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Direct numerical simulations of spatially evolving submerged jets with viscoelastic
FENE-P fluids at high Reynolds numbers are performed to investigate the development
of inertioelastic shear-layer and jet-column instabilities. An analysis of the flow structures,
mean and fluctuating velocities, and spectra of perturbation energy at several positions
of the flow shows that viscoelasticity has a destabilizing effect at the linear region of
perturbation growth but a stabilizing effect at the nonlinear regime. At the linear regime,
shorter waves are destabilized first and as the Weissenberg number Wi is increased this
effect is propagated towards longer waves until most modes become more unstable. The
frequency domain of instability is increased by a factor larger than four for the jet at the
highest Wi. At the nonlinear regime, thin sheets of highly stretched polymers at the shear-
layer region lead to a suppression of the local velocity gradient and to the formation of
additional inflection points in the base flow velocity profile. This is accompanied by lower
rates of perturbation growth and a decrease of the characteristic Strouhal number of the jet
column mode at the end of the potential core by a factor of 1.8 for the highest Wi jet. The
physical mechanisms that explain the observed phenomena are offered but the need for a
nonlinear stability theory that also accounts for nonparallel base flow effects is highlighted.

DOI: 10.1103/PhysRevFluids.8.103301

I. INTRODUCTION

The presence of polymer additives can have a strong influence on the evolution of instabilities
in free shear-layers. Linear stability analyses of temporally evolving mixing-layers and jets reveal
that, in the limit of infinite Reynolds and Weissenberg numbers with the elasticity number kept of
order unity, viscoelasticity is typically stabilizing [1,2]. In this limit condition, viscous diffusion of
momentum and polymer relaxation are neglected. However, spatiotemporal linear analysis under
more general conditions shows a more complex scenario where viscoelasticity can also have a
destabilizing effect on the growth of the perturbations [3,4]. Numerical simulations of mixing-layers
at low Reynolds numbers have shown destabilization at the linear regime but stabilization at
the nonlinear regime [5]. This dual character of viscoelasticity has also been observed in recent
experimental studies of axisymmetric and planar jets with polyethylene solutions [6,7].

The first direct numerical simulations (DNS) of turbulent viscoelastic jets have been performed
only recently by Guimarães et al. (2020) [8], where the focus was on the statistics at the far-field
fully turbulent region of the flow and on the development of a similarity theory for that region, which
was later extended to turbulent wakes with small velocity deficits [9]. Here we perform some new
DNS of spatially evolving submerged jets with viscoelastic fluids in order to study the evolution of
the instabilities at the transition region of the flow. Both linear and nonlinear regions of instability
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growth are analyzed. The goal is to assess whether viscoelasticity has a stabilizing or destabilizing
influence and to characterize the flow features associated with it. Even though some interesting
physics has been recently discovered in the regime of low Reynolds and order unity elasticity
numbers [6,7], the focus here will be in the high-Reynolds-number regime that is typical in industrial
and engineering applications involving dilute polymer solutions, such as turbulent jet cleaning and
cutting operations [10–12], irrigation [13,14], aerial firefighting, turbulent drag reduction in ships
[15,16], pipes [17], and large district heating and cooling systems [18].

After a description of the numerical methods and simulation parameters in Sec. II, the results
are shown in Sec. III, the physical mechanisms of the instability are discussed in Sec. IV, and
conclusions are given in Sec. V.

II. DIRECT NUMERICAL SIMULATIONS

A. Governing equations

The rheology of the long-chain, semidilute polymer solutions is characterized by the finitely
extensible non-linear elastic constitutive model with Peterlin’s approximation, i.e., the FENE-P
model of Bird et al. (1980) [19], in a slightly modified format due to Sureshkumar et al. (1997)
[20]. The momentum equation is given by

∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν[s]∇2u + 1

ρ
∇ · σ[p], (1)

the polymer stress tensor is

σ[p] = ρν[p]

τp
[ f (Ckk )C − I], (2)

and the equation for the evolution of the conformation tensor C is

∂C
∂t

+ u · ∇C = ∇uT · C + C · ∇u − 1

τp
[ f (Ckk )C − I]. (3)

The adopted form of the Peterlin function is f (Ckk ) ≡ (L2 − 3)/(L2 − Ckk ) while the fluid incom-
pressibility condition is imposed by the continuity equation

∇ · u = 0. (4)

The polymer and solvent zero shear-rate viscosities are ν[p] and ν[s], respectively; τp is the polymer
relaxation time; and L is the maximum length of the polymer dumbbells normalized by their
equilibrium radius.

