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Abstract An approximate self-similar solution is proposed for the steady laminar mixing layer flow of viscoelastic
fluids, described by the FENE-P constitutive equation. The solution is obtained by performing an order of magnitude
analysis and ensuing simplifications of the governing equations following the procedures used in the corresponding
planar boundary layer flow solution (Parvar S, Silva CB, Pinho FT, Phys Fluids 33(2):023103, 2021). The effects
of Weissenberg number, maximum polymer extensibility and viscosity ratio on mixing layer, displacement, and
momentum thicknesses as well as on velocity, stress, and conformation tensor profiles are investigated in detail. At
low elasticity levels, the mixing layer exhibits a self-similar behavior, with the kinematic quantities collapsing on the
corresponding Newtonian flow curves and the polymer characteristics exhibiting a unique behavior if adequately
normalized. However, with increasing levels of elasticity not only the profiles deviate from the low elasticity
levels asymptote, but they cease to collapse onto single curves, showing a dependence on local values of the
relevant dimensionless numbers, i.e., the approximate similar solution becomes local. Our solution matches the
corresponding Newtonian solution and compares well with the significantly costlier numerical simulations using
the RheoFoam toolbox of OpenFoam open-source code.

Keywords Local approximate self-similar solution · Free shear flow · Mixing layer flow · Viscoelastic fluid ·
FENE-P model

1 Introduction

The mixing layer flow is one of three canonical wall-free shear flows (others being the free jet and the wake), which
are immensely relevant to our understanding of modern fluid mechanics precisely for being present (at least in part)
in virtually all natural and industrial flows. One cannot overstate the importance of these canonical flows, from
which the mixing layer case addressed here is probably the simplest of all the configurations. Indeed, it is fair to say
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that much of the insights we are able to gain when analyzing complex fluid mechanics problems actually arise from
our knowledge of this class of very simple canonical flows. The fact that the mixing layer configuration is probably
the simplest of all the canonical flows explains its great importance since mixing layers arise from regions with
strong velocity differences which exist in virtually all flows, e.g., the initial region of a planar jet can be described
by the evolution of two, opposite, mixing layers. Even though steady mixing layer flows are today reasonably
well understood for Newtonian fluids, both in the laminar [1,2] and turbulent regimes [3], there is presently no
known solution for the corresponding steady laminar flow case with viscoelastic fluids, as shown in the review
below. Of particular interest are cases allowing analytical or semi-analytical solutions, as is the case with similarity
solutions, as these provide a clearer picture of all the effects of the independent dimensionless numbers onto the flow
characteristics in addition to being less expensive to obtain than full numerical solutions, as is clear from classical
fluid mechanics [1,2].

In particular, the approximate self-similar solution of the viscoelastic steady laminar mixing layer flow obtained
in this work will be useful as a benchmark for the verification of numerical tools to deal with the corresponding
laminar and especially turbulent flows, and it will provide quantitative information and insight onto the laminar
flow characteristics for low and intermediate levels of elasticity.

The boundary layer theory of Prandtl [4] allowed the approximate similarity solution of the planar boundary
layer flow by Blasius [5], and those ideas and methods were subsequently applied to wall and wall-free shear
flows (the 2D wake flow is actually self-similar without the need to invoke the boundary layer approximation as
reported by Birkhoff and Zarantonello [6]). The simplified governing equations, benefitting from boundary layer
approximations and written in terms of similarity variables, are the same for boundary and mixing layer flows, each
obeying specific boundary conditions. For the laminar steady flow between parallel streams, or laminar mixing
layer flow, Lessen [7] and Chapman [8] were among the first to obtain the approximate solution, the former for
incompressible fluids, the latter for compressible fluids, but including the incompressible case as a limit case. Lessen
[7] investigated the stability of the mixing layer flow, following Kuethe and Von Kármán [9] by assuming the velocity
profiles to be continuous functions in the streamwise and normal directions, but they neither presented profiles
nor the corresponding numerical values, and only indicated how they could be obtained. In contrast, Chapman [8]
presented profiles at various Mach numbers, including the incompressible flow case (zero Mach number). Tabulated
data were listed by Lock [10], who provided the full solution through an extension of Lessen’s work to parallel
streams of fluids with different properties. Other developments considered the case of a non-uniform velocity stream
of incompressible fluid meeting fluid at rest by Nash [11], while both Ting [12] and Klemp and Acrivos [13] further
extended the compressible Newtonian mixing layer flow analysis.

For generality, the search for full self-similar solutions, i.e., without invoking approximations, was sometimes
carried out with generalized Newtonian fluids, where the viscosity function is described by a power law, as reported
in Birkhoff and Zarantonello [6] and explained more recently by Voropayev et al. [14].

Although laminar Newtonian mixing layer flows have been investigated extensively, for the corresponding non-
Newtonian flows the literature is scarcer, in particular when fluids are viscoelastic. For the large Reynolds number
flows of interest to this work the focus has been essentially on the effects of viscoelasticity in the development of flow
instabilities that ultimately lead to a transition from laminar to turbulent flow. Azaiez and Homsy [15] performed a
linear stability analysis with different viscoelastic models (Oldroyd-B, corotational Jeffreys, and Giesekus models)
and especially aimed at the inviscid modes. They showed that in this limit fluid elasticity reduces instability but does
not suppress it provided the elasticity number is finite (they also reported that if the Weissenberg number tends to
infinity in such a way that the elasticity number (El) increases then the maximum growth rate of the perturbations
and corresponding wavenumbers vary as ∝ 1/El). This stabilization mechanism was explained in the corresponding
Appendix E, authored by Hinch [16], as being equivalent to that due to an elastic membrane. Azaiez and Homsy
further investigated the effects of viscoelasticity in [17] through several temporal and two-dimensional numerical
simulations with both Oldroyd-B and FENE-P fluid models (FENE-P stands for “Finitely Extensible Non-linear
Elastic” model with Peterlin’s closure [18–20]). For the Oldroyd-B fluid the instabilities were associated with the
model deficiency in allowing unbounded growth of elastic stresses, ultimately leading to the code divergence (a good
example of the so-called high Weissenberg number problem). For the FENE-P model they reported that viscoelastic
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effects were negligible on the global vortex structure and the roll-up and pairing times of the vortex, but nevertheless
noticed more concentrated vorticity at spots of higher elastic normal stresses in the braids and in the vortex core
regions, with vortex structures lasting longer than for Newtonian fluids. Kumar and Homsy [21] carried out further
investigations of hydrodynamic instabilities on the onset of turbulence through direct numerical simulations (DNS)
of free shear layer flows of FENE-P fluids. They found that for sufficiently high polymer extensibility and relaxation
time the roll-up process is inhibited while large polymer stress gradients develop.

