at Pr = 10 Br c = 6.79.

ncreasing elasticity levels slightly increase the value of Br c , so that 

t the maximum elasticity level in Fig. 7 (a) and (b) ( W i L = 0.1,

p = 0 . 5 , L = 30) the values of the critical Br number are 2.1 and

.05 for Pr = 1 and 10, representing increases of 4.5% and 3.5% 

elative to the corresponding Newtonian values, respectively. As Br 

urther increases beyond Br c the peak temperature progressively 

ises and its location moves away from the wall as the amount 

f internally heated fluid grows. The deviation of the dimension- 

ess temperature for the highest elasticity condition from the cor- 

esponding Newtonian curve is 6% pertaining to B r L = 40 . In addi- 

ion, as elasticity is increased in the presence of viscous dissipation 

he location of maximum θ slightly moves toward the wall. 

Fig. 8 shows the streamwise variation of the compensated lo- 

al Nusselt number (N u x / 
√ 

R e x ) displayed as a function of flow 

nd fluid characteristics. As expected, this quantity is constant for 

ows with vanishing elasticity, but as W i L and βp increase and L 

ecreases, the ratio N u x / 
√ 

R e x increases and varies quasi-linearly 

long the plate (the ordinate is zoomed), but always tending to 

he Newtonian value as R e x increases because simultaneously W i x 
ecreases on going downstream. It is also observed that as viscous 
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Fig. 7. Normalized transverse temperature profiles at R e x = 2 × 10 4 and 8 × 10 4 as a function of local Reynolds and Weissenberg numbers, viscosity ratio and dumbbell 

extensibility for constant wall temperature with (a) Pr= 1, (b) Pr = 10 . The inset plots profiles for 1 ≤ η ≤ 1 . 5 . 
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issipation increases, the dependence of the ratio N u x / 
√ 

R e x on R e x 
eakens. For these cases, the compensated Nusselt number can be 

ncreased by elasticity by up to 6%. 

The interaction between viscous dissipation and elasticity de- 

ends on whether Br is below or above Br c , as shown in Fig. 8: for

r ≤ Br c enhancing elastic effects increases N u x whereas for Br > 

r c increasing flow elasticity reduces the absolute value of N u x , i.e, 

ot only there is a reversal in the heat flux direction but its magni-

ude also decreases. We also see that these variations increase with 

r but in inverse proportion to Br , meaning that by increasing Br 

eyond its critical number Br c , increasing elasticity decreases the 

agnitude of N u x . 

The streamwise variation of the thermal boundary layer thick- 

ess ( δT /x ) is plotted in Fig. 9 as a function of W i L , βp and L, re-

pectively. At low Weissenberg numbers δT /x collapse to the New- 

onian flow curve, but by increasing W i L , βp , or decreasing L , at

he same value of Br , the boundary layer thickness decreases (un- 

er the conditions of this analysis δu does not depend on Br ). Nev- 

rtheless, by increasing Br more heat is generated inside the ther- 

al boundary layer, hence thickening it. Here, the maximum re- 

uction of the thermal boundary layer thickness by elasticity is 4%. 

(b ) T w 

< T ∞ 

(wall cooling) 

In this section, the effects of elasticity and viscous dissipation 

re studied for a flow over a cold flat plate surface. In all cases the

uid will be warmer than the wall and there will be cooling at the 

urface. 

Considering the temperature normalization of Eq. (34) , the di- 

ensionless temperature will vary from 1 at the wall to 0 out- 

ide the thermal boundary layer, as shown in the plots of Fig. 10 .

or this thermal condition, viscous dissipation means a negative 

rinkman number and as Br progressively increases in magnitude 

he profiles of dimensionless temperature shift downward (become 

ore negative) as shown in Fig. 10 (a) and (b). For P r = 1 in

he range of −2 < Br < 0 for Newtonian fluids, the loci of max-

mum and minimum dimensionless temperatures do not change, 

ut when the magnitude of Br exceeds a critical value, B r c = −2 

or Newtonian fluids with Pr = 1, viscous dissipation becomes so 

ntense near the wall region that a local dimensionless tempera- 
10 
ure minimum develops inside the thermal boundary layer ( θ < 0 ) 

