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Abstract

The effect of a spatially uniform magnetic field on the shear rheology of a dilute emulsion of monodispersed ferrofluid droplets, immersed in
a nonmagnetizable immiscible fluid, is investigated using direct numerical simulations. The direction of the applied magnetic field is normal
to the shear flow direction. The droplets’ extra-stress tensor arising from the presence of interfacial forces of magnetic nature is modeled on
the basis of the seminal work of G. K. Batchelor [J. Fluid Mech. 41, 545–570 (1970)] under the assumptions of a linearly magnetizable ferro-
fluid phase and negligible inertia. The results show that even relatively small magnetic fields can have significant consequences on the rheo-
logical properties of the emulsion due to the magnetic forces that contribute to deform and orient the droplets toward the direction of the
applied magnetic vector. In particular, we have observed an increase in the effective (bulk) viscosity and a reversal of the sign of the two
normal stress differences with respect to the case without magnetic field for those conditions where the magnetic force prevails over the shear-
ing force. Comparisons between the results of our model with a direct integration of the viscous stress have provided an indication of its reli-
ability to predict the effective viscosity of the suspension. Moreover, this latter quantity has been found to behave as a monotonic increasing
function of the applied magnetic field for constant shearing flows (“magneto-thickening” behavior), which allowed us to infer a simple consti-
tutive equation describing the emulsion viscosity. © 2021 The Society of Rheology. https://doi.org/10.1122/8.0000226

I. INTRODUCTION

Heterogeneous mixtures of small particles of various types
such as solid particles, bubbles, and droplets dispersed in a
carrier fluid are widespread in many industrial, chemical, and
biological processes. Typical applications can be encountered,
for instance, in the oil and gas industries, in mining processes,
in electronic devices, in biomedical applications, and in the
food industry. Owing to their great scientific and industrial
relevance, suspensions have been the object of extensive
studies over the past few decades. Yet, due to their variety and
the complexity of their rheology under a wide range of condi-
tions (e.g., the appearance of interparticle interactions, the
presence of additional constraints like electric and magnetic
fields, or different characteristics of the dispersed phase), sus-
pensions are still actively investigated today.

Provided the length scale of the applied flow is large
compared with the mean particle dimension, suspensions
may be regarded as homogeneous fluids in some instances
and their rheological properties can be evaluated using
standard rheometric flows, i.e., steady shear, extensional,
and small amplitude oscillatory shear flow. In a steady
shear-flow experiment, the response of the system is
completely characterized by three independent parameters:
the shear viscosity, η ¼ Σxy= _γ, and the two normal stress

differences, N1 ¼ Σxx � Σyy and N2 ¼ Σyy � Σzz (or their
coefficients, Ψ1 ¼ N1= _γ

2, Ψ2 ¼ N2= _γ
2), where Σ is the total

stress tensor (Σxy is the shear component, while Σxx, Σyy,
and Σzz are the three normal components) and _γ is the rate
of deformation.

Studies on the rheology of suspensions can be traced back
to the seminal work of Einstein [1,2]. Einstein showed that
the effective viscosity of a dilute suspension of rigid
Brownian spheres can be described as ηe ¼ η 1þ 2:5fð Þ,
where η is the viscosity of the carrier fluid and f is the
volume fraction of the dispersed phase. Later, Taylor [3]
obtained an analogous expression for the effective viscosity
of a dilute emulsion derived in the framework of small defor-
mation theory, ηe ¼ η 1þ 2:5f(λþ 2=5)=(λþ 1)½ �, where λ
is the drop-to-continuous phase viscosity ratio. In the limiting
case λ ! 1, the emulsion behaves like a dilute suspension
of rigid spheres dispersed in a viscous fluid, and Taylor’s
equation reduces to Einstein’s equation. In the opposite case,
i.e., for λ ! 0, the emulsion can be regarded as a foamlike
material and the expression for its effective viscosity
becomes ηe ¼ η 1þ fð Þ (cf., e.g., Derkach [4]).

The above-mentioned theories predict a constant
(Newtonian) shear viscosity; however, it is well known that
suspensions can exhibit different non-Newtonian behavior. In
the case of hard sphere (HS) colloidal suspensions, the rheo-
logical properties are essentially determined by the volume
fraction of the dispersed phase, f, and by the Péclet number,
Pe ¼ τB _γ, where τB is the Brownian time scale, i.e., the time
required for a free particle to diffuse its own radius [5]. In the
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Brownian regime, Pe � 1 and these suspensions exhibit a
Newtonian-like behavior consistent with Einstein’s equation.
Shear-thinning effects start to become appreciable at Pe � 1,
followed by a second Newtonian regime at Pe � 1 with a
viscosity that finally diverges (shear-thickening regime) at
random close packing, fRCP � 0:64 (cf. [6]). Moreover,
normal stress differences can also be detected in simple
shearing experiments with HS suspensions [7–9]. While
these suspensions are usually characterized by a negative first
normal stress difference for moderately dense regimes, transi-
tion from negative to positive N1 can be observed at high
shear rates for very dense regimes [10,11].

A particular type of dispersion of hard particles that finds a
multitude of practical and scientific implications are ferrofluids
(FFs). These fluids are colloidal suspensions of nanosized
(typically dp ≲ 10 nm, where dp is the particle diameter) super-
paramagnetic particles dispersed in a continuous fluid.
Without the presence of a magnetic field, the particles remain
randomly dispersed in the carrier phase due to Brownian
effects and FFs can be regarded as regular nanofluids. For
dilute suspensions, FFs essentially exhibit a Newtonian behav-
ior, while for sufficiently large concentrations, shear-thinning
effects may become evident (see, e.g., [12]). In the presence
of magnetic fields, however, a variety of different
non-Newtonian behavior may appear. In this regard, we can
distinguish between the ideal scenario in which inter-particle
interactions are considered absent (“non-interacting” (NI) fer-
rofluid models) and the case in which particle-particle interac-
tions are non-negligible and chain-like aggregates may appear
(see, e.g., Ref. 13 for a detailed overview of the subject). In
the absence of particle interactions (ideal ferrofluid, in the fol-
lowing), the rheological behavior of the material is essentially
dictated by the response of the particles to the magnetic field,
in addition to Brownian and hydrodynamics effects. In such
conditions, the presence of a magnetic moment imposes a con-
straint on the rotation of each particle (that would otherwise be
free to rotate under the effect of the vorticity component of the
flow). As a result, an additional viscous dissipation appears,
which ultimately leads to an increase in the suspension viscos-
ity (magnetoviscous effect [14,15]), usually accounted for
with an additional “rotational viscosity,” ηr. Several theories
have succeeded in describing this effect for noninteracting par-
ticles. Worth mentioning is the early macroscopic (phenome-
nological) theory of Shilomis [16] and the subsequent
microscopic theories of Brenner and Weissman [17] and
Martsenyuk et al. [18]. Specifically, Martsenyuk et al. [18]
derived an expression for the rotational viscosity, which is
proportional to the particle volume fraction, f, and the
Langevin parameter, i.e., ηr βð Þ ¼ 3

2 ηfβL βð Þ= β � L βð Þð Þ,
where β ¼ mH=kBT is the Langevin parameter in which m is
the magnetization moment, H is the intensity of the magnetic
field, kB is the Boltzmann constant, and T is the absolute tem-
perature, whereas L βð Þ represents the Langevin function. Hence,
it can be observed that in the absence of magnetic field,
ηr 0ð Þ ¼ 0, while, on the contrary, if the field is strong enough
to prevent completely particle rotation, ηr 1ð Þ ¼ 3

2 ηf. Since the
volume fraction of spherical particles is f � 0:74 near the
densest close packing, the maximum rotational viscosity predict-
able by the theory of Martsenyuk et al. [18] is ηr, max � 1:1η.