In the numerical investigations of viscoelasticity effects upon coherent structures in mixing layer flow of FENE-
P fluids by Yu and Phan-Thien [22], artificial diffusion was used and this inhibited numerical instabilities. They
observed that the growth of polymer normal stress differences attenuated several types of large-scale structures,
which also had an impact on the suppression of small-scale structures. Ray and Zaki [23] looked at the absolute
instability for the Oldroyd-B and FENE-P models and found elasticity to be destabilizing for the Oldroyd-B model
and stabilizing for the FENE-P model except when the maximum dumbbell extensibility is very large (i.e., when the
FENE-P tends to the Oldroyd-B model). Under creeping flow conditions there are instabilities of purely elastic nature
that have recently been experimentally investigated by Varshney and Steinberg [24]. Therefore, under conditions
of large flow elasticity and for large Reynolds numbers in which the flow transitions to turbulent, there is a wealth
of behavior over the whole range of Reynolds number.

This work aims to present the stable steady viscoelastic solution for the high Reynolds number laminar mixing
layer flow of viscoelastic fluids, here described by the FENE-P model, but below the conditions leading to laminar–
turbulent transition. As also discussed in the previous works who used this model, this is a suitable constitutive
equation for the rheology of dilute polymer solutions that is of interest to this work. Prior to that we quickly review the
literature regarding the related cases of stable laminar boundary layer and jet flows of viscoelastic fluids. Rajagopal
et al. [25] investigated Falkner–Skan flows of second-order fluids and reported that similarity not only required
a large Reynolds number (Re), but also Re/Wi � 1, where Wi is the Weissenberg number defined as the ratio
of elastic over viscous forces. Olagunju [26,27] obtained a local approximate similarity solution for the boundary
layer flow over a flat plate of viscoelastic fluids described by the FENE-P, because it remained dependent on the
streamwise coordinate through the FENE-P equation. This contrasts with the global nature of the approximate self-
similar solution of Newtonian flows [5]. Subsequently, while studying the laminar planar jet [28,29] and boundary
layer [30] flows of FENE-P fluids, Parvar et al. [28,30] noticed that Olagunju had ignored some terms in his elastic
stress equations. Although their impact on the velocity profiles was weak, they lead to inaccurate predictions of
the polymer stresses. This paper is an extension to the mixing layer flow of the approximate theory used in the
investigations of the laminar planar jet [28,29] and boundary layer flows of FENE-P fluids [30].

This text is organized as follows: after presenting the flow set-up, the coordinate system and the full set of
governing equations, we explain in Sect. 3 the simplifications leading to the final simplified differential momentum
equation and the algebraic cubic equations for the conformation tensor components. This set is identical to that for
the boundary layer flow, but the boundary conditions are different. The numerical methods used to solve them are
given in Sect. 4 and their results and the corresponding discussion are the subject of Sect. 5.

2 Flow problem and governing equations

The schematic of laminar mixing layer flow is shown in Fig. 1: two parallel streams with different uniform velocities
U1 andU2 (U1 > U2) meet at x = 0, downstream a very thin frictionless plate called splitter plate (present at x < 0).
The interacting streams form the mixing layer, and the transverse coordinate is y. Momentum diffusion smoothens
the velocity discontinuity and at some distance downstream the plate trailing edge the flow characteristics no longer
depend on the plate existence. For high enough Reynolds numbers, the thin boundary layer approximations are valid
in the mixing layer flow [1,2]. Since the two parallel streams remain uniform and constant far from the mixing layer,
the streamwise pressure gradient is null (∂p/∂x = 0) in the free-stream flows. The mixing layer thickness (δ) is
defined as in Pope [3], but in laminar flow it is more common to use a 1% rather than a 5% criterion. This thickness
is the distance between the locations yα with local velocity Uα , with α = 0.01 and 0.99, i.e., δ = y0.99 − y0.01,
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Fig. 1 The schematics of the mixing layer flow and definition of the mixing layer thickness and coordinate system. (The splitter plate
is present at x < 0) The z-coordinate is normal to the plane

where Uα is given as

Uα = U2 + α(U1 −U2), (1)

with U1 and U2 denoting the large and small free-stream velocities, respectively (cf. Fig. 1). These flow conditions
define two characteristic velocities, the difference between the free-stream velocities and their average value: by
using these to define a dimensionless velocity profile the shear layer thickness corresponds to the distance between
the locations where the dimensionless velocities differ by 1% from the free-stream values.

The viscoelastic fluid is described by the finitely extensible non-linear elastic model with Peterlin’s closure
(FENE-P) [20,31], which has the ingredients required to capture the main features of viscoelasticity in dilute
polymer solutions, such as memory effects, shear-thinning behavior, and bounded elastic stresses.

The governing equations are presented next in indicial notation. The conservation of mass for incompressible
fluids is
∂uk
∂xk

= 0, (2)

and the Cauchy equation is written as

ρ

(
∂ui
∂t

+ uk
∂ui
∂xk

)
= − ∂P

∂xi
+ ∂τik

∂xk
, (3)

where ui is the velocity vector, P is the pressure, and ρ is the fluid density. The fluid extra stress τi j is given by

τi j = τ s
i j + τ

p
i j , (4)

the sum of the Newtonian solvent stress (τ s
i j ) with the polymer stress (τ p

i j ). The Newtonian solvent stress tensor is
written as

τ s
i j = 2ρυsSi j , (5)

where υs is its kinematic viscosity, and Si j is the rate-of-strain tensor defined by

Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (6)
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The polymer stress tensor is given by the FENE-P model, here written as

τ
p
i j = ρυp

λ

[
f (Ckk)Ci j − fs(L)δi j

]
, (7)

where υp is the zero-shear rate polymer kinematic viscosity coefficient, λ is the relaxation time, δi j is the identity
tensor, Ci j is the dimensionless conformation tensor, and f (Ckk) is the scalar Peterlin function. This function
depends on the trace of the conformation tensor and on the square of the maximum normalized dumbbell extensibility
(L2) and fs (L) is a second scalar function of L2, that in several variants of the FENE-P model equals f (Ckk) at
equilibrium, i.e., at rest. There are several variants of the FENE-P model in the literature, however, by considering
L2 � 3 they essentially provide identical results. Three of those variants use

f (Ckk) = L2

L2 − Ckk
and fs (L) = 1, (8a)

f (Ckk) = L2

L2 − Ckk
and fs (L) = L2

L2 − 3
, (8b)

f (Ckk) = L2 − 3

L2 − Ckk
and fs (L) = 1. (8c)

The first set of functions is the original, later Bird et al. [19] modified it to Eq. (8b) as discussed in Beris and
Edwards [32]. Vaithianathan and Collins [33] were among the first who used the third variant, extensively used
in investigations of turbulent flows of polymer solutions [34–38]. In this work, the mathematical formulations are
general and independent of the set of functions, but the results presented are for the third variant (Eq. (8c)).