B. Numerical methods

The momentum equation is solved with pseudospectral methods [21], on the normal (y) and
spanwise (z) directions, and a sixth-order compact finite-differences scheme [22] on the streamwise
(x) direction. A schematic of the flow geometry and the directions of the coordinate axes are
displayed in Fig. 1. An explicit third-order Runge-Kutta scheme is used for time marching [23]. The
pressure-velocity coupling is handled by a fractional step method [24]. The method of Vaithianathan
et al. (2006) [25], based on the shock-capturing Kurganov-Tadmor scheme [26], is employed for
the conformation tensor equation. This method does not use any artificial numerical diffusion,
and we verified that it provides second-order accuracy at more than 98% of the points of the
computational domain. More details about the implementation and validation of our code and the
adopted numerical methods can be found at Guimarães et al. (2020) [8].

Inflow and outflow conditions are imposed at the inlet and outlet boundaries of the domain,
respectively. The mean velocity profile at the inlet has a hyperbolic-tangent shape, and the fluctu-
ating component is obtained from a random-number generator, with a prescribed energy spectrum
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FIG. 1. Schematic of the flow geometry and the directions of the coordinate axes: streamwise (x), normal
(y), and spanwise (z) directions. Isosurfaces of vorticity magnitude (||ω||, where the vorticity vector is ω =
∇ × u) of the Newtonian jet are also displayed, to illustrate our simulations. Two-dimensional contours of
||ω|| are shown in Fig. 3, where the origin of the coordinate system is indicated.

characteristic of isotropic turbulence (see Sec. II C). Periodic boundary conditions are imposed at
the boundaries facing the transverse and spanwise directions for velocity and conformation tensor
components. A nonreflective boundary condition is used at the outlet [27]. The details of the outflow
and lateral boundary conditions are given in Appendix A.

C. Physical and computational parameters of the simulations

The velocity field at the inlet is prescribed as the sum of mean and fluctuating components. The
mean components are

ū(x = 0, y) = UJ + U∞
2

+ UJ − U∞
2

tanh

[
h

4�

(
1 − 2|y|

h

)]
, (5)

v̄(x = 0, y) = w̄(x = 0, y) = 0, (6)

where an overbar denotes a statistical mean made along the homogeneous direction z combined with
a temporal average. The origin of the normal coordinate axis (y = 0) is placed at the center of the
jet.

Two different values of the velocity gradient parameter h/� are considered, h/� = 5 and 40,
in order to study jets with thick and thin shear-layers, respectively. The shapes of these profiles
are shown in Fig. 2(a), where only the region y/h � 0 is shown since the profiles are symmetric
with respect to the (x, z) plane. For thin shear-layers (h/� = 40), UJ is the jet issuing velocity,
i.e., Uc(x = 0) = UJ , where Uc(x) = ū(x, y = 0) is the local center-line velocity of the jet. We set
UJ = 1.091 (arbitrary units) for all cases studied here, which gives Uc(x = 0) = 1.091 for jets with
h/� = 40, and Uc(x = 0) = 1.0151 for jets with h/� = 5. For all cases, U∞ is a small coflow
velocity that is equal to 0.091 (arbitrary units) at the inlet. For thin shear-layers (h/� = 40), h is the
slot width of the jet. The same interpretation is used for thick shear-layers (h/� = 5), even though
Fig. 2(a) shows that for those cases ū approaches zero only at y/h ≈ 1 instead of y/h ≈ 0.5.

The length scale � is related to the momentum thickness of the jet θ , which is defined here by
the following equation:

θ =
∫ ∞

−∞

ū − U∞
Uc − U∞

(
1 − ū − U∞

Uc − U∞

)
dy. (7)
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FIG. 2. Transverse profiles of normalized inlet mean velocity (a), first and second normal components of
the conformation tensor at the inlet (b) for jets with thin (h/� = 40) and thick (h/� = 5) shear-layers. The
size of the inlet momentum thickness (multiplied by four and divided by h) of each profile is also indicated in
panel (a).

For jets with h/� = 40, � = 0.5θ0, whereas for jets with h/� = 40, � ≈ 0.587θ0, where θ0 =
θ (x = 0). Figure 2(a) displays a schematic of the momentum thickness that shows that θ0 scales
with the thickness of the shear-layer, with a proportionality factor of approximately four.