Despite the success of these theories on capturing the
magnetoviscous effect in very dilute FFs (e.g., see the com-
parison between experiments and the theory of Martsenyuk
et al. [18] reported in McTague [15]), the agreement with
experiments for a moderately to highly concentrated suspen-
sion is unsatisfactory (a relative increment in a viscosity of
about 200% with respect to the continuous liquid phase vis-
cosity η was already detected in the early observation of
Rosensweig et al. [14]). Such discrepancies might be justi-
fied considering the occurrence of interactions between parti-
cles. Indeed, it is well known that upon the application of a
magnetic field, dipolar and steric interactions may promote
the formation of chainlike aggregates (distinguishing mark of
nonideal FFs) which, on the one hand, contribute to enhance
the aforementioned magnetoviscous effect, and, on the other
hand, confer additional rheological attributes that are typi-
cally encountered in non-Newtonian fluids, such as shear-
thinning effects, a yield stress [19], and viscoelastic effects,
namely, normal stress differences in simple shearing flow
[20,21].

Similarly to HS suspensions, emulsions also exhibit several
non-Newtonian features. Contrarily to HS, however, the
deformability of the dispersed phase introduces additional
complexity into the system, originating rheological properties
that are intimately connected to the morphological microstruc-
ture of the droplets evolving under the effect of a flow.
Deformation-induced shear-thinning is a distinguishing mark
of these systems (see, for instance, [4]). Moreover, unlike HS
suspensions, emulsions are usually characterized by a positive
first normal stress difference [22,23], a signature of viscoelas-
ticity, although some authors have reported a reversal in the
sign of N1 attributed to the presence of inertial effects [24].

After the early efforts of Taylor [3,25], many authors
attempted to unveil the richness of the physics involved in
the dynamics of emulsions evolving under different flow
conditions. The amount of literature regarding this subject is
indeed very vast. Oldroyd [26] derived a linear viscoelastic
constitutive equation for time-dependent flows, corroborated
by expressions for the relaxation and retardation times of the
fluid proportional to the droplet capillary time scale. Later,
Schowalter et al. [27] investigated the behavior of a drop
under steady shear adopting a first-order perturbation method
and determined a positive N1 and a negative N2, both propor-
tional to the square of the rate of deformation, _γ. Frankel and
Acrivos [28] generalized the theory of Schowalter et al. [27]
for a time-dependent shearing flow for a dilute emulsion and
obtained the expression for the stress tensor. Subsequently,
Cox [29] provided a solution for the drop shape in a rather
general time-dependent creeping flow.

In addition to these works, which were specifically aimed
at determining the flow field and the morphological configu-
ration of a single drop under certain flow conditions, other
authors developed theories aimed at describing the rheologi-
cal properties of suspensions in terms of average particle
interfacial stress [30–32]. In particular, Batchelor [30]
obtained an expression for the bulk stress of a suspension of
particles of generic shape and constitution (solid particles,
drops, capsules, etc.) in Newtonian fluids in the absence of
external body forces, while allowing for the presence of
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couples exerted on those particles. Apart from these limiting
assumptions, the derivation of Batchelor [30] is rather
general and can, in principle, be adopted for any type of sus-
pension regardless of the concentration of the dispersed
phase. Later, Choi and Schowalter [33] determined constitu-
tive equations for nondilute suspensions adopting the defini-
tion of interfacial stress tensor given in Batchelor [30].

More recently, various authors have approached the
problem from a phenomenological perspective and succeeded
in obtaining accurate predictions for both droplet conforma-
tion and rheological behavior of dilute emulsions [34–36].

Aside from viscous (and possibly inertial [24]) effects
arising from the presence of an imposed flow, the configura-
tion of the dispersed phase can also be altered by additional
stresses of different nature, such as electric fields (e.g., see
[37–39]) and magnetic fields [40–44]. In the latter case, at
least one phase must be composed of a magnetizable mate-
rial. Cunha et al. [43] derived a model for the interfacial
stress tensor developing in the presence of uniform magnetic
fields. Then, they applied their model to the two-dimensional
problem of a dilute emulsion composed of FF droplets sur-
rounded by a nonmagnetizable fluid under a steady shearing
flow and a uniform magnetic field acting in both the normal
and parallel directions with respect to the imposed flow.
They calculated the effective viscosity by integrating the
viscous stresses at the wall and found good agreement with
the prediction of their model. Moreover, in both flow condi-
tions, they found positive first normal stress differences.
More recently, Ishida and Matsunaga [44] have also proposed
a model for the rheology of a dilute emulsion of FF droplets
dispersed in a nonmagnetizable medium approaching the
problem considering two- and three-dimensional configura-
tions and uniform magnetic fields applied along each of the
three coordinate directions. They observed a reversal of
normal stress differences with respect to nonmagnetic config-
uration when the magnetic field was parallel to the direction
of the vorticity vector. Regarding the shear viscosity, their
two-dimensional calculations have shown a general good
agreement with the finding of Cunha et al. [43].

To the best of our knowledge, the above-mentioned works
of Cunha et al. [42,43] and Ishida and Matsunaga [44] are
the only ones that are aimed at investigating the rheology of
emulsions in the presence of a FF phase and an imposed
magnetic field. Previous works, on the other hand, have been
devoted to the study of nonrheological properties such as
emulsion magnetic permeability, for emulsions of FF drops
in nonmagnetizable fluids (e.g., see [45–47]) as well as for
inverse emulsions, i.e., for nonmagnetizable drops sur-
rounded by a FF (cf. [48] and [49]), the formation of chained
structures of FF droplets, [50] and the effect of these struc-
tures on the emulsion electrical properties [51]. Finally, it is
worth mentioning the recent work of Zakinyan and Zakinyan
[52] who succeeded in producing an emulsion of FF micro-
drops using a rotating magnetic field and showed that the
resulting magnetic torque of the emulsion can be enhanced
with respect to that observable in the pure FF.

From this brief account, it clearly emerges that FF emul-
sion shows the potential for being employed in a wide range
of novel scientific and engineering applications owing to the

possibility to “tune” their mechanical and electromagnetic
properties ad hoc with the application of opportune magnetic
fields. Nevertheless, if some of the aspects related to the elec-
tromagnetic properties of these systems have been already
studied theoretically end experimentally in certain detail,
contrarily, works specifically aimed at investigating their
rheological properties are relatively scarce. In the present
work, therefore, a model based on the theory of Batchelor
[30] is developed anew following a different route from
those adopted in the aforementioned works of Cunha et al.
[43] and Ishida and Matsunaga [44]. Qualitative comparisons
with the previous findings reported in [43,44] provided evi-
dence of agreement between different models on predicting
shear stresses. On the contrary, discrepancies in terms of
normal stress differences might be expected since the present
approach predicted the reversal of the normal stress differ-
ences, while, for flow conditions comparable to ours, in the
above mentioned works of Cunha et al. [43] and Ishida and
Matsunaga [44] this occurrence was not observed. Finally, a
quantitative comparison with our results and those obtained
with the adoption of the model developed by Cunha et al.
[43] is also provided.

II. PROBLEM FORMULATION

The aim of the present work is to evaluate the role played
by magnetic stresses on the rheology of a dilute suspension
made of FF droplets dispersed in a nonmagnetic immiscible
fluid subjected to the simultaneous effect of a shearing flow
and a homogeneous magnetic far field. To accomplish our
goal, we consider a Couette cell, as schematized in Fig. 1,
consisting of two parallel walls placed at mutual distance Ly
moving in opposite directions with velocity +U0ex, and
imposing a uniform magnetic field, H0 ¼ H0ey, where ex
and ey are the unit vectors in the x- and y-axis direction,
respectively.

In order to determine the exact form of the bulk stress
which will be used to evaluate the effective viscosity and
normal stress difference coefficients, certain assumptions will
be made.

FIG. 1. Schematic representation of a drop of FF inside a Couette cell filled
with a nonmagnetizable liquid subjected to the simultaneous effects of shear
and a wall normal uniform magnetic field of intensity H0.
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Both fluids will be regarded as incompressible and
Newtonian, although, as we have seen for a FF the
Newtonian constitutive equation for the stresses cannot be
always safely inferred a priori (further justifications regard-
ing this assumption will be provided below). Moreover, both
phases will be characterized by the same viscosity and
density. This latter assumption is necessary to avoid
unwanted particle translations driven by buoyancy.