To close the polymer model, the conformation tensor is described by the following evolution equation:

∂Ci j

∂t
temporal term︸ ︷︷ ︸

+ uk
∂Ci j

∂xk
advection term︸ ︷︷ ︸

= C jk
∂Ui

∂xk
+ Cik

∂Uj

∂xk
distortion term︸ ︷︷ ︸

−1

λ
[ f (Ckk)Ci j − fs(L)δi j ]

relaxation term︸ ︷︷ ︸
, (9)

in which the first and second terms on the left-hand side express the local time variation and advection of the
conformation tensor, respectively, whereas the first two terms and the last term on the right-hand side express its
polymer distortion and relaxation, respectively.

3 Simplified governing equations

3.1 Momentum equations

The arguments used to simplify the governing equations for the mixing layer flows of FENE-P fluids are the same
as for the boundary layer flow analysis of Parvar et al. [30], where more details can be found. Next, we briefly
summarize them and then present the final set of simplified equations.

We introduce first the zero-shear rate kinematic viscosity(ν0) given as the following sum of the solvent and
polymer kinematic viscosities

ν0 = νs + νp, (10)

and the ratio of viscosities (βp)

βp = νp

νs + νp
= νp

ν0
. (11)

The Reynolds number (ReL) is defined as

ReL = U1L
ν0

, (12)
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and the Weissenberg number (WiL) is

WiL = λU1

L , (13)

where U1 is the large free-stream velocity and L is the maximum flow distance measured from the trailing edge of
the splitter plate (cf. Fig. 1). The local coordinate x will also be used later as characteristic length. We use here the
standard procedure (cf. [1,2]) to carry out the order of magnitude analysis of the governing equations, bearing in
mind that experimental evidence shows that at sufficiently high Reynolds numbers we have δ � L. The normalized
lengths and velocities (denoted with *) are defined as follows:

x∗ = x

L , y∗ = y

δ
, u∗ = u

U1
, v∗ = vL

U1δ
, p∗ = P

ρU 2
1

. (14)

The dimensionless continuity equation becomes

∂u∗

∂x∗ + ∂v∗

∂y∗ = 0, (15)

and the normalized x-momentum equation is rewritten as

u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ = −∂P∗

∂x∗ +
(
1 − βp

)
ReL

L2

δ2

(
δ2

L2

∂2u∗

∂x∗2 + ∂2u∗

∂y∗2

)

+ βp

WiLReL
L
δ

(
δ

L
∂ [ f (Ckk)Cxx − 1]

∂x∗ + ∂
[
f (Ckk)Cxy

]
∂y∗

)
. (16)

This equation is simplified considering that the streamwise stress gradients are negligible in comparison to the
transverse stress gradients, i.e., ∂τ s

xx/∂x � ∂τ s
xy/∂y as for a Newtonian fluid, and ∂τ

p
xx/∂x � ∂τ

p
xy/∂y. In short this

simplification arises because generally τ s
xx ∼ τ s

xy for the flow conditions under investigation, while ∂/∂x � ∂/∂y,
which largely follows from δ � L . By using this concept and by performing an order of magnitude analysis, we
notice that(

1 − βp
)

ReL
∂2u∗

∂x∗2 �
(
1 − βp

)
ReL

(L
δ

)2
∂2u∗

∂y∗2

and

βp

WiLReL
∂ ([ f (Ckk)Cxx − fs (L)])

∂x∗ � βp

WiLReL

(L
δ

)
∂

([
f (Ckk)Cxy

])
∂y∗ ,

because L/δ � 1. Note also that under the low Weissenberg number flow conditions imposed below, f (Ckk) ≈ 1,
Cxx ≈ 1.

As discussed by Olagunju [26,27] and Parvar et al. [28–30], to get a solution for the laminar mixing layer flow
the streamwise pressure gradient needs to be determined and the leading coefficients of

∂2u∗

∂y∗2 and
∂(

[
f (Ckk)Cxy

]
)

∂y∗

must be of O(1) in order for the polymer and solvent stress terms to be of the same order of magnitude. At high
enough Reynolds numbers and for dilute solutions (1−βp ∼ 1), we have from the leading coefficient of the solvent
shear stress term

(L/δ)2

ReL
= O (1) → δ = O

(
LRe

− 1
2

L

)
→ δ

L ≈ Re
− 1

2
L , (17)

which shows the classical boundary layer proportionality. Then, from the leading coefficient of the polymer shear
stress term

βp

WiLReL

(L
δ

)
= O (1) or WiL = O

(
βpRe

− 1
2

L

)
. (18)
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This result shows that the validity of this simplified equation requires the Weissenberg number to be low, since
it is inversely proportional to the square root of the Reynolds number as found previously for the boundary layer
[26,27] and jet flows [28–30], respectively. However, since the momentum equation retains both shear stress terms,
the solution remains valid if one of them predominates over the other, i.e., values of WiL, well beyond those of Eq.
(18) are allowed provided the discarded normal stress gradient term also remains negligible, as will be discussed
later.

To determine the streamwise pressure gradient, the order of magnitude analysis of the y-momentum equation is
carried out, which shows that all terms depending on the velocity vector in the y-momentum equation are also of
negligible magnitude. Note that τ

p
yy of the FENE-P fluids is also negligible (it is null in homogenous shear flow),

consequently ∂p/∂y is negligible, implying that the pressure in the outside inviscid-like flow is impressed into the
mixing layer. Since the free-stream flows are uniform and constant, ∂p/∂x = 0 outside and inside the mixing layer,
as for the corresponding Newtonian case and there is no need to solve the y-momentum equation.

It is now advantageous to proceed with the dimensional form of the x-momentum equation for the planar mixing
layer flow, which, in its final simplified form, is written as

u
∂u

∂x
+ v

∂u

∂y
= υs

∂2u

∂y2 + υp

λ

∂
(
f (Ckk)Cxy

)
∂y

. (19)

For this 2D flow, continuity is immediately enforced by the introduction of the stream function ψ defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (20)

Upon substitution onto the simplified x-momentum equation, the following form is obtained:(
∂ψ

∂y

) (
∂2ψ

∂x∂y

)
−

(
∂ψ

∂x

) (
∂2ψ

∂y2

)
= (1 − βp)υ0

(
∂3ψ

∂y3

)
+ βpυ0

λ

∂
(
f (Ckk)Cxy

)
∂y

, (21)

where the solvent and polymer shear stresses have also been substituted by their definitions in Eqs. (5) and (7).
Therefore, to get a closed form solution, the variations of Cxy and f (Ckk) from the conformation tensor equation
are required.