The fluctuating components of velocity are described by a broadband white noise, without
any deterministic forcing, that has an energy spectrum characteristic of isotropic turbulence. The
procedure to generate the fluctuating components at the inlet starts in Fourier space and makes use
of the following expression:

û′ = v̂′ = ŵ′ ∼ (1 + i)κs/2 exp

[
− (s + 2)

4

(
κ

κp

)2]
, (8)

where i = √−1 is the imaginary unit, κ = (κ2
y + κ2

z )1/2 is the wave-number norm in the (y, z) plane,
the upper hat indicates a variable in Fourier space, and a prime indicates a fluctuating component
[e.g., the instantaneous streamwise velocity is u(x, y, z, t ) = ū(x, y) + u′(x, y, z, t )]. The coefficient
that converts the proportionality sign into an equality is obtained from a pseudorandom number
generator, and its value varies for each time step. The time-averaged turbulent kinetic energy
spectrum that results from Eq. (8) is

E (κ ) ∼ κs exp

[−s

2
(κ/κp)2

]
. (9)

We set s = 4, corresponding to a Batchelor spectrum at the infrared region [28], and the peak
wave number κp is chosen according to the characteristic frequency of the jet shear-layer mode
of instability, as in Stanley et al. (2002) [29], described below.

Defining the peak temporal frequency of the inlet noise by fin = [(UJ + U∞)/2]κp/(2π ), the
Strouhal number of the inlet noise by Stin = 2 fin�/(UJ + U∞) = κp�/(2π ), and the Strouhal
number of the instabilities by St = 2 finθ0/(UJ + U∞) = κpθ0/(2π ), we have St = 2Stin for thin
shear-layers. We compared the results from two Newtonian DNS that use different values of Stin:
(i) Stin = St/2 = 0.033, corresponding to twice the frequency of the most unstable mode, and (ii)
Stin = St/2 = 0.160, a frequency that is four times higher than the neutral frequency, i.e., that is
associated with a damped mode. For Stin = 0.033, nonlinear saturation of the fluctuating velocity
sets in earlier, about 1.5h before the location corresponding to the DNS with Stin = 0.160, but the
growth rates of the instability modes at the linear region of perturbation growth are not affected
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TABLE I. Physical parameters of the DNS: inlet Reynolds number [Re = (UJ − U∞)h/ν[s]], inlet Weis-
senberg number [Wi = τp(UJ − U∞)/h], inlet elasticity number [El = (1 − β )Wi/Re], Strouhal number of
the inlet noise [Stin = κp�/(2π )], inlet condition used for the conformation tensor (Couette flow solution
or isotropic tensor), inlet mean velocity parameter (h/�), grid spacing normalized by the slot width of the
jet (�x/h), grid spacing normalized by the Kolmogorov length scale (�x/η, the maximum value is shown),
dimensions of the computational domain on each spatial direction (Lx , Ly, and Lz) normalized by h, and number
of grid points on each spatial direction (nx , ny, and nz).

Re Wi El Stin Cin
h

�

�x

h
max|�x

η
| Lx

h
× Ly

h
× Lz

h
nx × ny × nz

1200 0 0 0.160 NA 30 0.07 2.9 18 × 18 × 4.5 256 × 256 × 64
1200 0 0 0.033 NA 30 0.07 3.7 18 × 18 × 4.5 256 × 256 × 64
1500 0 0 0.033 NA 40 0.02 1.5 18 × 18 × 4.5 768 × 768 × 192
1500 1 1.3 × 10−4 0.033 Couette 40 0.02 1.2 18 × 18 × 4.5 768 × 768 × 192
1500 2 2.7 × 10−4 0.033 Couette 40 0.02 1.1 18 × 18 × 4.5 768 × 768 × 192
1500 4 5.3 × 10−4 0.033 Couette 40 0.02 0.9 18 × 18 × 4.5 768 × 768 × 192
1500 4 5.3 × 10−4 0.033 Isotropic 40 0.02 1.0 18 × 18 × 4.5 768 × 768 × 192
1500 0 0 0.033 NA 5 0.03 1.3 48 × 48 × 9 1536 × 1536 × 288
1500 4 5.3 × 10−4 0.033 Couette 5 0.03 1.1 36 × 36 × 9 1152 × 1152 × 288
1500 8 10.7 × 10−4 0.033 Couette 5 0.03 1.0 48 × 48 × 9 1536 × 1536 × 288

by the value of Stin. In particular, the Strouhal number of the most unstable mode that is obtained
from our Newtonian DNS results is always St = 0.033, also for the case where the inlet noise is set
with a κp that corresponds to Stin = 0.160 (see the inset of Fig. 9 in Sec. III), in agreement with
experiments and linear stability calculations [30–33], attesting that the adopted broadband white
noise allows for a natural transition of the jet, which is the same conclusion of previous works that
make use of this approach [29,34–36].

Using a convolution step function [34], the maximum amplitude of velocity fluctuations at the
inlet is set to 1% of UJ , at the lower and upper shear-layers, at −0.8 � y/h � −0.2 and 0.2 � y/h �
0.8, respectively, and to 0.25% of UJ at the center of the jet, at −0.2 < y/h < 0.2. Zero fluctuations
are set elsewhere, i.e., at the free stream region.