Another assumption which often is tacitly made when
dealing with FFs is the hypothesis that any field-induced
nonuniformity of concentration of the ferromagnetic (or ferri-
magnetic) particles dispersed in the carrier fluid can be
neglected (see [42,43,53–56], for instance). This simplifica-
tion can be questionable [57], especially when large mag-
netic fields are considered (in these conditions, field-induced
assemblies may appear even for relatively small particle con-
centrations [58]). Nevertheless, to avoid the difficulty of
accounting for fluid density nonhomogeneity and to deal
with an expression for the magnetic stress tensor which can
be promptly adopted for the calculation of the bulk stress
tensor in line with the theory of Batchelor [30], here we will
ignore this complication.

Additionally, the concentration of magnetic nanoparticles in
the FF phase is assumed to be sufficiently low that the magne-
tostatic approximation applies while assuming that the magne-
tization vector, M, is related to the magnetic field by a linear
relation, i.e., we pose M ¼ χH, where χ is the magnetic sus-
ceptibility. This latter assumption restricts considerably the
range of applicability of our model, circumstance that is also
shared with the models previously developed by Cunha et al.
[43] and Ishida and Matsunaga [44]. In view of these consider-
ations, the following treatment should not be considered com-
plete or general. Nonetheless, it may represent the starting
point for ensuing, more accurate, models for the characteriza-
tion of viscometric functions in the presence of a FF phase
and provide results at least qualitatively in line with what one
should expect in reality (as long as the above-mentioned con-
ditions are verified, especially the hypothesis of linearly mag-
netizable material, arguably the most restrictive).

Finally, before embarking on the derivation of the stress
model, a final remark regarding the nature of the Maxwell
stress tensor (MST), which constitutes the foundation of our
derivation: Broadly speaking, a body density force, fM , is
said to be Maxwellian if it can be expressed through the
divergence of a dyadic field, ∇ � TM ; ∇ � TM xð Þ, i.e., fM
¼ ∇ � TM (see, e.g., [59]). This definition is rather general
and goes beyond the context of electromagnetism; an
example being the gravitational density force, g, which can
be shown to be expressible through the divergence of an ade-
quate gravitational stress field [59]. In this work, we are
dealing with a nonconducting, linearly magnetizable FF, and
the relevant Maxwellian body force can be represented
through the divergence of a properly defined MST, intro-
duced in Sec. III. By virtue of this definition, the magnetic
density body force can be taken into account by incorporat-
ing the MST into the true hydrodynamic stress. The theoreti-
cal implications of such modus operandi, however, are not as
straightforward as one would imagine. Rinaldi and Brenner
[59], in fact, have pointed out that such operation should be

regarded conceptually flawed on a physical ground and may
bring to erroneous results in some circumstances which,
however, are not a cause of concern in this work. Indeed, for
FF flows, Rinaldi and Brenner [59] could show that the
replacement of the magnetic density force by the correspond-
ing MST counterpart in the linear (and possibly angular)
momentum equations provides correct estimates of the total
force (and possibly torque) acting on the fluid domain. On
the contrary, the same approach might lead to an erroneous
evaluation of the rate of work associated with the MST. In
the present context, however, the stress model is not affected
by the aforementioned limitations since, as we shall see, the
MST contribution to the particle extra stress is ultimately
incorporated through the first moment of the magnetic body
density force.

III. BULK STRESS AND RHEOLOGICAL
PROPERTIES OF THE SUSPENSION

As stated before, the main goal of the present work is to
investigate the bulk stress in a dilute suspension of FF drop-
lets embedded in a nonmagnetizable carrier fluid. To accom-
plish this, we rely on the definition of bulk stress introduced
by Batchelor [30], considered here in its most general formu-
lation. This will allow us to derive a model stress appropriate
in the present flow configuration, i.e., in the presence of
additional magnetic stresses. One of the key ingredients in
deriving the effective stress is the assumption that the two
fluids behave as Newtonian, thus before we proceed further
we should clarify some aspects related to the rheological
properties of FFs.

In Sec. I, we stated that a FF on its own may show a
variety of rheological features. In particular, magnetoviscous
effects may appear even upon the hypothesis of ideal FFs,
i.e., when aggregate formation is not taken into account. This
phenomenon, which strictly speaking should not be regarded
as a non-Newtonian effect, does not put any particular
restriction on the applicability of the model reported in
Batchelor [30], since the viscosity of the FF phase would be
fixed once the extent of the magnetic field is also fixed.
Hence, in this regard, care should only be exercised on deter-
mining the viscosity of the fluid any time the magnetic field
is adjusted. Put more simply, for a given set of experiments
performed for a given magnetic field intensity, the viscosity
of the FF remains constant, which is a necessary requirement
for the adoption of the model of Batchelor [30]. On the con-
trary, in the presence of particle aggregation, we have seen
that these fluids usually show non-Newtonian responses.
Including these effects into the stress model would require
the knowledge of reliable constitutive equations for the FF
phase and substantial modifications of the method detailed
by Batchelor [30], which are beyond the scope of the present
preliminary analysis. On the basis of these considerations, we
shall treat the magnetic phase as a Newtonian fluid having a
constant viscosity η, having in mind that possible large dis-
crepancies between experiments and theoretical predictions
should primarily be sought among those non-Newtonian fea-
tures that have been disregarded from the present stress
model formulation.
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Another important aspect of the theoretical development
detailed by Batchelor [30] that is worth highlighting is the
hypothesis that the resultant of any type of force that might
act on the particle should be zero (while allowing for the
presence of couples). This hypothesis is required for a defini-
tion of the bulk stress that is invariant to translation of the
coordinate system. In the following, we will see that for a
spatially uniform magnetic field there is no net magnetic
force acting on the surface of the drop, thus magnetic stresses
will be responsible for interface deformations but will not
induce drop translations.

Now that the specific requirements necessary for the
deduction of the bulk stress in our conditions have been
pointed out, we can proceed further with the actual derivation
of the model.

Without introducing any restriction on the nature of the
particles that may be dispersed in the ambient fluid (e.g.,
they might be solid particles, drops, capsules, etc.), Batchelor
[30] showed that the bulk stress in a suspension is given by
the sum of different contributions attributable to the ambient
fluid alone and an additional term arising from the presence
of the particles. Thus, if we denote with V the whole control
volume and with V0 the volume of a particle of surface area
S0, the expression for the bulk stress for a single particle may
be written as

Σij ¼ 1
V

ð
Va

�pδijdV þ η
@Ui

@xj
þ @Uj

@xi

� �
þ Σp

ij, (1)

where Va ¼ V � V0 is the volume occupied by the ambient
fluid. The remaining variables appearing in Eq. (1) are the
pressure p, the volume-averaged velocity gradient, @Ui=@xj,
i.e., the average value taken over the whole control volume,
with Ui being the mean velocity of the imposed flow, differ-
ing from the local velocity, ui, arising from the presence of
the particles (their difference, u0i ¼ ui � Ui, can be interpreted
as a “perturbation” velocity), and δij is the Kronecker delta.
It should be emphasized that, in line with the convention
adopted by Batchelor [30], S0 is defined in such a way it lies
on the outside of the interfacial layer, i.e., Va is supposed to
be entirely occupied by the ambient fluid. The last term on
the right-hand side of Eq. (1) represents the extra-stress
tensor arising from the presence of the particles, which for
negligible inertia may be written as (cf. Batchelor [30])

Σp
ij ¼

1
V

ð
V0

TijdV � 1
V

ð
S0

η uinj þ ujni
� �

dS, (2)

where n is the unit normal pointing outward the surface S0.
Hence, we see that in Stokes flow conditions the contribution
to the stress due to the presence of the particles is given by
the sum of the volume average (bulk) of the stress tensor T
acting within the particle and a viscous contribution exerted
on its surface by the surrounding fluid. In the particular case
of drops having the same viscosity of the ambient fluid, this
latter term is uninfluential; nevertheless, it will be retained
for the sake of completeness.

Now, we notice that we may pose [cf. Eq. (4.3) in
Batchelor [30]]

ð
V0

TijdV ¼
ð
S0

TikxjnkdS�
ð
V0

@Tik

@xk
xjdV , (3)

thus, this extra stress can be seen as the sum of a stress
acting on the particle surface (obtained upon the adoption of
the divergence theorem) and a volume integral contribution.