3.2 Conformation tensor equations

For a steady flow, the temporal term in Eq. (9) is exactly null and for the mixing layer flow (u � v and ∂/∂y � ∂/∂x)
advection ofCi j is negligible and the distortion and stress terms are essentially in equilibrium (terms on the right-hand
side of Eq. (9)), i.e.,

C jk
∂ui
∂xk

+ Cik
∂u j

∂xk
=1

λ

[
(Ckk)Ci j − fs (L) δi j

]
. (22)

Quantifying the velocities through the stream function, the simplified evolution equations for the non-zero compo-
nents of the conformation tensor are rewritten as

−2

(
Cxx

∂2ψ

∂x∂y
+ Cxy

∂2ψ

∂y2

)
+ 1

λ
[ f (Ckk)Cxx − fs (L)] = 0, (23)

2

(
Cyx

∂2ψ

∂x2 + Cyy
∂2ψ

∂x∂y

)
+ 1

λ

[
f (Ckk)Cyy − fs (L)

] = 0, (24)

1

λ

[
f (Ckk)Czz − fs (L)

] = 0, (25)

−Cyy
∂2ψ

∂y2 + Cxx
∂2ψ

∂x2 + 1

λ

[
f (Ckk)Cxy

] = 0. (26)

Considering ∂ψ/∂x � ∂ψ/∂y and that at low Weissenberg numbers the normal components of the conformation
tensor are much larger than the shear components (at rest Cxx = Cyy = Czz ∧ [

Cxx = 1 ∨ Cxx = L2/
(
L2 + 3

)]
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and Ci j(i �= j) ∼= to ensure the deviatoric stress tensor of Eq. (7) is null), the simplified evolution equations for the
components of the conformation tensor are

−2λCxx
∂2ψ

∂x∂y
− 2λCxy

∂2ψ

∂y2 + f (Ckk)Cxx = fs (L) , (27)

2λCyy
∂2ψ

∂x∂y
+ f (Ckk)Cyy= fs (L) , (28)

f (Ckk)Czz = fs (L) , (29)

−λCyy
∂2ψ

∂y2 + f (Ckk)Cxy= 0. (30)

Further manipulation provides the following expressions:

Cxx=
fs (L) + 2λCxy

∂2ψ

∂y2(
f (Ckk)−2λ

∂2ψ
∂x∂y

) = fs (L)
f (Ckk)

(
2λ

∂2ψ
∂x∂y+ f (Ckk)

)
+2λ2

(
∂2ψ

∂y2

)2

f (Ckk)

(
f (Ckk)

2 −
(

2λ
∂2ψ
∂x∂y

)2
) , (31)

Cyy = fs (L)(
2λ

∂2ψ
∂x∂y+ f (Ckk)

) , (32)

Czz= fs (L)

f (Ckk)
, (33)

Cxy =
λCyy

∂2ψ

∂y2

f (Ckk)
=

λ fs (L)
∂2ψ

∂y2

f (Ckk)
(
f (Ckk)+2λ

∂2ψ
∂x∂y

) . (34)

We have now a set of coupled algebraic equations for the conformation tensor components (Ci j ), which depend
on the flow characteristics via the stream function, on otherCi j components and on its trace via the Peterlin function.
The Peterlin function is calculated by Eqs. (8a), (8b), (8c) as discussed below. By considering the three normal
components of the conformation tensor, the trace Ckk becomes

Ckk= fs (L)
3 f (Ckk)

2 + 2λ2
(

∂2ψ

∂y2

)2 − 4λ2
(

∂2ψ
∂x∂y

)2

f (Ckk)

(
f (Ckk)

2 − 4λ2
(

∂2ψ
∂x∂y

)2
) . (35)

In the following, the adequate similarity variables η and function G(η, x) [1,2] are identical to those used for
the boundary layer flow with a constant free-stream velocity, and given by

η =
√

U1

2ν0

y

x1/2 , G (η, x) = ψ√
2U1ν0x

. (36)

The flow streamwise and cross-stream velocity components are obtained from their definitions, as

u = U1G
′
(η, x) , (37)

v =
√

ν0U1

2x

(
ηG

′
(η, x) − G (η, x)

)
, (38)

where derivatives of G(η, x) in order to η are denoted with primes. Using the similarity variables defined in Eq. (36)
to transform the partial differential momentum equation into an ODE, a similarity solution is obtained for Newtonian
fluids in which the function G(η) is only dependent on η [1,2]. However, Olangunju [26,27] and Parvar et al. [28–
30] reported that such self-similar solutions do not exist for the corresponding viscoelastic fluid flows and the flow
problem remains two-dimensional because G (η, x) is dependent on both η and x , even if other combinations of
variables are used to define η and G above. Olangunju [26,27] and Parvar et al. [28–30] also found that it is possible
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to obtain a simplified solution if an additional assumption is imposed, that the streamwise variation of G (η, x) at
constant η is negligible, i.e., that

(
∂G
∂x

)
η

≈ 0. Therefore, in the quantification of

(
∂G

∂x

)
y

=
(

∂G

∂x

)
η

+
(

∂G

∂η

)
x

∂η

∂x
∼=

(
∂G

∂η

)
x

∂η

∂x
,

the first term on the right-hand side is ignored. For the jet and boundary layer flows investigated in [28–30], this
assumption still provided an accurate description of the velocity fields, while allowing for significantly simpler
equations [39–43]. Without this assumption, the complexity of the final simplified equations increases significantly,
while providing a negligible benefit as we found in comparisons with the numerical simulation of the original full
governing equations. For conciseness, such comparison is not shown.

As shown by Olagunju [26,27] and Parvar et al. [28,30], it is through the Peterlin function equation, transformed
by the use of the similarity variables, that one concludes about the dependence on both η and x . Renaming the
Peterlin function as K (η, x)

K (η, x) = f (Ckk) , (39)

any of the Peterlin functions in Eqs. (8a), (8b), (8c) leads to the following third-order algebraic equation:

K 3 + C0K
2 − Wi2

x

(
ηG

′′)2
K + C1G

′′2 + C2

(
ηG

′′)2 = 0 (40)

with dimensionless coefficients

C0 =
(

3I − 3 fs (L) − L2

L2

)
,

C1 = −λ2 fs (L)U 3
1

ν0L2 x−1 = − fs (L) RexWi2
x

L2 ,

C2 = λ2
(
L2 + fs (L) − 3I

)
U 2

1

L2 x−2 =
(
L2 + fs (L) − 3I

)
Wi2

x

L2 , (41)

where I = 1 for the Peterlin function of Eq. (8c), and I = 0 for (8a) and (8b). These coefficients rely on the
so-called local Reynolds and Weissenberg numbers, Rex and Wix , respectively, defined in Eqs. (12) and (13)with x
taking the place of L (x is the streamwise distance from the trailing edge of the splitter plate). It is the dependence
on x of this set of coefficients C1 and C2 that tells us that the algebraic equation (40) depends on both η and x , and
that the solution of the set of governing equations does not provide a global approximate self-similar solution as
for Newtonian fluids, but instead a local approximate self-similar solution.