nd progressively moves towards the plate as Br becomes increas- 

ngly negative. This corresponds to a dimensional temperature in- 

ide the thermal boundary layer exceeding the free-stream temper- 

ture, therefore there is an inversion in the heat flux far from the 

all, i.e. this near wall fluid layer is simultaneously cooled by the 

all and by the free stream flow. This critical Brinkman number 

ecreases significantly in magnitude with P r so that, for example, 

or Newtonian fluids with P r = 10 , B r c ∼= 

−0 . 1 . Regarding the ef-

ect of flow elasticity, i.e., increasing W i L , βp , or decreasing L , a 

light weakening of the effects of viscous dissipation is seen, and 

oves the location of the minimum temperature slightly towards 

he wall. We also notice that for the highest viscous dissipation 

ested ( B r L = 40 ) , the elasticity reduces by 10% the magnitude of 

imensionless temperature. 

Fig. 11 (a),(b) show the corresponding effects of Pr , elasticity 

nd viscous dissipation on the Nusselt number, bearing in mind 

hat for Br = 0 the behavior is independent of whether the wall is 

ooling or heating. As displayed, increasing elasticity levels and the 

agnitude of the negative Br enhance heat transfer, regardless of 

r and of whether Br is below or above B r c , which contrasts with 

ndings for the fluid heating case. Here, the maximum deviation 

rom the Newtonian curves is 2% 

Fig. 12 (a),(b) shows the effect of elasticity and viscous dis- 

ipation on thermal boundary layer thickness. As defined in 

ection 2 the threshold for the end of the thermal boundary layer 

s the location where | θ (η) | = 0 . 01 . When viscous dissipation is

eak θ varies monotonically and there is a single location which 

atisfies the criterion. In contrast, for Br > B r c the temperature 

changes sign and consequently there are now three locations 

hich match the threshold value as shown in Fig. 10 (a) and (b). In

his circumstance the location which is consistent with the physi- 

al concept of thermal boundary layer thickness is the one closest 

o the free stream thermal condition. 

Therefore, in this set-up and according to the strength of vis- 

ous dissipation we observed two different behaviors for variation 

f thermal boundary layer thickness. At subcritical Brinkman num- 

ers (−2 < Br < 0) and for P r = 1 enhancing elasticity increases

he thermal boundary layer thickness. For P r ≥ 1 there is synergy 
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Fig. 8. Streamwise variation of the compensated Nusselt number ( N u x / 
√ 

R e x ) under various flow conditions for constant wall temperature with (a)-(c) Pr= 1, and (d)-(f) 

Pr = 10 . 

11 
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Fig. 9. Streamwise variation of the normalized thermal boundary layer thickness ( δT /x ) under various flow conditions for constant wall temperature with (a) Pr= 1, (b) 

Pr = 10 . The inset plots profiles for 4 ×10 4 ≤ R e x ≤ 5 × 10 4 . 

Fig. 10. Normalized transverse temperature profiles at R e x = 2 × 10 4 and 8 × 10 4 as a function of Reynolds number, Weissenberg number, viscosity ratio and dumbbell 

extensibility for constant wall temperature with (a) Pr= 1, (b) Pr = 10 . 
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etween elasticity and viscous dissipation, so that increasing both 

nhances heat transfer (the shear-thinning nature of viscosity leads 

o sharper velocity variations near the wall). At larger Prandtl num- 

ers, say P r = 10 , elasticity reduces the thickness of the thermal

oundary layer in comparison with the corresponding Newtonian 

ariation, both below and above B r c . As discussed earlier the value 

f B r c for P r = 10 is rather low ( B r c ∼= 

−0 . 1) . The variation of the

ormalized thermal boundary layer thickness due to elasticity is of 

p to 10%. 