For a FF drop subjected to a uniform magnetic field, the
second order tensor T accounts for two contributions,
namely, the surface tension stress, Γ, and the magnetic stress
τ. It can been shown (see, for instance, [30] or [60]) that the
surface contribution to Eq. (3) due to surface tension reads

ð
V0

TijdV ¼
ð
S0

σkxjnidS (4)

where σ is the surface tension coefficient and k is the sum of
the curvatures of any two orthogonal sections of the interface
containing the local normal n. The second integral of (3) can
be shown to be identically zero in this particular case (see,
e.g., Batchelor [30]).

Before we proceed further, some additional observations
are required. In the original treatment, Batchelor [30]
assumed that any body force per unit volume that might act
on the flow was uniformly distributed. Owing to this hypoth-
esis, he concluded that the second term appearing in the
right-hand side of Eq. (3) may, in general, be equilibrated by
a linearly varying isotropic stress which may be ignored.
Hence, with allowance for inertial forces, he pointed out that
this term can be replaced by an inertial contribution,
@Tij=@xj ¼ ρfi, where ρ is the fluid density, assumed to be
uniform throughout the whole suspension, and fi is the local
acceleration relative to the average value of the acceleration.
Thus, upon the assumption of Stokes flow conditions, he
considered this contribution to be negligible. In the present
conditions, however, the magnetic body force arises at the
interface in the form of a discontinuity; hence, the assump-
tion of uniform body force fails and both terms of Eq. (3)
should, in principle, be retained. We shall see that the contri-
bution to the bulk stress due to magnetic effects indeed arises
from the volume integral in the right-hand side of Eq. (3).

A. Extra-stress tensor for FF droplets under the
effect of a homogeneous magnetic field

For a dilute FF, the magnetostatic approximation may be
invoked (e.g., see [54], [55], and [61]); thus, the magnetic
field H and the magnetic induction B are governed by the
magnetostatic Maxwell equations

∇�H ¼ 0, ∇ � B ¼ 0, (5)

in which B ¼ μ0μrH, where μ0 is the magnetic permeability
in vacuum and μr is the relative magnetic permeability of the
medium. For a linearly magnetizable medium, μr ¼ 1þ χ
while for a nonmagnetizable material μr ¼ 1, since χ ¼ 0 in
this case.

DILUTE FERROFLUID EMULSIONS 929



With these premises, the magnetic stress tensor (MST) in
the case of incompressible fluids can be written as [61]

τ ¼ � 1
2
μ0jHj2Iþ μ0μrHH, (6)

i.e., the magnetic stress is the sum of an isotropic term (pro-
portional to the unit tensor I and to the square of the intensity
H of the magnetic field) and a deviatoric part.

Now, we observe that the drop interface acts as a disconti-
nuity for the MST since the surrounding medium is supposed
to be nonmagnetizable (i.e., μr ¼ 1), while inside the FF
phase we have μr ¼ 1þ χ. A possible way to deal with such
a discontinuity is to introduce an indicatrix (cf. [31])

α(r) ¼ 0, r in the ambient fluid,
1, r inside the drop,

�
(7)

where r is the vector position and the interface location is
identified by the vector r0. Thus, indicating with the super-
script “p” and “a” quantities related to the drop (particle) and
to the ambient fluid, respectively, the MST reads

τ ij ¼ ατ(p)ij þ 1� αð Þτ(a)ij , (8)

therefore, the magnetic body density force reads

f mi ¼ @τ ij
@xj

¼ α
@τ(p)ij

@xj
þ 1� αð Þ@τ

(a)
ij

@xj
þ τ(a)ij � τ(p)ij

h i
njδ r� r0ð Þ,

(9)

where δ r� r0ð Þ is the Dirac delta function. Noting that
∇ � τ ¼ 0 everywhere except at the interface location (this is
because inside the drop the magnetic particles impose a
uniform magnetic field and uniform magnetization, while in
the ambient fluid the stress tensor is divergence-free because
of the irrotational character of the magnetic field, see, for
instance, Rowghanian et al. [55] for further explanations), we
find

@τ ij
@xj

¼ τ(a)ij � τ(p)ij

h i
njδ r� r0ð Þ: (10)

Observing that τ(a) ¼ � 1
2 μ0H

2Iþ μ0HH and
τ(p) ¼ � 1

2 μ0H
2Iþ μ0 1þ χð ÞHH, we obtain

ð
V0

@τ ik
@xk

xjdV ¼ �
ð
V0

μ0χHiHkxjnkδ r� r0ð ÞdV

¼ �
ð
S0

μ0χHiHkxjnkdS: (11)

Evaluation of the role played by the remaining term, i.e.,
the surface integral of Eq. (3) requires special considerations.
First, we observe that the magnetic force will be introduced
into the momentum equation (shown in Sec. IV) through the
divergence of the MST. Thus, with regard to magnetic

effects, the contribution to the exchange of momentum is
provided by the magnetic body force, fm ¼ ∇ � τ. In view of
this, we conclude that hydrodynamic stresses of magnetic
nature are generated by the sole force fm and the surface con-
tribution to the particle extra stress should not be accounted
to what concerns magnetic effects.

On the basis of the previous considerations, the particle
stress tensor finally reads

Σp
ij ¼

1
V

ð
S0

{σkxjni � η 1� λð Þ uinj þ ujni
� �

þ μ0χHiHkxjnk}dS, (12)

where λ ¼ ηp=η is the ratio between the viscosities of the
droplet and of the ambient fluid. Since in the present work
λ ¼ 1, this term will not be taken into account. We may note
that this formulation is rather general and could also be
applied to an “inverse” emulsion (i.e., for nonmagnetizable
drops surrounded by an FF) or when both phases are magne-
tizable. In this regard, assuming the surrounding phase and
drop characterized by magnetic susceptibilities, χa and χ p,
respectively, it would be sufficient to use the term
μ0 χ p � χað Þ in place of μ0χ.

It should be emphasized that the stress equation (12) is
meaningful only for a zero-thickness interface. As we shall
see, in the framework of the numerical approach adopted
here the drop boundary is represented by a finite thickness
layer in which α is a continuously varying function. Thus,
within the interfacial region, the two divergence terms previ-
ously disregarded from Eq. (9) are not identically vanishing
functions and should be reintroduced in the numerical imple-
mentation of the model. We will come back to this aspect
later, when we will describe the approach in the context of
the numerical framework.

We might also note that the presence of a magnetic force
at the drop–fluid interface generates a torque; thus, contrarily
to the surface tension tensor, the magnetic particle stress
tensor is not symmetric in general. Hence, for some pur-
poses, it might be convenient separating it into its symmetric
and antisymmetric parts. With the obvious meaning of the
symbols adopted [the superscript m indicates that we are con-
sidering only the magnetic term of Eq. (12)], we have

Smij ¼
1
2

Σ p,m
ij þ Σ p,m

ji

� �
, Am

ij ¼
1
2

Σ p,m
ij � Σ p,m

ji

� �
: (13)

The antisymmetric part of the magnetic particle extra stress is
related to the magnetic torque, Cm, through the simple rela-
tionship Am

ij ¼ � 1
2 εijkC

m
k , where εijk is the Levi-Civita

symbol.
Once the particle stress (12) has been computed, the

steady shear rheology, which is characterized by the “excess”
viscosity, ηe, and the two normal stress differences normal-
ized by the reference shear stress η _γ (in the following,
N1 and N2 are simply termed as dimensionless normal stress
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differences for the sake of brevity), is given by

ηe
η
¼ 1þ Σp

xy

η _γ
, N1 ¼

Σp
xx � Σp

yy

η _γ
, N2 ¼

Σp
yy � Σp

zz

η _γ
, (14)

where _γ is the imposed shear rate.
Finally, we may define an average shear stress evaluated

as (see, for instance, [43])

Σxy ¼ 1
Sw

ð
Sw

η
@ux
@y

dS, (15)

where Sw represents indistinctly the surface of one of the two
lateral walls y ¼ 0 or y ¼ 1. From this expression, and with
the aid of Eq. (1), we can finally work out an alternative
expression for the particle extra shear stress,

Σp
xy ¼ Σxy � _γη: (16)

IV. MATHEMATICAL AND NUMERICAL MODELS

The set of governing equations is solved numerically in a
Cartesian frame of reference using a hybrid level
set-volume-of-fluid based OpenFOAM code developed by
Capobianchi et al. [40] on the basis of the original formula-
tion of Yamamoto et al. [62]. Here, we highlight the general
features of the methodology, while the reader is addressed to
Capobianchi et al. [40] for a detailed description of the
approach.