The remaining steps are now straightforward: back substituting Cxy from Eq. (34) into the simplified momentum
equation (10) and casting it in terms of the similarity variables, we get

−GG
′′ = (

1 − βp
)
G

′′′ + βp fs (L)

(
WixG

′′2+KG
′′′−K

′
G

′′

(
K − WixηG

′′)2

)
. (42)

This equation also depends on both x and η through the conformation tensor quantities and the first derivative
of K relative to η, which is obtained from Eq. (40) and is given by

K
′ = −

(
2C3

(
C2 − Wi2

x K
) + 2G

′′
G

′′′ (
C1 + η2

(
C2 − Wi2

x K
)))

C4
(43)

with

C3 = ηG
′′2,

C4 =
(

3K 2 + 2C0K − Wi2
x

(
ηG

′′)2
)

. (44)
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By substituting K ′ of Eq. (43) into Eq. (42) and further mathematical manipulation, the final format of the
momentum equation is

G
′′′ = −

GG
′′ + βp fs (L)G

′′
(
WixC4G

′′+2C3
(
C2−Wi2

x K
))

(
K−WixηG

′′)2
C4((

1 − βp
) + βp fs (L)

(
C4K+2G ′′2(C1+η2

(
C2−Wi2

x K
)))

(
K−WixηG

′′)2
C4

) . (45)

4 Numerical solution

The simplified governing equations are a third-order differential equation onG (η, x) and an algebraic cubic equation
for K (η, x). For their numerical solution, the third-order differential equation is converted to a system of first-order
differential equations by considering the transformations, G1 = d2G

dη2 , G2 = dG
dη

, and G3 = G.
First, the Cardan–Tartaglia formula [44] provides the real solution of the cubic algebraic equation. This solution

must be physically correct, i.e., the normal components of the conformation tensor must be positive, and its trace
bounded by 3 (the value at rest) and the square of the maximum dumbbell extensibility (L2). Then, the system of
differential equations is numerically solved with a fourth-order Runge–Kutta procedure coupled with a shooting
method to apply the boundary conditions [45,46]. The free-stream velocity ratio (γ ) is defined as

γ = U2

U1
. (46)

For the numerical solution of equations (40) and (45), three boundary conditions are required. Two of them consist
on the top and bottom free-stream velocities, as in Eq. (40), and allow the accurate prediction of the shape of the
velocity profile which, however, is not unique because it can shift in the transverse direction.

G
′
(+∞) → 1, G

′
(−∞) → γ. (47)

These boundary conditions at infinity are essentially verified at η = ±10 for γ = 0.5 as discussed below (for
lower values of γ a larger domain is required).

With the above set of conditions the semi-analytical solution of G is not fixed in space, i.e., it is not unique. In
order to fix the solution, a third boundary condition is required as found previously [12,13,47]. This third boundary
condition pins the solution into a unique profile for the mixing layer flow and in this procedure we follow Lock [10]
and White [1], who suggested using

G (η = 0) = 0. (48)

This condition is implemented as follows: an iterative procedure is used to find the place where G = 0, then the
solution is shifted to the origin (η = 0). Typically, this is repeated 5 to 6 times until the origin stops shifting. Note
that G = 0 also marks the inflection point, so the horizontal line downstream of the splitter plate (η = y = 0) is
the centerline and connects inflection points.

5 Results and discussion

The semi-analytical solution is valid also for Newtonian fluids and this is verified through a comparison with Lock’s
solution and against the numerical simulation of the full set of governing equations. The latter are also used to
check the upper limit of validity of the semi-analytical approximate similarity solution for the FENE-P fluid since
its simplifications are not necessarily valid for all flow conditions in terms of flow elasticity. All the numerical
simulations were carried out using the RheoFoam toolbox of the open-source code OpenFoam, and before we
present results, we provide here information on the numerical method, flow domain, and meshes used.
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Table 1 Characteristics of the meshes used in the RheoFoam calculations. The values of �x and �y are at the cells nearest the wall

Block Nx Ny fx fy
�xx=0
δx=L ,

�yx=0
δx=L

�xx=L
δx=L

I&II 200 500 1.015 1.0092 0.0337, 0.0026 0.185

Fig. 2 Profiles of u/U1
versus y/δ at for a
self-similar Newtonian
mixing layer flow at
Rex = 2000 as obtained
from Rheofoam simulations
with four different meshes.
The lines are a guide to the
eye

OpenFoam is a finite volume code and the RheoFoam toolbox implements viscoelastic constitutive equations.
It uses the high-order resolution scheme CUBISTA [48,49] to describe the advective terms in the momentum and
conformation equations, diffusion terms are discretized with central differences and pressure–velocity coupling
relies on the SIMPLEC algorithm [50]. The computational domain for this flow had a length L, divided into two
identical blocks, I and II on the positive and negative sides of y-axis. The width of each block was 2L so the total
width of the domain was 4L. Within each block a non-uniform computational grid had Nx × Ny cells in the x, y
directions, respectively, as given in Table 1 together with the expansion/contraction mesh factors fx = �i+1

x /�i
x

and fy = �i+1
y /�i

y and ratios of mesh size over mixing layer thickness at some locations. Mesh 200 × 500 was
selected after an assessment of mesh independence using four grids with 50 × 125, 100 × 250, 200 × 500, and
400 × 1000 computational cells, in the x and y directions of the Newtonian mixing layer flow, respectively, as
shown in Fig. 2. Differences between the results of grid 200 × 500 and those from a grid with twice the number of
cells in each direction was below 0.005%.

At the inlet boundary uniform velocities were imposed (U1 = 1.0 for block I and U2 = 0.5 for block II) and a
zero gradient condition was set for all other quantities. On the outlet boundary, the pressure was fixed to a constant
value and a zero gradient condition was set for all other quantities. At the top boundary of block I and bottom
boundary of block II, far from the mixing layer, the corresponding free-stream velocities were set.

The Newtonian simulation was carried out for γ = 0.5 and the results with the four meshes pertain to x/L = 0.2,
where the local Reynolds number is Rex = 2 ×103. It is worth to mention that we noticed the results are dependent
on initial conditions only for x/L <0.2 (because of the splitter plate), therefore our comparisons are carried out for
x/L ≥0.2.