The inlet Reynolds number is Re = (UJ − U∞)h/ν[s], the ratio of zero shear rate viscosities is
β = ν[s]/(ν[s] + ν[p] ), the inlet Weissenberg number is defined as Wi = τp(UJ − U∞)/h and the
elasticity number is given by El = (1 − β )Wi/Re. We set β = 0.8 and L = 200 for all viscoelastic
DNS. A summary of the physical parameters of the DNS is displayed in Table I, where Cin indicates
the type of the inlet condition used for the conformation tensor (see below). In our DNS we increase
the level of viscoelasticity by increasing the inlet Weissenberg number Wi.

In order to simulate distinct operational conditions that might be encountered in applications, we
use two different inlet conditions for the conformation tensor. The fully developed laminar Couette
flow solution of the FENE-P fluid [37], considering the local value of the mean velocity gradient
at each grid point, and a uniform isotropic conformation tensor, i.e., Cin = I. The FENE-P Couette
flow solution is obtained by inserting Eqs. (5) and (6) into Eq. (3), imposing zero derivatives in
the streamwise and spanwise directions (∂/∂x = ∂/∂z = 0) and a steady-state condition (∂/∂t = 0)
with zero fluctuating components. This solution was derived for the first time by Sureshkumar et al.
(1997) [20], it is a particular case of more general expressions obtained in Pinho et al. (2008) [37]
and has been adopted in linear stability analysis of viscoelastic jets and mixing-layers [3,4].

For thin shear-layer jets, at the inlet centerline (x/h = 0, y/h = 0) where the mean velocity
gradient is zero, the isotropic and Couette flow conditions give the same result, e.g., Cii = 3, but
very different levels of polymer stretching are obtained at the shear-layer region. For example, for
Wi = 4 and h/� = 40, the Couette flow solution gives Cii = 2616 at y/h = 0.5 while the isotropic
condition gives Cii = 3 everywhere. Figure 2(b) displays transverse profiles of Cxx and Cyy = Czz of
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the Couette flow solution, for viscoelastic jets with thin and thick shear-layers, showing the influence
of the velocity gradient parameter h/�. At the shear-layer, the polymers are highly stretched on
the x direction but slightly compressed on the y and z directions. Throughout the text, when we
do not state explicitly which inlet condition is used for C, the Couette flow solution is the one in
consideration.

For jets with Re = 1500 and h/� = 40, the number of collocated grid points on each spatial
direction of the uniform mesh is nx = 768, ny = 768, and nz = 192 with corresponding domain
sizes given by Lx = Ly = 18h and Lz = 4.5h. The two Newtonian DNS with Re = 1200 (see
Table I) use nx = 256, ny = 256, and nz = 64 and the same domain sizes of the other DNS. They
were performed to study the influence of the inlet noise on the transition of the jet and the main
conclusions were already discussed above. Thus, the results of these two Newtonian DNS will not
be discussed further; only a brief reference will be made in Sec. III. For jets with Re = 1500 and
h/� = 5, two DNS with nx = ny = 1536, nz = 288, Lx = Ly = 48h, and Lz = 9h and one DNS
with nx = ny = 1152, nz = 288, Lx = Ly = 36h, and Lz = 9h were performed. Our domain size
validation study described in Appendix C demonstrates that the computational domains of our DNS
are sufficiently large to allow the normal flow development of the jet. Appendix D shows that our
simulations are sufficiently large to reach the fully-turbulent far-field and therefore cover the whole
transition region.

The grid resolution can be quantified by the ratio of the grid spacing and the slot width,
�x/h, and also by the ratio of the grid spacing and the Kolmogorov length scale, �x/η, where
η = (ν[s]3

/ε[s] )1/4, ε[s] = 2ν[s]S′
i jS

′
i j is the mean rate of dissipation of turbulent kinetic energy of

the solvent, and S′
i j = (∂u′

i/∂x j + ∂u′
j/∂xi )/2 is the fluctuating rate-of-strain tensor. The values of

�x/h and max|�x/η| from all simulations are listed in Table I, where max|�x/η| is the maximum
value of �x/η, i.e., �x/η evaluated at the position with the poorest resolution. The grid resolution
of our DNS with Re = 1500 is considerably finer than what is typically used in DNS of spatially
evolving Newtonian jets with spectral/compact accuracy [29,34–36], and the excellent level of
qualitative and quantitative agreement between our DNS and experimental results, described later
in Sec. III, confirms that our simulations are well resolved. This is demonstrated with an extra level
of confidence in our grid resolution study, presented in Appendix B.

III. VISCOELASTIC JET INSTABILITIES

This section describes the influence of viscoelasticity on inertioelastic shear-layer and jet-column
instabilities at both linear and nonlinear regimes of perturbation growth. This is done in physical
space in Sec. III A and in Fourier space in Sec. III B. Section III C discusses the divergence of
the base state, which becomes significant for large Wi jets, and Sec. III D reports and explains the
differences that exist between jets with thin and thick shear-layers at the inlet.