.2.3. Thermal boundary layer flow of FENE-P fluids with constant 

all heat flux 

(a) q w 

> 0 (Fluid heating at the wall) 

In this section the flow is heated by a constant wall heat flux. 

or constant wall heat flux cases the Brinkman number becomes 

 local quantity ( B r x ) rather than global as for the constant wall

emperature cases. 
12 
As shown in Fig. 13 (a) and (b), when setting B r x = 0 and elas-

ic effects are weak, all solutions collapse onto the classical New- 

onian solution. As viscous dissipation is increased, the dimension- 

ess temperature profiles shift upward, because the fluid is warmer 

cross the boundary layer. For this case of fluid heating at the 

all the maximum dimensionless (and dimensional) temperature 

s always at the flat plate surface and the minimum temperature 

s in the free stream flow, regardless of the value of B r x and all

he heat has to be removed from the boundary layer by the free- 

tream. Increasing B r x , with all other quantities fixed, increases the 

aximum value of the dimensionless temperature (at the wall). 

he temperature profiles at different levels of elasticity (but con- 

tant B r L ) exhibit more separation from each other, i.e., the effect 

f elasticity is enhanced by viscous dissipation, but with elastic- 

ty reducing the values of θ . Viscous effects are always attenuated 

long the plate because of the way B r x varies with x for a con- 

tant wall heat flux, according to Eq. (39) , meaning that on going 
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Fig. 11. Streamwise variation of the compensated Nusselt number ( N u x / 
√ 

R e x ) under various flow conditions for constant wall temperature with (a),(b) Pr = 1 and (c),(d) 

Pr = 10 . 

Fig. 12. Streamwise variation of the normalized thermal boundary layer thickness ( δT /x ) under various flow conditions for constant wall temperature with (a) Pr= 1, (b) 

Pr = 10 . 

13 
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Fig. 13. Normalized transverse temperature profiles at R e x = 2 × 10 4 and 8 × 10 4 as a function of Reynolds number, Weissenberg number, viscosity ratio and dumbbell 

extensibility for constant wall heat flux with (a) Pr= 1, (b) Pr = 10 . The inset plots profiles for 1 ≤ η ≤ 1 . 3 . 

Fig. 14. Streamwise variation of the compensated Nusselt number ( N u x / 
√ 

R e x ) under various flow conditions for constant wall heat flux with (a)-(c) Pr= 1 and (b)-(d) Pr = 10 . 

14 
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Fig. 15. Streamwise variation of the normalized thermal boundary layer thickness ( δT /x ) under various flow conditions for constant wall heat flux with (a) Pr= 1, (b) Pr = 10 . 

Fig. 16. Normalized transverse temperature profiles at R e x = 2 × 10 4 and 8 × 10 4 as a function of Reynolds number, Weissenberg number, viscosity ratio and dumbbell 

extensibility for constant wall heat flux with (a) Pr= 1, and (b) Pr = 10 . 
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ownstream the viscous dissipation generates less heat, and con- 

equently the maximum dimensionless temperature θ ( x, 0 ) , hap- 

ening on the flat plate surface, is gradually reduced. To study the 

nterplay of both elasticity and viscous dissipation, it is more en- 

ightening to compare the normalized temperature curves at two 

ifferent locations. For B r L = 2 and 20 , the local Brinkman num- 

ers are B r x = 4 . 5 and 45 at x 
L = 0 . 2 with W i x = 0 . 5 , and also

 r x = 2 . 24 and 22.4 at x 
L = 0 . 8 with W i x = 0 . 125 , as shown in the

pper and lower set curves in Fig. 13 (a),(b), respectively. As seen, 

y weakening both the viscous dissipation and elasticity effects in 

he streamwise direction the maximum deviation of θ between the 

argest elasticity level and the Newtonian curves is reduced from 

% to 2%, and from 3% to 1.5% for B r L = 2 and 20 respectively. 

Fig. 14 (a),(b) show the effects of elasticity and viscous dissi- 

ation on the Nusselt number. In the absence of viscous dissipa- 

ion, elasticity enhances heat transfer, with the effect decreasing 

long the plate because elastic effects decrease on going down- 
15 
tream. In the presence of viscous dissipation (B r L > 0) the Nusselt 

umber is reduced in comparison with B r L = 0 , because the wall 

eat flux and by implication the wall temperature gradient, remain 

xed therefore the temperature difference between the wall and 

he free stream has to increase. Since there is an intense varia- 

ion of the wall temperature along the plate, essentially due to the 

arying B r x , the streamwise variation of N u x / 
√ 

R e x becomes quite 

ifferent and changes in slope relative to the case with negligi- 

le dissipation. As seen, elasticity increased the compensated Nus- 

elt number by up to 5% and this deviation is further enhanced for 

arger Wi numbers. 