5.1 Verification: Newtonian fluids

Setting βp = 0, the governing equations for the viscoelastic fluid reduce to those for a Newtonian mixing layer
flow which is used to verify the present solution [1]. Through asymptotic analysis, we found that infinity conditions
are already achieved at η = ±10 for γ = 0.5, so the same conditions are considered here. It is worth mentioning
that to choose an adequate Reynolds number, two conditions should be satisfied: (1) the Reynolds number should
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Fig. 3 Characteristics of the steady laminar mixing layer flow of Newtonian fluids in the self-similar region for γ = 0.5: a profiles of
u/U1 versus y/δ at Rex = 2000 and comparison with the literature [10] and Rheofoam results; b variation of δ/x , δ∗/x , and θ/x with
Rex and comparison with Rheofoam results (filled markers)

be high enough for the thin layer approximations to be valid [1] and (2) it should be below the critical condition
for laminar–turbulent transition. As explained by Dimotakis [51], the critical Reynolds number for this transition
is 1× 104, if based on the mixing layer thickness (δ). Therefore, the maximum Reynolds number considered in
the present study is Reδ = U1δ

ν0
= 1 × 103. It is also worth mentioning that in this paper, the Reynolds number

at the maximum distance from the trailing edge of the splitter plate, denoted ReL (Eq. (12)), is also used for data
normalization purposes.

Using γ = 0.5, Fig. 3a plots transverse profiles of velocity for Newtonian fluids, normalized by the upper
free-stream velocity (U1) and as a function of the similarity variable. It shows excellent agreement between the
computed profiles of Eq. (37) and with both the solution of Lock [10] (note that Lock used a different definition of

η (ηL =
√

U1
ν0

y
x1/2 )) and the numerical RheoFoam results.

The streamwise variation of global characteristics of the laminar mixing layer flow are plotted in Fig. 3b and also
compared well with RheoFoam results. They are the mixing layer thickness (δ), defined in Eq. (1), the displacement
thickness (δ∗) defined in

δ∗ =
∫ +∞

−∞

(
1 − u

U1

)
dy =

(∫ 0

−∞

(
1 − u

U1

)
dy +

∫ +∞

0

(
1 − u

U1

)
dy

)
, (49)

and the momentum thickness (θ) given by

θ =
∫ +∞

−∞
u

U1

(
1 − u

U1

)
dy =

(∫ 0

−∞
u

U1

(
1 − u

U1

)
dy +

∫ +∞

0

u

U1

(
1 − u

U1

)
dy

)
. (50)

From our semi-analytical solution, and for γ = 0.5, the following relations were found for the three characteristic
thicknesses:

δ

x
= 7.69√

Rex
,

δ∗

x
= 2.04√

Rex
, and

θ

x
= 1.25√

Rex
.

From the latter two quantities, a shape factor (H ≡ δ∗/θ) of 1.633 was obtained. It is worth mentioning that we
could not find in the cited Newtonian literature [1,2,10] any of these expressions. However, from the velocity profile
extracted from Lock [10], we could calculate

δL

x
= 7.68√

Rex
,

δ∗
L

x
= 2.08√

Rex
, and

θ∗
L

x
= 1.28√

Rex
,

which are very close to our results.
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Fig. 4 Comparison between normalized transverse velocity profiles u/U1 and v/U1 for βp = 0.1, L2 = 900, Rex = 2 × 104 and
1 × 104 from the present solution (dash dotted lines and open symbols) and RheoFoam simulations (solid lines and closed symbols) at
a x/L = 0.2 and b x/L = 1

5.2 FENE-P fluids

In this section, only the third set of Peterlin functions f (Ckk) and fs (L) of Eq. (8c) is used to obtain the numerical
results. We keep the ratio of free-stream velocities constant at γ = 0.5 and the local Weissenberg numberWix = λU1

x
(defined in Eq. (13) with x instead of L) is also used to present results.

5.2.1 Verification of FENE-P fluids

The simulation was carried out for the Peterlin function of Eq. (8c) with βp = 0.1 and L2 = 900 and the results
shown pertain to x/L = 0.2 and 1.0, where the local Reynolds numbers are Rex = 2 × 103 and 1 × 104, and the
Weissenberg numbers are in the range 0.5 ≤ Wix ≤ 2 and 0.1 ≤ Wix ≤ 0.4.

The transverse profiles of normalized streamwise velocities plotted in Fig. 4 show an excellent agreement with
the RheoFoam data at both locations. Although the profiles of cross-stream velocity show a weak discrepancy at
x/L = 0.2, these values are less than 1% of the largest free-stream velocity and there is also good agreement
between the results at x/L = 1. Comparisons of velocity profiles for larger Wix = 1 are still very good but are not
shown here for conciseness.

Figure 5a and b shows contours of the trace of the conformation tensor, which is proportional to the extension
of the polymer molecules, for two cases with WiL = 0.2 and WiL = 0.4, respectively. The maxima Ckk happen
where strain rates are the largest, which is along the inflection points of the velocity profiles. As expected, the values
of Ckk decrease considerably on moving towards the free-stream flows, where the polymer dumbbells are not being
stretched and the shear rates are null. The values of Ckk also decrease on moving downstream as elasticity effects
decrease and increase when elasticity increases. In numerical simulations and in experiments, the line of maxima
Ckk tends to have a slight inclination towards the low free-stream flow, as shown here [12,13,47], but as explained
in Sect. 4, the semi-analytical solution fixes the inflection point at y = 0. Otherwise the shapes are all identical to
those of the semi-analytical solution.
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Fig. 5 Contours of the trace of the conformation tensor components Ckk from RheoFoam simulations with βp = 0.1, L2 = 900,ReL =
1×104 for a WiL = 0.2, δ(x/L=1)/L = 0.03736 b WiL = 0.4, δ(x/L=1)/L = 0.03701

To verify the local approximate solution and assess its limit of validity in terms of the individual conformation
tensor components, transverse profiles of Cxy,Cyy,Czz , and Cxx are plotted and compared in Fig. 6 with the
corresponding RheoFoam results. The data pertain to two different locations (x/L = 0.2 and 1) and four different
flow conditions (WiL = 0.1, 0.2, 0.3, 0.4), in order to encompass a wide range of Wix . For WiL = 0.1, the
agreement is particularly good and for WiL = 0.2 the accuracy of solution is acceptable. Further increasing
WiL to 0.3 and 0.4 shows discrepancies between the profiles of the simplified theory and the predicted RheoFoam
simulations, in particular for the highest Wix profiles showing that the conformation tensor components are the most
sensitive quantities to flow elasticity. Such discrepancies appear both in the large positive peak values of Cxx ,Cxy

and negative peak values of Czz appearing close to the centerline of the mixing layer, at − 0.4 ≤ y/δ ≤ 0.4.
Similarly, the simplified theory is also unable to accurately follow the quick variations of the profiles of Cyy around
1 at the centerline.

Decreasing Wix by going downstream reduces the discrepancies and the behavior exhibited by the RheoFoam
simulation is well described by the semi-analytical solution at Wix = 0.2, whereas at Wix = 0.3 the RheoFoam
profiles show the appearance of local peaks that are not so well described by the approximate solution. Therefore,
one may conclude that the critical value of Wix that marks the upper limit of validity of the semi-analytical solution
lies between 0.2 and 0.3.