At some instances we compare our DNS results of planar jets with experimental and theoretical
results from round jets. This is justified for thin shear-layers, where the thickness of the shear-layer
is much smaller than the radius of the jet and curvature effects are negligible [38,39], except for
very long waves. However, for thick shear-layer jets, such as those discussed in Sec. III D, some
comparisons between the round and planar configurations can still be made but only qualitatively.

A. Vorticity, mean, and perturbation velocities in physical space

Two-dimensional contours of instantaneous vorticity magnitude at fixed z slices are shown in
Fig. 3, where as before the vorticity ω is defined in the classical way, i.e., ω = ∇ × u. It is instructive
to analyze these results in parallel with those of Fig. 4, showing the streamwise evolution of the root-

mean-squared (rms) velocity fluctuation
√

u′2 normalized by the mean velocity difference Uc − U∞,
both evaluated at the jet centerline y = 0, and of [(Uc − U∞)/(UJ − U∞)]−2, i.e., the centerline
mean velocity normalized according to the self-similarity theory of the far-field [8]. Videos of the
flows corresponding to Fig. 3(a) and 3(b) are provided as Supplemental Material [40].
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FIG. 3. Two-dimensional contours of instantaneous vorticity magnitude at the middle plane (z/h = 0) for
(a) Newtonian, and (b) viscoelastic jet with Wi = 4. For the viscoelastic jet, isolines of instantaneous polymer
stretching Cii = 2000 are also shown.

Considering the Newtonian jet first, it can be seen that at 0 < x/h � 4.5 velocity fluctuations
are much smaller than the mean velocity [Fig. 4(a)] and the vorticity is concentrated in flat
sheet structures at the lower (y/h = −0.5) and upper (y/h = 0.5) shear-layers [Fig. 3(a)]. This is
characteristic of a linear region of instability growth. At x/h ≈ 4.5, the shear-layers start to roll-up
[Fig. 3(a)] and the velocity fluctuations grow at a considerably larger rate [Fig. 4(a)], indicating
nonlinear growth of instabilities at x/h > 4.5, as will be confirmed later in Sec. III B. The end of
the potential core is at x/h ≈ 8.5, where the centerline mean velocity starts to decay [Fig. 4(b)]

and at x/h ≈ 15 there is a peak in the
√

u′2/(Uc − U∞) profile and the flow is very disorganized,
displaying a wide range of scales that is characteristic of fully developed turbulence.

From Figs. 3 and 4 it is clear that viscoelasticity has a strong influence on the dynamics described
above. For the case with the larger Weissenberg number (Wi = 4), the roll-up of the shear-layers
starts earlier than the Newtonian case, at x/h ≈ 3.5 (Fig. 3), indicating a destabilizing viscoelastic
effect at the linear region. This destabilizing effect at the linear regime is clearly demonstrated in

FIG. 4. Streamwise evolution of normalized rms velocity along the centerline (a) and centerline mean
velocity difference (b). The inset in panel (a) shows a zoom at 0 � x/h � 3.
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the inset of Fig. 4(a), where a zoom at 0 � x/h � 3 shows that as Wi is increased the fluctuating
velocities start growing earlier and at a faster rate in comparison to the Newtonian case.

For viscoelastic jets at high Wi, the roll-up of the viscoelastic shear-layers is considerably
different from that described by the Newtonian Kelvin-Helmholtz mechanism (Fig. 3). At each
shear-layer at y/h = −0.5 and y/h = 0.5 we can see the presence of two vortex sheets, i.e., in
comparison to the Newtonian case additional vortex sheets are formed by viscoelasticity. At each
shear-layer, the vortex sheets initially resemble sinusoids with a phase shift of π . This can be seen
at Fig. 3(b) at 3.5 � x/h � 7. Further away the sheets do not roll-up completely but are stretched
in the direction of the principal strain and become flatter until the final merging of the upper and
lower shear-layers at x/h ≈ 11. This indicates a stabilizing effect of viscoelasticity at the nonlinear
region. Indeed, at 4 � x/h � 10 it can be seen that the growth rates of the velocity fluctuation for
flows with larger Wi are considerably smaller than that for the Newtonian jet [Fig. 4(a)]. Figure 3
also shows isolines of constant Cii, indicating that structures of highly stretched polymers are
organized as thin sheets that are nearly parallel and concentrated at the vicinity of the vortical
sheets.