The variations of the dimensionless thermal boundary layer 

hickness with flow elasticity, Brinkman and Reynolds numbers are 

hown in Fig. 15 (a),(b). As for the constant wall temperature cases, 

he thermal boundary layer thickens with Br and thins with elas- 

icity regardless of the Prandtl number. Here, elasticity effect re- 

uces δ /x by up to 5%. 
T 
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Fig. 17. Streamwise variation of the compensated Nusselt number ( N u x / 
√ 

R e x ) under various flow conditions for constant wall heat flux with (a) Pr = 1 , (b) Pr = 10 . The 

inset plots profiles for 4 ×10 4 ≤ R e x ≤ 5 × 10 4 . 

Fig. 18. Streamwise variation of the normalized thermal boundary layer thickness ( δT /x ) under various flow conditions for constant wall heat flux with (a) Pr= 1, and (b) 

Pr = 10 . The inset plots profiles for 4 ×10 4 ≤ R e x ≤ 5 × 10 4 . 

s

a

a

d

o

a

v

o

w

b

s

(

c

i  

i

p

b

a  

a

m

n

s

r

h

d

a

c

s

t

s

l

s

(b ) q w 

< 0 (Fluid cooling at the wall) 

Cooling the thermal boundary layer at the wall with a con- 

tant heat flux is discussed here considering viscous dissipation 

nd elastic effects. As for wall heating under constant wall temper- 

ture conditions, in the absence of viscous dissipation there is no 

ifference between fluid cooling and heating at the wall in terms 

f dimensionless quantities. Similarly, viscous dissipation leads to 

 local definition of the Brinkman number ( B r x ) as per Eq. (39) . 

However, and in contrast with the fluid wall heating case, as 

iscous dissipation becomes stronger than a critical value, a layer 

f fluid half way between the wall and the free stream becomes 

armer than the free stream fluid so that such region starts to 

e cooled both by the wall and by the free stream flow. This is 

een in the dimensionless temperature profiles of Fig. 16 (a) and 

b) through the development of negative values of θ with the 

orresponding lower peak approaching the wall as Br increases 

n magnitude ( Br < 0 for wall cooling, cf. Eq. (39) ). At B r L = 0 ,
16 
.e., no viscous dissipation, the maximum non-dimensional tem- 

erature is at the wall, and its minimum is outside the thermal 

oundary layer. However, by increasing the magnitude of the neg- 

tive Brinkman number in the range of −2 < B r x < 0 and gener-

ting more heat by viscous dissipation, the fluid warms and the 

aximum dimensionless temperature gradually reduces. For more 

egative Brinkman numbers the location of the maximum dimen- 

ionless temperature changes and takes place at the free stream 

egion. In this situation, the minimum dimensionless temperature 

appens close to wall and its value decreases by decreasing B r L , in- 

icating that the fluid is simultaneously being cooled by the wall 

nd by the free stream flow. It is also observed that the elasticity 

auses the location of minimum dimensionless temperature shift 

lightly toward the wall. As shown, viscous dissipation increases 

he impact of elasticity upon the temperature profiles, i.e., for the 

ame value of B r L the curves of θ show a wider spread than at 

arger values of | B r x | . The interaction of elasticity and viscous dis- 

ipation effects on normalized temperature is shown at two dif- 
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erent locations. For B r L = −2 and − 20 cases, the local Brinkman 

umbers are B r x = −4 . 5 and -45 at x 
L = 0 . 2 with W i x = 0 . 5 , and

lso B r x = −2 . 24 and -22.4 at x 
L = 0 . 8 with W i x = 0 . 125 , as shown

y upper and lower set curves, respectively in Fig. 16 (a),(b). As 

hown, the effects of elasticity and of viscous dissipation are atten- 

ated by increasing the distance from the leading edge of the flat 

late, therefore the maximum variation of θ for the largest elastic- 

ty level and relative to the Newtonian curves decrease from 10% 

o 3%, and from 20% to 7% for B r L = −2 and − 20 , respectively. 