First, we observe that the discrete counterpart of the mag-
netostatic Maxwell equations (5) may be rewritten in terms
of a scalar potential ψ in the following manner:

H ¼ �∇ψ , ∇ � μ(x)∇ψð Þ ¼ 0: (17)

On writing the second equation of (17), we adopted the “one-
fluid” formulation, having highlighted the fact that in this
context the magnetic permeability is regarded as a continuous
quantity μ(x) ¼ α(x) 1þ χð Þμ0 þ 1� α(x)ð Þμ0 through the
discrete vector position, x. Here, α(x) is the standard fraction
function adopted in VOF-based codes, which can be
regarded as the discrete counterpart of the indicatrix function
α(r) introduced in Sec. III A. Generally speaking, similar
definitions apply for any other material property that may be
encountered in the problem. Since we are dealing with iso-
dense and isoviscous fluids, density and viscosity are cons-
tant in space, however, on writing the governing equations,
the functional dependence of these two quantities on the
position x will be retained for the sake of generality.

The fluid flow obeys the isothermal and incompressible
conservation of mass and Navier–Stokes equations for mag-
netizable fluids in the presence of a magnetic vector field

∇ � u ¼ 0, ρ(x) @=@t þ u � ∇ð Þð Þu ¼ �∇pþ ∇ � 2η(x)Dð Þ
þ fσ þ fm, (18)

where ρ(x) is the density and D ¼ 1
2 ∇uþ ∇uð Þð ÞT is the

rate-of-strain tensor. The two force densities appearing on the

right-hand side of the momentum Eq. (18) account for
the surface tension and the magnetic force. The former
can be written as fσ ¼ σk wð Þn wð Þδ wð Þ (cf. [63]), where
n wð Þ ¼ � ∇w

k∇wk is the (discrete) outward normal at the drop

interface, k wð Þ ¼ ∇ � n wð Þ and w is the level-set function
(see, e.g., [40] and [62] for more information). The magnetic
body force density, on the basis of the assumptions made,
reads as

fm ¼ ∇ � � 1
2
μ0 Hj j2Iþ μ xð ÞHH

	 

: (19)

As anticipated, this force vanishes everywhere apart from at
the interface since in the bulk of each phase the divergence
of the magnetic stress tensor is identically zero. In the
present numerical framework, the interface is characterized
by a finite thickness, within which the MST is not
divergence-free (0 , α , 1). This fact must be taken into
account on evaluating the magnetic part of the extra-stress
tensor. Reintroducing the divergence terms discharged from
Eq. (9), the magnetic part of the bulk stress now assumes the
compact form

Σ p,m ¼ 1
V

ð
V
�fm 	 xdV : (20)

Note that the domain of integration can be conveniently
extended to the entire domain since, for the reasons
explained before, the magnetic force is zero everywhere
except at the interface.

With reference to Eq. (20), we observe that if the origin of
the coordinate system is shifted by an arbitrary vector x0, we
have

Σ p,m x� x0ð Þ ¼ � 1
V

ð
V
fm 	 x� x0ð ÞdV

¼ � 1
V

ð
V
fm 	 xdV þ 1

V

ð
V
fmdV

� �
	 x0,

(21)

but previously we have anticipated that the rightmost integral
of Eq. (21) must vanish for uniform magnetic fields, hence
the statement made regarding the arbitrariness of the origin
of the coordinate axes mentioned at the beginning of the pre-
vious section follows consequently.

Regarding the surface tension extra-stress tensor, we
observe that a similar approach could be used. Indeed, in the
present numerical framework, the surface tension contribution
could be accounted for with an additional surface tension
density force, fσ , added within the volume integral of
Eq. (20), as done by Ishida and Matsunaga [44]. Nevertheless,
we also note that this method is not strictly required since the
interfacial tension is a constant, while the remaining variables
are purely geometrical quantities [cf. Eq. (12)], meaning that
the variable α is not involved here. Hence, once the interface
location has been identified (iso-surface α ¼ 0:5), the interfa-
cial extra stress can be calculated through the aid of Eq. (12).
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Practically speaking, this operation was accomplished in
postprocessing by extracting the surface and calculating
the integral

Σ p,σ
ij ¼

ð
S0

{σ δij � ninj
� �

}dS, (22)

taking advantage of the identity
Ð
S0
kxjnidS¼

Ð
S0

δij�ninj
� �

dS
(cf. [24] and [30]). This approach was found to be numeri-
cally more accurate, because the normal vector computed
from the reconstructed interface was found to be generally
more precise than the one evaluated by computing the gradi-
ent of the level-set function (this latter quantity, in turn,
would serve to compute the force fσ).

The governing equations (17) and (18) are discretized in a
three-dimensional computational domain having dimensions
Lx ¼ 2, Ly ¼ 1, Lz ¼ 1
� �

composed of 120� 60� 60ð Þ
cells in the respective directions, x, y, and z (mesh M0).
An initially spherical drop of radius a ¼ 0:1 is placed at the
center of the computational Couette cell, i.e., its center being
placed at the point of coordinates 1, 1=2, 1=2ð Þ. An octree
adaptive mesh refinement is employed at the interface, adopting
three consecutive levels of refinement within an iteration [the
typical refined cell at the interface is cube having sides 23 times
smaller than the parent (nonrefined) cell], with the refined mesh
consisting of about 1.5M nodes. At the boundaries y ¼ 0 and
y ¼ 1, Dirichlet boundary conditions are applied for the velocity
by imposing U ¼ �U0, 0, 0ð Þ and U ¼ U0, 0, 0ð Þ, respec-
tively, yielding a constant shear rate _γ ¼ 2U0=Ly ; 2U0. A
uniform magnetic far field vector, H ¼ 0, H0, 0ð Þ, is set by
imposing the conditions ψ ¼ ψ0 and ψ ¼ ψ1 at the boundaries
y ¼ 0 and y ¼ 1, respectively, so that the resulting magnetic
field is H0 ¼ ψ1 � ψ0ð Þ=Ly ; ψ1 � ψ0. Periodic flow condi-
tions are applied at the remaining boundaries, i.e., at x ¼ 0 and
x ¼ 2, and at z ¼ 0 and z ¼ 1.

Since we are considering periodic conditions, hydrody-
namic interactions between two adjacent droplets may come
into play due to the relatively short extension of the domain.
Confinement effects in the y-direction may also be relevant,
especially for those cases where the relative strength of
viscous and magnetic effects is predominant with respect to
the interfacial tension (we shall see later that in these cases
the drop appears largely stretched and partially aligned to the
magnetic field; thus, the relative distance between the poles
of the drop and the lateral wall can be critically small). The
role played by these effects has been evaluated considering a
droplet with halved radius, maintaining the domain size and
mesh resolution, for flow conditions that provided the largest
drop elongation in the vertical direction. No substantial dif-
ferences were observed in relation to the corresponding case
for the original drop radius; therefore, the effect of confine-
ment can be regarded as negligible for the conditions consid-
ered here. Moreover, a mesh study was conducted
considering the largest value of Bom (i.e., as we shall see,
Bom ¼ 5:6) for three different levels of refinement by
halving the original mesh size, M0, one time (mesh M1),
twice (mesh M2), and finally three times (mesh M3). A good
rate of convergence was found and all subsequent

simulations have been carried out using the resolution M3.
Detailed information regarding the confinement and mesh
studies can be found in the supplementary material [64].