For both Newtonian and viscoelastic jets, at x/h � 6.5 the vorticity structures at the upper and
lower shear-layers present oscillations that are approximately symmetric with respect to the flow
centerline (Fig. 3 and videos at the Supplemental Material), indicating the dominance of the varicose
shear-layer mode of instability at this region. This is not surprising since we are simulating cases
where the inlet velocity profile is flat and the shear-layers are thin and is consistent with results
from linear stability analysis of Newtonian [41] and viscoelastic [4] planar jets. Dominance of the
shear-layer varicose mode at this initial region is typically observed in experiments involving short
nozzles with high contraction ratios [42–45].

Antisymmetric undulations of the vorticity structures can be observed for the viscoelastic jet at
Wi = 4 and x/h � 10 (Fig. 3 and videos at the Supplemental Material), indicating that the sinuous
jet column mode of instability is the dominant one at these farther locations, consistently with the
experiments of Yamani et al. (2022) [7]. This shift from varicose to sinuous as the flow evolves
downstream is associated with the evolution of the mean velocity profile, from nearly top-hat at
the jet orifice to nearly parabolic downstream the end of the potential core. However, the sinuous
undulations observed here are more pronounced for the viscoelastic jet than for the Newtonian jet,
suggesting that the stabilizing effect of viscoelasticity at the nonlinear regime also contributes to
the appearance of the sinuous instability. This result is the opposite of that obtained from temporal
linear stability analysis of Oldroyd-B fluids at order unit elasticity (El ∼ 1) by Rallison and Hinch
[2], who predicted that the sinuous mode is more stabilized than the varicose mode. Nevertheless,
our result does not disproof their theoretical prediction, since here we are concerned with the more
realistic case of low elasticity (El ∼ 10−4), and at x/h � 10 the perturbation velocity is too large
for any meaningful comparison with linear theory.

The ||ω|| contours discussed above are useful for the analysis of the morphology of the vorticity
structures, but they do not contain information about the direction of the vorticity vector. At
the transitioning shear-layers, this can be obtained from the larger ω component which is the
spanwise vorticity ωz. For the Newtonian jet, two-dimensional contours of ωz do not add much
to the description and merely show that ω points at opposite directions at the lower and upper
shear-layers [Fig. 5(a)]. However, a very peculiar distribution appears at the disturbed shear-layers
of the viscoelastic jet at higher Wi [Fig. 5(b)]. In this case, it can be seen that at the upper shear-layer
the larger vorticity sheets with positive ωz (yellow) are surrounded by two additional sheets with
negative ωz (blue), forming a three-layered structure that is very thin and therefore is associated
with intense vorticity gradients. The same is true for the lower shear-layer, but the signs of ωz are
reversed.

Since ωz = ∂v/∂x − ∂u/∂y and on average |∂u/∂y| 	 |∂v/∂x|, the results reported above in-
dicate that the profiles of ∂u/∂y will be very different for the viscoelastic jet at high Wi. The
perturbations are very sensitive to the shape of the base flow ū [39], and it is anticipated that this
would have a large impact on their evolution.
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FIG. 5. Two-dimensional contours of instantaneous spanwise vorticity ωz for Newtonian (a) and viscoelas-
tic jet (b). The same region of the domain is shown in both cases, and a zoom is applied at the nonlinear region
of the transitioning shear-layers for maximum clarity. Panel (b) is enlarged so that the very fine three-layered
sheet structure of the viscoelastic shear-layer (absent in the Newtonian case) can be observed more clearly.

In order to verify this, we analyze the transverse profiles of normalized mean velocity difference
ū+ = (ū − U∞)/(Uc − U∞) and their y derivatives for jets at different Wi, displayed in Fig. 6 for
x/h = 6. At high Weissenberg numbers, Fig. 6 confirms that viscoelasticity causes a significant
distortion of the mean velocity profile. For the Newtonian jet, a local minimum on the velocity
derivative corresponding to an inflection point in the velocity profile is located at y/δ0.5 ≈ 0.95,
where δ0.5 = δ0.5(x) is the half-width of the jet, defined in the classical way by ū(x, y = δ0.5(x)) −
U∞ = 0.5[Uc(x) − U∞]. It is known that this inflection point on the profile gives origin to the shear-
layer instability [46]. For viscoelastic jets, the influence of increasing Wi is concentrated on the
shear-layer 0.7 � y/δ0.5 � 1.3, where the absolute value of the velocity gradients are higher and
thus the polymer chains are more stretched. For the viscoelastic jet at higher Wi a strong attenuation
of the velocity gradient caused by viscoelasticity gives rise to two additional inflection points on the
mean velocity profile that correspond to two new local minima, at y/δ0.5 ≈ 0.78 and y/δ0.5 ≈ 1.23,
with the original inflection point at y/δ0.5 ≈ 1 becoming a local maximum velocity gradient. This
is consistent with the double sheet structure that was observed at the lower and upper shear-layers,