Fig. 17 (a),(b) confirm that the effect of elasticity on Nusselt 

umber depends also on the viscous dissipation magnitude. As 

isplayed for P r= 1 and B r L = −2 in Fig. 17 (a), the Nusselt num-

er decreases in the streamwise direction and increases with flow 

lasticity in this range. However, by enhancing viscous dissipation, 

s measured by B r L = −20 , the Nusselt number changes sign (cf. 

ts definition in Eq. (48) ) and its absolute value now increases in 

he streamwise direction. Increasing flow elasticity also slightly in- 

reases the absolute value of Nu , as shown in Fig. 17 (b) for P r= 10.

ooking at the variation of the absolute value of the compensated 

usselt number, it is observed that increasing elasticity always en- 

ances heat transfer: this is seen as an increment in | N u x / 
√ 

R e x | of 

p to 8% and 3% for B r L = −2 and − 20 , respectively. 

Fig. 18 (a),(b) displays the corresponding effects on the thermal 

oundary layer thickness variation. As shown, the thermal bound- 

ry layer thickens with viscous dissipation, whereas flow elasticity 

as the opposite effect. Here, the elasticity effect leads up to 10 % 

ecrement of ( δT /x ) . 

. Conclusions 

Using boundary layer arguments an order of magnitude anal- 

sis of the governing equations for the steady, two-dimensional, 

aminar boundary layer flow of FENE-P fluids with temperature- 

ndependent properties is carried out for two independent thermal 

onditions, namely for a constant wall temperature and for a con- 

tant wall heat flux. Each thermal case leads to a semi-analytical 

olution of the thermal energy equation which is mathematically 

n approximate self-similar solution with a local nature, i.e., ex- 

ibiting a dependence on the local streamwise coordinate. How- 

ver, under conditions of low elasticity, the normalized flow char- 

cteristics show a global-like self-similar behavior with kinematic 

uantities collapsing on the corresponding Newtonian self-similar 

esult and with polymer-based quantities collapsing also onto sin- 

le self-similar curves. As elasticity levels increase, by taking on 

arger values of Wi x and βp and/or low values of L , there is a pro-

ressive deviation from the low elasticity asymptotic profiles. 

The comparisons showed that the present solution predicts 

he normalized transverse temperature profiles, thermal boundary 

ayer thickness, and Nusselt number with an excellent agreement 

ith RheoFoam simulations in the absence and with viscous dis- 

ipation effects (e.g. Br= 4). In addition, the comparison between 

he present solution with Olagunju’s work for Wi ≈ 1 ( W i x = 1.0) 

nd Br = 4 also revealed that Olagunju’s solution accuracy is lower 

han that of our solution for predicting flow properties. Through 

 comparison with the numerical solution of the full set of gov- 

rning equations, performed by RheoFoam, it was found that the 

emi-analytical solution is valid up to local Weissenberg numbers 

 W i x ) of Wi x = 5.0, beyond which differences exceed 5%. 

The effects of viscous dissipation and elasticity on Nusselt num- 

ers for various heating and cooling conditions with constant wall 

emperature and constant heat flux conditions are comprehen- 

ively studied and reported. For both conditions, it is observed that 

t low elasticity levels the local Nusselt number ( N u x ) is similar to

he Newtonian value. However, the Nusselt number increases with 

lasticity and for a given set of flow and thermal conditions, the 

ompensated Nusselt number ( N u x / 
√ 

R e x ) ceases to be constant 
17 
nd decreases non-linearly along the plate towards the Newtonian 

onstant value. In any case it is worth noting that for all cases 

tudied, larger viscous dissipation strengthens the elasticity effect. 

The effects of viscous dissipation and elasticity on the variations 

f the thermal boundary layer thickness ( δT /x ) are also presented. 

t low elasticity δT /x follows the corresponding Newtonian behav- 

or, but on increasing elasticity levels the thermal boundary layer 

hins by up to 10% for the cases studied. In contrast, the enhance- 

ent of viscous dissipation thickens the thermal boundary layer, 

specially for Brinkman numbers above the critical value at which 

he temperature inside the boundary layer exceeds the wall tem- 

erature or the free-stream temperature. 
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