Prior to embarking on the discussion of the results, we list
the set of nondimensional parameters that will be used.
Adopting a, _γa, _γ�1, η _γ, and H0 as reference quantities for
length, velocity, time, stress, and magnetic field, respectively,
we can define the Reynolds number, Re ¼ ρ _γa2=η, the capil-
lary number, Ca ¼ η _γa=σ, and the magnetic Bond number
Bom ¼ μ0H0

2a=σ. In the present context, Re � 1, thus, iner-
tial effects can be neglected. The remaining two parameters
represent the ratio between viscous force and interfacial
tension (Ca) and the ratio between the magnetic force and
interfacial tension (Bom); hence, the drop dynamics depend
exclusively on the interplay between viscous stresses, interfa-
cial tension, and magnetic stresses.

V. RESULTS

A. Drop morphology and rheological functions in
the absence of magnetic field: Comparison with the
existing theoretical models

Before discussing the role of the magnetic stress on the
rheological properties of the system in the presence of mag-
netic effects, we assess the accuracy of the numerical
approach assuming H0 ¼ 0 by comparing our results against
two different theoretical models, namely, the model proposed
by Choi and Schowalter [33] (C-S model) and the morpho-
logical model of Yu et al. [36] (GBP-YB model), which was
based on the earlier work of Grmela et al. [35].

To this end, Fig. 2(a) shows the drop deformation parame-
ter, D ¼ a1 � a2ð Þ= a1 þ a2ð Þ (here a1 and a2 are the major
and minor axes of the drop measured on the midplane
z ¼ 0:5), respectively, as a function of Ca obtained with the
present simulations (squared symbols) compared to the
two theoretical models mentioned before. For small
values of Ca, the numerical simulations and the models
predict similar deformations. As Ca is increased, however,
the numerical simulations always provide larger deforma-
tions. Analogously, in Fig. 2(b), we show the comparison
in terms of droplet orientation, θ0 ¼ 45
 � θ (measured in
degrees), where θ is the angle between the drop major
axis, a1, and the x-axis, i.e., the axis oriented along the
direction of the unperturbed flow [cf. Fig. 3(b)]. It can be
seen that the C-S model is in good agreement with our
simulations in the whole range of Ca, while the GBP-YB
model consistently predicts smaller values of θ0.
Comparisons with previous numerical simulations are pro-
vided as supplementary material [64].

Figures 2(c) and 2(d) show the comparison in terms of
dimensionless excess shear stress, Σp

xy, and normal stress
differences, N1, N2, respectively [with abuse of notation,
unless otherwise stated, in the following we shall indicate
normalized stresses with the same symbolism adopted for
the respective dimensional quantity, e.g., Σp ; Σp= f _γηð Þ,
being customary to divide stresses by the volume fraction
f ¼ V0=V of the FF phase dispersed in the ambient fluid].
The latter will be kept constant throughout the whole study
and equal to f ≃ 0:21%.
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In Fig. 2(c), we observe that the C-S model provides an
excess stress that is independent of Ca (see the corresponding
dashed line), contrarily to the GBP-YB model which cor-
rectly reproduces the shear-thinning behavior. Moreover, we
note that for very low Ca both models and the present numer-
ical results (diamond symbols) roughly predict the same
excess stress Σp

xy (i.e., the same excess viscosity ηe). As Ca
increases, the simulations capture the expected shear-thinning
behavior although the simulation data are consistently larger
than the values provided by the GBP-YB model. A similar
discrepancy was also observed by Li and Sarkar [24] for a
numerical model system analogous to the present one
(same values of the domain confinement but the larger value
of the Reynolds number, Re ¼ 0:1). Additionally, in the
same figure, we show the excess stress evaluated by means
of Eq. (16) (red symbols). The good agreement with the

values calculated by means of Eq. (12) is excellent over the
whole range of capillary number considered, which indirectly
highlights the reliability of the methodology adopted to eval-
uate the quantities appearing in expression (12).

With regard to the normal stress differences, from
Fig. 2(d) we observe an excellent agreement between our pre-
dictions (diamond symbols) and the GBP-YB model in terms
of N1 in the whole range of Ca, while the C-S model provides
an underestimation of N1 if compared to the other sets of data.
Regarding the second normal stress difference, N2, the present
simulations (filled triangles) provide values lying in between
those predicted by the two theoretical models.

Overall, we can conclude that the present numerical
approach is in qualitative agreement with both the C-S and
the GBP-YB models. At large Ca however, a certain devia-
tion is observed, which is expected since the theoretical

FIG. 2. Deformation parameter (a), drop orientation (b), excess shear stress (c), and normal stress differences (d) given as functions of the capillary number.
The present results are compared with the C-S model [33] and the GBP-YB model [36]. The excess stresses in (c) are scaled with the quantity η _γf, while
normal stresses (d) are scaled with the volume fraction f.
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models were conceived in the framework of small Ca
theories.

B. Emulsion rheology in the presence of the
magnetic field

The accuracy of the FF solver was already assessed by
Capobianchi et al. [40] considering a FF droplet undergoing
deformation under the effect of a spatially uniform magnetic
field and the absence of flow. The results were compared
with the experiment of Afkhami et al. [54] and the calcula-
tions of Rowghanian et al. [55] under the assumption of line-
arly magnetizable material (confirmed by the experimental
observations of [54], whose magnetization curves are shown
in Appendix B) and for a value of the magnetic susceptibility
χ ¼ 0:8903, which was considered during the experiments of
Afkhami et al. [54] and ensuing calculations of Rowghanian
et al. [55]. In the following, however, we shall consider a
smaller susceptibility (χ ¼ 0:5) since for large magnetic
Bond numbers and χ ¼ 0:8903 we observed the presence of
an instability which would deserve a separate investigation.
The range of magnetic fields considered (i.e., the range of
Bom in practice) will be the same as in Capobianchi et al.
[40] for which we assume the validity of the magnetic linear
constitutive equation. All other material parameters are
the same as in the cases of Sec. V A (the interested reader
will find in Appendix B some considerations about the
dimensional values corresponding to these dimensionless
quantities). Additionally, it is worth mentioning that for the
fluid pair adopted by Afkhami et al. [54] in their low-
magnetization regime, appreciable drop interface displace-
ments would appear for millimeter-sized drops or moderately
smaller. Nevertheless, using different fluid pairs, the interfa-
cial tension can be drastically lowered and drop deformations
can be appreciably large even for micrometer-sized drops
upon the application of moderate magnetic fields [47].

Considerations regarding the values of drop deformation to
be expected in actual experiments using both the parameters
reported in Afkhami et al. [54] and in Zakinyan and
Dikansky [47] can be found in Appendix B.

Figure 3(a) shows the deformation, D versus Ca for differ-
ent values of the magnetic Bond number, Bom. It can be
seen, as expected, that for a fixed Bom the deformation
increases monotonically with Ca due to the increased shear
stress in the face of a constant interfacial tension. Essentially,
the trends are therefore congruent with the behavior observed
for the nonmagnetic case shown in Fig. 2(a). Analogously, a
monotonic increase is observed also for increasing values of
Bom for fixed values of Ca since the magnetic stresses act to
“stretch” the drop in the direction of the imposed magnetic
vector field, thereby contributing to increment the drop
surface while forcing it to be oriented toward the vertical axis
due to the presence of a magnetic torque. In this regard,
Fig. 3(b) shows the corresponding orientation θ0. Again, we
note a similar monotonic behavior with Ca, while θ0

decreases for increasing Bom for each value of Ca. Moreover,
it is worthwhile highlighting that for most of the conditions
considered here θ0 is negative (θ . 45
). Only for Ca ¼ 0:2
the orientation θ0 is positive for all values of Bom due to
increasingly strong viscous effects which act to orient the
drop toward the direction of the imposed shear. Some of the
shapes obtained for different combinations of Ca and Bom
have been added to the figure for the sake of clarity.