FIG. 6. Transverse profiles at x/h = 6: (a) normalized mean velocity and (b) normalized mean velocity
derivative. ū+ = (ū − U∞)/(Uc − U∞) and y+ = y/δ0.5. The inset in panel (b) shows ∂ ū+/∂y+ versus y+ in the
fully turbulent far-field, at x/h = 16.
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FIG. 7. Normalized spectra of perturbation energy at several x/h stations, y/h = 0.5 and z/h = 0 (middle
plane): (a) Newtonian jet and (b) viscoelastic jet with Wi = 2.

when the vorticity contours were analyzed in Figs. 3(b) and 5(b), and will be crucial for the nonlinear
stabilization mechanism proposed later in Sec. IV.

At the fully turbulent far-field, at x/h � 15, ū+ is very similar for Newtonian and viscoelastic jets
[cf. inset of Fig. 6(b)], indicating enhanced flow divergence for viscoelastic jets, a topic that will be
further investigated in Sec. III C. The attenuation of the velocity gradient caused by viscoelasticity
is less intense for the DNS that uses the isotropic inlet condition for C (Fig. 6). This is so, because,
at the near field, the polymers are less stretched when the isotropic inlet condition is used, especially
at the shear-layer, resulting in a smaller back-reaction polymer force. For example, for Wi = 4, the
jet that uses the Couette flow inlet condition for C has Cii(x/h = 6, y/δ0.5 = 1) ≈ 700, while the
one that uses the isotropic inlet condition has Cii(x/h = 6, y/δ0.5 = 1) ≈ 360 (not shown).

B. Perturbation velocity in Fourier space

In order to analyze the growth of different instability modes in more detail we consider the
temporal Fourier transform of streamwise velocity fluctuations û and its complex conjugate û∗ at
different locations of the flow. Several spectra of perturbation energy ûû∗ are displayed in Fig. 7,
plotted against the nondimensional frequency or Strouhal number St = 2 f θ0/(UJ + U∞). These
were collected at the upper shear-layer y/h = 0.5, at the middle plane z = 0, and at five different x/h
stations that correspond approximately to the linear region of instability growth of the Newtonian
jet. At the inlet (x = 0) the spectra are very broad and the kinetic energy of perturbation is not
concentrated in any particular mode, i.e., we have conditions that are characteristic of a natural jet
without periodic forcing. For the Newtonian jet [Fig. 7(a)], all modes with St � 0.08 have already
decayed at x/h = 1.1 and analyzing the remaining spectra it is clear that the fastest growing mode
is that associated with a Strouhal number of St ≈ 0.03, as a prominent peak appears for St ≈ 0.03
near the end of the linear region (x/h = 4.5). This value of the Strouhal number corresponds to
the roll-up frequency of the Kelvin-Helmholtz instability and is a well-known result from linear
stability theory and experiments [30–33].

Comparing Figs. 7(a) and 7(b) it can be seen that the polymers strongly influence the evolution
of the spectrum of perturbation energy. The spectra are broader for the viscoelastic case and no
distinctive single peak is observed as for the Newtonian case. In contrast, several peaks appear
at different frequencies. Additionally, there are several viscoelastic modes with St > 0.08 that
grow early on instead of immediately decaying as in the Newtonian jet. This destabilization
of higher frequency modes (short waves) for flows at low El is in agreement with the earlier
roll-up of the viscoelastic shear-layer, in comparison to the Newtonian case, that has been de-
scribed in the paragraphs above. It has also been observed in experiments of a mixing-layer
with polyethylene oxide (PEO) [47], DNS of temporally evolving mixing-layers of FENE-P flu-
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FIG. 8. Streamwise evolution of the logarithm of the normalized perturbation energy of disturbances
associated with different Strouhal numbers.

ids [5], and by temporal dynamic mode decomposition analysis of experimental data of planar
jets with PEO [7], even though these earlier works were conducted at more moderate Reynolds
numbers.

A quantity that measures the perturbation kinetic energy contained in each instability mode, that
is useful for analyzing their evolution, is given by

E (x; St) =
∫ ∞

−∞

ûû∗

θ0U 2
J

dy. (10)

For spatially evolving two-dimensional disturbances with the form

û = φ(y) exp[i(αrx − βrt ) − αix], (11)

where βr = 2π f is the angular frequency, αr is the wave number, i = √−1 is the imaginary
unit, and φ(y) is the amplitude of oscillation, simple algebraic manipulations show that the
nondimensional growth rate −αiθ0 can be obtained from E (x; St) using the following formula
[31,32,48]:

−αiθ0 = θ0

2h

d[ln(E )]

d (x/h)
. (12)

Equation (11) is a solution of the instability problem at the linear region, for both Newtonian
[30–32,48] and viscoelastic fluids [1–5], but a formula similar to (12) has also been used to quantify
the growth rate at the nonlinear region [49].