In this shear flow the mixing layer thickness is a more adequate length scale to define the Reynolds and Weis-
senberg numbers than x , but δ is part of the solution making it more difficult to quantify a priori, hence the use of Rex
and Wix instead of Reδ = U1δ,

ν0
, and Wiδ = λU1

δ
. As discussed by Parvar et al. [30] for boundary layer flows, this

may raise questions as to what are low and high values of elasticity, and in particular whether the semi-approximate
solution is only limited to low elasticity. For an appropriate assessment of the magnitudes of Wix and Wiδ , Fig. 7
plots the variations of both quantities for two mixing layers showing that Wiδ is at least one order of magnitude
higher than Wix and that for the cases in Figs. 4 and 6 where 0.4 < Wix < 2.0, one gets 1.5 < Wiδ < 12, i.e.,
that the critical value of 0.2 < Wix < 0.3 is well in excess of 1 if cast in terms of Wiδ .

Finally, it is worth comparing the computational cost of the semi-analytical solutions and of the RheoFoam
simulations. The latter were performed by a computer equipped with an Intel Xeon E5 processor with 12 MB L3
cache and Turbo Boost up to 3.9 GHz, with parallel processing using its 6 computer cores. The computational time
was 4.0 h, however, for the semi-analytical solutions the same computer took about one second using only one core.
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Fig. 6 Comparison between transverse profiles of conformation tensor components Cxy,Cyy,Czz,Cxx from present solution (dash
dotted lines and open symbols) and RheoFoam simulations (solid lines and closed symbols) for βp = 0.1, L2 = 900, ReL = 1 × 104,
and WiL = 0.1, 0.2, 0.3, and 0.4 at a x/L = 0.2, b x/L = 1

5.2.2 Velocity field and mixing layer thickness

The dependence of the normalized transverse profiles of streamwise and cross-stream velocity component velocities
on fluid characteristics, at two different locations in the self-similar region (in the Newtonian fluid perspective),
are shown in Fig. 8a and b. By normalizing the transverse coordinate with the mixing layer thickness, and the
cross-stream velocity component velocity with the Reynolds number, unique profiles are obtained for u and v at
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Fig. 7 Streamwise
variation of Wix (dotted
lines) and Wiδ (solid lines)
for two flows with βp = 0.1,
L2 = 900, and ReL = 104.
Lines are a guide to the eye

Fig. 8 Normalized transverse velocity profiles at Rex = 2000 and 8000 as a function of Reynold number, Weissenberg number,
viscosity ratio, and dumbbell extensibility for γ = 0.5: a u/U1, b v

√
Rex/U1

low elasticity levels, which coincide with the Newtonian profiles. As elasticity levels are increased, small deviations
from the low elasticity limit are observed for both components, as seen in the insets, thus showing the x-dependence
of the viscoelastic similarity solution. These deviations are of the same magnitude as those previously seen for a
planar laminar jet by Parvar et al. [28,29], but less intense than seen in a boundary layer by Parvar et al. [30], where
the presence of the wall surface imposes higher deformation rates.

Figure 9 plots the streamwise variation of the velocity of the mixing layer at the inflection point shown by (uc/U1)

for γ = 0.5, as a function of the independent dimensionless numbers, some of which were calculated at x = L.
At low elasticity levels, the velocity profiles collapse onto a single constant value identical to the Newtonian fluid
case, uc/U1 = 0.7652. Increasing flow elasticity raises the velocity at the inflection point and makes it depend on
x , with uc/U1 increasing towards the splitter plate, but these effects are small and for the tested cases the deviations
are less than 1%. Notice that the local Weissenberg number increases on moving upstream on account of higher
shear rates when the mixing layer is thinner.
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Fig. 9 Streamwise
variation of normalized
mixing layer centerline
velocity (uc/U1) under
various flow conditions for
γ = 0.5. The solid line
shows the Newtonian data
uc/U1 = 0.7652, dashed
lines are a guide to the eye

Fig. 10 Streamwise variation of the normalized mixing layer thickness (δ/x)under various flow conditions for γ = 0.5. The inset
zooms in profiles for 2.7×103 ≤ Rex ≤ 3 × 103. Dashed lines are a guide to the eye

The streamwise variation of the normalized mixing layer thickness (δ/x) is plotted in Fig. 10a as a function of
WiL, βp, and L . At low Weissenberg numbers δ/x data collapse to the Newtonian flow variation, as previously
observed in the planar jet [28] and flat plate flows [30], but by increasing WiL, βp, or decreasing L , the mixing
layer thickness decreases. To assess the accuracy of our semi-analytical solution in predicting normalized mixing
layer thickness (δ/x), we compare with Rheofoam results for WiL = 0.2 and 2.0 in Fig. 10b. The former value
is at the limit of validity of the semi-analytical solution and the latter is well beyond that range of validity. As
shown, the accuracy of the predictions is acceptable with differences below 3% even for large Wi, because δ/x
is directly calculated from the velocity profiles which are significantly less sensitive to variations in Wi than the
conformation tensor components. It is worth to mention that we faced numerical instabilities while solving the
third-order differential equation for WiL > 2.

The corresponding streamwise variations of the displacement (δ∗/x) and momentum (θ/x) thicknesses are
presented in Figs. 11a and 12a , respectively. As expected, when the elasticity levels are weak, both profiles follow
closely the corresponding Newtonian laws, however, by increasing the elasticity levels both the dimensionless
displacement thickness (δ∗/x) and the dimensionless momentum thickness (θ/x) decrease. In the corresponding
comparisons with RheoFoam, shown in Figs. 11b and 12b, respectively, acceptable agreements are seen, with
differences not exceeding 4% at the highest Wi numbers. Again, these comparisons pertain to cases at the limit of
validity of the semi-analytical solution, and beyond that limit.

The ratio δ∗/θ defines the shape factor (H ) that is plotted in Fig. 13. Again, at low elasticity levels H collapses
to the Newtonian value (H = 1.633), but it increases only very slightly with elasticity. For all quantities notice
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Fig. 11 Streamwise variation of the normalized displacement thickness (δ∗/x) under various flow conditions for γ = 0.5. The inset
zooms in on profiles for 2.7×103 ≤ Rex ≤ 3 × 103. Dashed lines are a guide to the eye

Fig. 12 Streamwise variation of the normalized momentum thickness (θ/x) under various flow conditions for γ = 0.5. The inset
zooms in on profiles for 2.7 × 103 ≤ Rex ≤ 3 × 103. Dashed lines are a guide to the eye

Fig. 13 Streamwise
variation of the shape factor
H for γ = 0.5 as a function
of dimensionless flow and
fluid characteristics. Dashed
lines are a guide to the eye

that on moving downstream the curves approach the low elasticity asymptote because local values of Weissenberg
number decrease.