As a result of the relevant modification of the droplet mor-
phology induced by the additional magnetic stresses, the rheo-
logical properties of the emulsion are expected to be
substantially different from those observed in the absence of
magnetic effects. In this regard, in Fig. 4(a), we show the parti-
cle excess shear stress, Σp

xy, as a function of Ca for different
values of the magnetic Bond number obtained by means of the
current model (open symbols) and compare them with the
values obtained by means of Eq. (16) (closed symbols). In

FIG. 3. Deformation (a) and orientation (b) as a function of Ca for different values of the magnetic Bond number, Bom. χ ¼ 0:5. Some representative images
of the drops for different conditions have been added in (b).
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general, we notice a shear-thinning behavior, although the rela-
tive variations of Σp

xy with Ca are less pronounced than those
obtained in the absence of magnetic effects [cf. Fig. 2(c)], with
the exception of the results obtained with the present model for
low Ca regime, here represented by Bom ¼ 1:4 [cf. Fig. 4(a)].
Such discrepancy can be attributed to the numerical error asso-
ciated with the evaluation of the components of the vector
normal to the drop interface when the interfacial tension is pre-
dominant with respect to the other constraints, which is a
typical drawback of interface capturing techniques such as VOF
and level-set methods (see, e.g., [63] and [65]). Nevertheless, it
is worth pointing out that the trend obtained through Eq. (16) is
consistent with that obtained through the adoption of the model
in all the other cases, i.e., it exhibits monotonic decreasing
behavior in the whole range of Ca.

From Fig. 4(b), where we report the excess shear stress
obtained by means of Eq. (16) for all values of Bom, we can
infer that Σp

xy increases for increasing Bom for a fixed Ca. In
particular, with reference to Fig. 4(b), we notice a monotonic
increase (“magneto-thickening”), roughly cubic behavior,
suggesting the possibility to model the emulsion viscosity
with an equation like

ηe
η
� 1þ fΣ p,(0,0)

xy þ f Kχ,1Bom þ Kχ,2Bom
2 þ Kχ,3Bom

3
� �

,

(23)

which applies for fixed capillary numbers. Here, Σ p,(0,0)
xy

represents the excess stress when Bom ! 0, while
Kχ,i (i ¼ 1, 2, 3) are constants of proportionality which are
expected to be dependent on the magnetic susceptibility (it
appears reasonable, in fact, to expect an increase of ηe with χ
since larger values of χ lead to larger magnetic stresses).
However, we should recall that the present model is valid
only for linearly magnetizable fluids, which limits the
maximum value of χ (see, e.g., [57]). Finally, the direct
linear proportionality to the volume fraction f is a

consequence of the additive character of the model (12) (see,
e.g., Batchelor [30] and Li and Sarkar [24] for additional
information), and it seems reasonable to assume that such
behavior is valid as far as dilute regimes are concerned.

We continue our discussion by showing the normal stress
differences derived with our model. In this regard, in Fig. 5
we report N1, N2 as a function of the capillary number for
different Bom. From these plots, we immediately realize that
the general trend observed for both normal stress differences
resembles those observed in the case Bom ¼ 0. Nevertheless,
we note the presence of a reversal in the sign of both normal
stresses in the range of small Ca for the larger values of Bom,
i.e., for Bom ¼ 4:2, 5:6. This is attributable to the fact that
the magnetic torque, which counteracts the shearing of the
imposed flow, forces the drop to be elongated and promi-
nently oriented toward the vertical direction (θ0 , 0), thereby
introducing a stress anisotropy enhanced toward the direction
of the magnetic field. Moreover, by a direct comparison with
Fig. 2(d), we observe that the extent of the normal stresses in
the presence of magnetic field is in general different than that
obtained in the absence of magnetic field. The continuous
lines added represent polynomial cubic fits.

The same set of results can also be displayed versus Bom for
fixed capillary number, as shown in Fig. 6, from which we can
draw some interesting considerations. Figure 6(a), in particular,
shows the trends for N1, and a comparison between the low- and
high-Ca data, shows rather different behaviors. For the largest
values of the capillary number, i.e., Ca ¼ 0:15 and Ca ¼ 0:2,
we observe that N1 increases with Bom. On the contrary, for the
remaining values of Ca, the first normal stress difference
decreases with Bom. These opposite behaviors can be ascribed
to the configuration assumed by the drop for different flow con-
ditions stemming from the competition between magnetic and
viscous forces. For increasing capillary numbers, in fact, we
have seen that the orientation θ0 increases monotonically.
Therefore, for large values of Ca, the anisotropy of the system is
enhanced in the direction of the mean flow (x-direction), thereby

FIG. 4. (a) Excess shear stress as a function of Ca for different Bom. (b) Excess shear stress as a function of Bom ¼ for different Ca. χ ¼ 0:5. Open symbols rep-
resent data obtained from Eq. (12), while data represented with closed symbols were obtained through Eq. (16). Data shown are scaled with the quantity η _γf.

DILUTE FERROFLUID EMULSIONS 935



promoting the increment of N1 ¼ Σxx � Σyy (note that for
Ca ¼ 0:2, θ0 was found to be always positive). On the contrary,
in the opposite case scenario small capillary numbers lead to a
decrease in the orientation (θ0 , 0); therefore, the anisotropy of
the system is enhanced in the direction of the magnetic field,
thereby favoring the increment of the vertical normal stress Σyy

compared to the Σxx component. This circumstance, therefore,
leads to a progressive reduction of N1 when Bom is increased.
Regarding the results for N2 shown in Fig. 6(b), we observe that
opposite considerations apply. When Ca is sufficiently small, N2

increases with Bom due to the increase of Σyy, conversely, for
increasing Ca, Σyy is progressively decreased and the increments
of N2 become less pronounced.

C. Rheological functions in the presence of
magnetic field: Comparison with the existing
theoretical models

In Sec. I, it has been mentioned that Cunha et al. [43] and
Ishida and Matsunaga [44] have derived models for the same

type of emulsion considered here using the approach detailed
in Batchelor [30]. However, these authors relied on the for-
mulation introduced by Kennedy et al. [60], in which the
quantity inside the surface integral appearing in Eq. (3) is
rewritten as xjΔti upon the application of the divergence
theorem, where Δti is the interface traction jump. In this for-
mulation, the stress was already reduced to the rightmost
(volume) integral appearing in Eq. (3) upon the hypothesis of
negligible inertia and uniform body force mentioned before
(we recall that, contrarily, we found advisable retaining the
body force term since the magnetic body force is not
uniform throughout the flow domain). In spite of the fact that
both Cunha et al. [43] and Ishida and Matsunaga [44] shared
the same starting point, they followed different routes and
came across different formulations for the magnetic extra-
stress tensor: in Cunha et al. [43], in fact, the magnetic extra-
stress tensor is proportional to the square of the magnetic
field intensity, H2. On the other hand, Ishida and Matsunaga
[44] derived their model relying on the fact that in their
numerical framework the interface is not sharp and therefore

FIG. 5. First and second normal stress differences as a function of Ca for different Bom. χ ¼ 0:5. The lines represent cubic fits. Data are scaled with the
volume fraction f.

936 CAPOBIANCHI et al.



they approximated the surface integral of the tensor xjΔti
with a volume integral evaluated over the finite thickness
interfacial layer. As a result, their magnetic contribution to
the particle stress tensor resembles the one derived in the
present work (formulation in the framework of our numerical
approach) with the difference of being transposed and having
the opposite sign with respect to ours.

A comparison with the stress calculation using the integral
formulation detailed in Eqs. (15) and (16) has shown the reli-
ability of the formulations reported in Cunha et al. [43] and
Ishida and Matsunaga [44] in providing accurate prediction
of the total shear extra stress, circumstance that has been
encountered also with our model. Hence, we can argue that
all models are capable of providing similar predictions of this

quantity. Regarding the normal stress differences, Cunha
et al. [43] have reported positive increasing values for N1

(their setup was two-dimensional, hence N2 was not contem-
plated) for increasing capillary number. On the other hand,
Ishida and Matsunaga [44] considered three-dimensional
configurations, but no reversal of the signs of N1, N2 was
observed. Since their magnetic extra-stress tensor shares a
similar structure to the one determined in this work, being
only transposed and changed in sign, the occurrence of a dif-
ferent behavior in terms of normal stress differences can be
expected.

In Fig. 7, we show the normal stress differences versus
capillary number calculated for our flow conditions adopting
the model of Cunha et al. [43] (dashed lines) for the cases

FIG. 6. First and second normal stress differences as a function of Bom for different Ca. χ ¼ 0:5. Data are scaled with the volume fraction f.

FIG. 7. Comparison in terms of first and second normal stress differences with the model of Cunha et al. [43] as a function of Ca for Bom ¼ 1:4, Bom ¼ 5:6,
and χ ¼ 0:5. Data are scaled with the volume fraction f.
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Bom ¼ 1:4 and Bom ¼ 5:6 compared to our findings (contin-
uous lines). It appears clear that both models predict similar
trends, nevertheless, in line with the previous two-
dimensional findings of Cunha et al. [43], also in these con-
ditions reversal of normal stresses was not observed [cf.
Fig. 7(b)]. Completely analogous trends were found for the
intermediate values of Bom which are not reported here for
the sake of brevity. Regarding shear stresses, the model of
Cunha et al. [43] provided results essentially identical to
those obtained with our model and shown in Fig. 4, with rel-
ative differences contained within 1%.

VI. CONCLUSIONS

The rheological properties of a dilute emulsion composed
of FF droplets suspended in a nonmagnetizable fluid have
been investigated numerically considering uniform magnetic
fields applied in the direction transverse to the imposed
shear. Three-dimensional simulations have been carried out
with a multiphase OpenFOAM code previously developed
by Capobianchi et al. [40] capable of dealing with interfacial
flows in the presence of FF phases. A novel model for the
bulk rheology of the emulsion based on the early work of
Batchelor [30] has been derived assuming Newtonian behav-
ior for both phases, negligible inertia and linearly magnetiz-
able fluids.

The accuracy of the multiphase numerical framework in a
three-dimensional setup has been initially tested in the
absence of magnetic effects against the models of Choi and
Schowalter [34] and Yu et al. [36] for a isodense and isovis-
cous system. A general good agreement in terms of droplet
morphology (deformation and orientation) and bulk rheology
was found in a fairly broad range of capillary number.
Subsequently, we imposed different moderate uniform mag-
netic fields while setting a magnetic susceptibility χ ¼ 0:5,
held constant throughout the whole study. In line with the
previous two-dimensional calculations of Capobianhi et al.
[40] and Cunha et al. [43], as well as with the three-
dimensional computations of Ishida and Matsunaga [44], the
droplet morphology was found to be significantly affected by
the presence of magnetic stresses. In particular, it was found
that magnetic effects contribute to enhance the drop deforma-
tion and orient it along the direction of the imposed magnetic
field. Consequently, the rheological properties of the emul-
sion were found to be different from those observed for non-
magnetizable fluids. In line with the nonmagnetic case, the
excess shear stress was found to be a monotonic decreasing
function of Ca (for each value of Bom ); nevertheless, the rel-
ative reduction of viscosity appeared to be less pronounced
than the corresponding situation where the magnetic field
was not considered. Arguably, a larger magnetization could
lead to the opposite scenario, i.e., to the appearance of a
shear-thickening behavior.

Calculation of the excess shear stresses obtained with the
present model provided results that are in good agreement
with the direct calculation of the stresses, thereby indicating
the reliability of the present model. Calculations of the
excess shear stress obtained with the model proposed by
Cunha et al. [43] also provided results in line with the

present model in the whole range of parameters considered.
Conversely, for constant values of Ca, the excess shear
stresses were found to be a monotonic increasing function of
Bom (magneto-thickening behavior), and the available data
suggested a cubic dependence with this latter parameter. On
the basis of this observation, we proposed a simple constitu-
tive equation for the emulsion describing its viscosity as a
function of the applied magnetic field, i.e., as a function of
Bom while keeping constant the imposed shear.

In terms of normal stresses, our model predicted a reversal
of the sign of both first and second normal stress differences
with respect to those obtained for the nonmagnetizable case
for those conditions in which the imposed magnetic force
prevails over the viscous force. We concluded that such
behavior can be ascribed to the strong anisotropy introduced
by the magnetic stresses which contribute to deform and
orient the drop toward the direction of the magnetic field.
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APPENDIX A: THE C-S AND THE GBP-YB MODELS

Here, we report the C-S model of [33] and the GBP-YB
model of [36] adopted in the validation section for the conve-
nience of the reader.

1. The C-S model

Choi and Schowalter [33] developed a rheological model
for emulsion in steady shear Stokes flow based on the small
deformation perturbation analysis. As the volume fraction
f ! 0, the rheological functions vary linearly with volume
fraction f. Consider the viscosity ratio λ ¼ 1, the interfacial
rheological functions are reduced to

ΣC�S
xy ¼ ηC�S

e

η
¼ 7

4
f, (A1)

NC�S
1 ¼ 245

32
Ca

1þ Z2ð Þf, (A2)

NC�S
2 ¼ � 35

16
Ca

1þ Z2ð Þf, (A3)

where

Z ¼ 35
16

Ca: (A4)

2. The GBP-YB model

Based on Grmela et al. [35] morphological tensor model,
Yu et al. [36] calculated the interfacial rheological functions
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for emulsion in shear Stokes flow. Shear-rate dependence of
viscosity is taken into account. The expressions for these
functions are

ΣGBP�YB
xy ¼ ηGBP�YB

e

η
¼ 128

35
f

S
, (A5)

NGBP�YB
1 ¼ 16

f

S
Ca, (A6)

NGBP�YB
2 ¼ � 1

2
NGBP�YB
1 , (A7)

where

S ¼ 10� 7fð Þ Ca2 þ 256
1225

� �
: (A8)

APPENDIX B: FERROFLUID CODE VALIDATION

In this appendix, we report the magnetization (high- and
low-field intensity) curves reported in [54] which are also rele-
vant for the present study, as we have referred to the same
type of FF for our numerical simulations, and the validation of
the code developed by [40] against the experiments of [54]. In
this regard, in Figs. 8(a) and 8(b), we report the results of the
measurements of [54] for the magnetization for both high
[Fig. 8(a)] and low [Fig. 8(b)] magnetic field intensity. In our
numerical simulations, the applied magnetic field was always
constant and set to a value H ¼ 750A=m, i.e., within the limit
of the small magnetization curve. Nevertheless, we should
observe that in an actual emulsion the dimension of the drops
is expected to be several orders of magnitude smaller than that
considered here. Thus, it is necessary to check whether for an
emulsion with droplets having reasonably small size, the

values of the relative magnetic Bond number are reasonably
large for the intensity of the magnetic field that are in the limit
of low fields intensity. Thus, considering the largest magnetic
field reported in Fig. 8(b), i.e., H � 6 kA=m, and the interfa-
cial tension the value of σ � 10mN=m (cf. [54] and [55]), we
infer that the droplet dimension should be in the range
O 10�4ð Þm to O 10�3ð Þm to obtain the order of magnitude of
the magnetic Bond numbers considered in this work. With a
fluid pair having a smaller interfacial tension, see, for instance,
[47,66], smaller droplet sizes would lead to similar values of
Bom. For instance, Zakinyan and Dikansky [47] reported a
value of the interfacial tension, σ ¼ 10�3 mN=m, for their
system composed by drops of a kerosene-based FF dispersed
in a FH51 aviation oil. They were able to produce significant

FIG. 8. High (a) and low (b) field magnetization curves for the 7 vol. % magnetite (Fe3O4) particles with a mean diameter of 7:2 nm dispersed in glycerol
(μglyc ≃ μ0) determined by [54].

FIG. 9. Deformation of a FF droplet immersed on a nonmagnetizable fluid
as a function of the magnetic Bond number. Comparison between the numer-
ical results of [40] and the experiments of [54].
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displacement of micrometer-sized drops with the application
of relatively low magnetic fields (order of few kA/m or
smaller).

Figure 9 shows the deformation of a FF drop surrounded
by a nonmagnetizable fluid measured as the ratio between
the major and minor axes (refer to the inset). The red
symbols are representative of the experiments of [54], while
the black ones are the simulation carried out by [40]. The
value of the magnetic susceptibility was χ ¼ 0:8903, as
reported by the measurements of [54]. Apart from a small
discrepancy at the low-Bom regime (Bom , 1), which can be
attributed to the aforementioned problem related to the
interface-capturing numerical methodology adopted here, the
two sets of results are in fairly good agreement.
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