5.2.3 Conformation and stress tensors

The corresponding profiles of the conformation and stress tensor quantities are presented and discussed here. Figure
14a–d plots the streamwise variations of the maximum value of the polymer stress components normalized by their
corresponding values at x/L = 0.2. These profiles exhibit linear variations in log–log coordinates, according to

123



The steady laminar planar mixing layer flow Page 19 of 24    14 

Fig. 14 Streamwise variation of normalized peak values of the stress tensor components for various rheological properties: a τ
p
xx , b

τ
p
yy , c τ

p
xy , d τxy . Lines are a guide to the eye with the solid line representing the low elasticity asymptote

Eq. (51), and a low elasticity asymptote, with the rates of decay of τ
p
xx and τ

p
yy being equal to 2, which is twice as

fast as for the polymer (τ p
xy) and total (τxy) shear stresses.

log10

∣∣∣τ p
i j

∣∣∣
max∣∣∣τ p

i j

∣∣∣
max@ x

L=0.2

= m log10

[( x

L
)1/2

]
− b. (51)

The location of those maximum stresses for τ
p
yy and τxy under various flow conditions are exhibited in Fig. 15a

and b. The peak values of the total shear stress τxy always occur at the centerline of the mixing layer, whereas the
maximum τ

p
yy occurs always far from the centerline and its transverse distance to the centerline increases on going

downstream. It is worth mentioning that the peak values of τ
p
xx and τ

p
xy occur very close to the centerline, but not

at the centerline, however, such profiles are not shown for conciseness.
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Fig. 15 The location of peak values of the stress tensor components for various rheological properties: a τ
p
yy , b τxy . Lines are a guide

to the eye with the solid line representing the low elasticity asymptote

The ratios of maximum polymer over maximum solvent stresses
(∣∣∣τ p

i j

∣∣∣
max

/

∣∣∣τ s
i j

∣∣∣
max

)
are shown in Fig. 16. At

low elasticity levels, these ratios behave similarly and equate to the ratio of viscosities νp/νs = βp/(1 −βp) = 1/9
and 1 for βp = 0.1 and 0.5, respectively, because those stresses are essentially determined by the flow shear
rate (in a rather complex way for the yy component) in the so-called first Newtonian plateau of shear viscosity.
As flow elasticity increases this stress ratio decreases on account of shear-thinning behavior. However, the ratio∣∣τ p

xx
∣∣
max /

∣∣τ s
xx

∣∣
max behaves differently, being always above 1 and tending to increase significantly with elasticity

since the numerator depends on the shear rate, whereas the denominator depends on the normal strain rate only.
Figure 17a–d shows again the x-dependence of the approximate self-similar characteristics of conformation

tensor components: at low elasticity the behavior is actually independent of x , with a progressive deviation from
the low elasticity asymptotic curves as Wi increases. The data are normalized by the corresponding local maximum
values and covers a wide range of flow conditions pertaining to two different locations (represented as different
values of Rex ).

Figure 18 shows the transverse variation of the total shear stress τxy normalized by the corresponding peak value.
Similar to the profiles of the conformation tensor components, at low viscoelasticity levels the profiles collapse
onto asymptotic curves, while increasing levels of viscoelasticity lead to progressive deviations from the asymptote.
The deviation is small, however, because some of the variation in the polymer stress component is taken by the
corresponding solvent stress, i.e., the total stress behaves almost as if it has a unique similar solution independent
of x .

6 Conclusions

By utilizing boundary layer arguments, an order of magnitude analysis of the governing equations for the steady
laminar mixing layer flow of FENE-P fluids was carried out leading to a set of simplified equations. The subsequent
use of variables inspired by the similarity variables for the corresponding Newtonian solution is not able to provide
a global approximate similarity solution, but only one that still depends on the streamwise coordinate, because
of the viscoelastic constitutive equation. Nevertheless, under conditions of low elasticity, the normalized flow
characteristics showed a behavior that depended only on the similarity variables and was independent of x , with
kinematic quantities collapsing on the corresponding Newtonian self-similar data, and polymer-based quantities
collapsing also onto single self-similar curves. Consequently, under these low elasticity flow conditions the ratio
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Fig. 16 The streamwise variation of the ratio of polymer stress (τ
p
i j ) to solvent stress (τ s

i j ) at the mixing layer flow. a
∣∣τ p

xy
∣∣
max /

∣∣∣τ s
xy

∣∣∣
max

,

b
∣∣τ p

yy
∣∣
max /

∣∣∣τ s
yy

∣∣∣
max

, c
∣∣τ p

xx
∣∣
max /

∣∣τ s
xx

∣∣
max, d Lines are a guide to the eye

of polymer over solvent stresses
(∣∣τ p

xy
∣∣ / ∣∣∣τ s

xy

∣∣∣ and
∣∣τ p

yy
∣∣ / ∣∣∣τ s

yy

∣∣∣) were seen to be equal to the ratio of polymer to

solvent kinematic viscosities. As elasticity levels increase, by taking on larger values of Wix and βp and/or low
values of L , there is a progressive deviation from the low Wi asymptote curves.

This work also reports on the variations of dimensionless boundary layer thickness (δ/x), displacement thickness
(δ∗/x), and momentum thickness (θ/x). At low elasticity they follow the corresponding Newtonian data, but on
increasing elasticity levels a decrease is observed. The variations of the peak values of the non-zero components of
the conformation tensor and their spatial locations are also reported.

The semi-analytical solution can provide accurate results up to values of local Weissenberg number (Wix ) of
about 0.2, corresponding to values of Wiδ well in excess of 1, which are well beyond the low elasticity assumption
invoked initially. Beyond this flow condition, the local approximate similarity solution can still predict the normalized
velocity profiles and the normalized evolution of the momentum, displacement, and mixing layer thicknesses within
5% of the RheoFoam solutions for WiL ≤ 2, βp = 0.1, and L2 = 900. However, the approximate solution
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Fig. 17 Transverse profiles normalized components of the conformation tensor: a Cxy , b Cyy , c Czz , d Cxx , for various rheological
properties. Lines are a guide to the eye

prediction of the corresponding transverse variations of the conformation tensor components are subject to large
errors, in particular around the centerline region (− 0.4 ≤ y/δ ≤ 0.4).

The computational cost of the approximate similarity semi-analytical solution is very low: using a single core
it took about 1 s, which compares with 4 h for the corresponding RheoFoam simulation in a computer equipped
with an Intel Xeon E5 processor with 12MB L3 cache and Turbo Boost up to 3.9 GHz, using its 6 computer cores
through parallel processing.
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Fig. 18 Transverse profiles
of normalized total shear
stress τxy under various
flow conditions for γ = 0.5.
Dashed lines are a guide to
the eye
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