The streamwise evolution of ln E is shown in Fig. 8 for four instability modes that for a
Newtonian shear-layer at the linear region correspond to a growing mode with St = 0.020, the
fastest growing mode St = 0.033, the neutral mode St = 0.080, and a decaying or damped mode
St = 0.120. For the Newtonian jet all modes show a linear region at 0.5 � x/h � 3.5. The curve of
the most unstable mode with St = 0.033 starts to bend at x/h ≈ 4.5, where the shear-layer starts to
roll up leading to a nonlinear evolution of perturbations and reaches a plateau at x/h ≈ 7. In contrast,
the viscoelastic cases at higher Wi reach the plateau of the perturbation energy earlier so that the

103301-11



GUIMARÃES, PINHO, AND DA SILVA

FIG. 9. Normalized growth rate of instabilities at the linear region for several instability modes. Some
results from experiments and linear stability theory, from the literature, are also shown for comparison with
the Newtonian case. The inset compares results from two Newtonian DNS that use different values of the inlet
noise parameter Stin. R = (Uc − U∞)/(Uc + U∞).

initial linear region is shorter. Additionally, at the linear region viscoelasticity clearly destabilizes
the shorter waves with St = 0.080 and St = 0.120. However, at the nonlinear region (4.5 � x/h �
12) the viscoelastic curves with St = 0.080 and St = 0.120 grow slower than the Newtonian
curves, showing now a stabilizing viscoelastic effect in agreement with the results discussed
before.

We have calculated the slopes of the straight lines that best fit the ln E curves at 0.5 � x/h �
2.5 and implemented formula (12) to calculate the values of the growth rates of several modes of
instability at the linear region, similarly to previous experimental works of Newtonian shear-layers
[31,32,48]. The results are displayed in Fig. 9, together with some data from experiments and linear
stability analysis of the Newtonian shear-layer [31–33,50]. The adopted normalization is due to
Monkewitz and Huerre [33] and brings the curves for shear-layers with large and small velocity
differences to the same scale. For the Newtonian case, good agreement is obtained between our
numerical results and those from experiments and linear theory.

The destabilizing effect of the polymers at the linear region is clear from Fig. 9. Destabilization
occurs for shorter waves first (larger St) and as Wi is increased viscoelasticity contaminates modes
with lower values of St until most of the modes become more unstable at the highest Wi in com-
parison to the Newtonian case. For example, at St = 0.033 we have −αiθ (Uc + U∞)/(Uc − U∞) =
0.093 and 0.092 for Wi = 0 and 4, respectively. However, at St = 0.08, where the Newtonian growth
rate is close to zero (−αiθ (Uc + U∞)/(Uc − U∞) = 0.009), we obtain −αiθ (Uc + U∞)/(Uc −
U∞) = 0.038 for Wi = 1 and 0.061 for Wi = 2 and 4. Although the neutral mode of the Newtonian
jet is at St ≈ 0.086, those of viscoelastic jets with Wi = 1 and Wi = 2 or 4 are at much larger
Strouhal numbers at St ≈ 0.22 and St ≈ 0.35, respectively (not shown). As mentioned earlier, these
results are consistent with previous numerical and experimental works [5,7,47].

The viscoelastic destabilization is more intense for jets that use the Couette flow solution as the
inlet condition for C, in comparison to the one that uses the isotropic inlet condition. As mentioned
earlier, this is due to the different levels of polymer stretching that are obtained with the different
inlet conditions.

The speed of propagation of the different instability modes, i.e., the wave speed or phase velocity
Cph, can be calculated from the downstream evolution of the phase angle distribution ϕ. First, the
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FIG. 10. Streamwise variation of the phase angle, at y/h = 0.5, for instabilities with different Strouhal
numbers.

wave number is obtained using the following relation:

αr = ∂ϕ

∂x
, (13)

where the phase angle is

ϕ = arg(û). (14)

The phase velocity is by definition the ratio of the angular frequency and the wave number,

Cph = βr

αr
. (15)

The argument of the complex perturbation velocity was calculated using the atan2 Fortran function,
arg(û) = atan2(ûI , ûR), where ûI and ûR are the imaginary and real components of û, respectively,
i.e., û = ûR + iûI , and adding 2π radians for each full turn of the trigonometric circle [51]. When ûR

is positive the atan2 function is just arctan(ûI/ûR), but the general definition is more involving and
is able to calculate the correct quadrant of the trigonometric circle when ûR is nonpositive. Equa-
tion (13) follows from the local linear-instability solution (11), after rewriting it in polar coordinates
and performing algebraic manipulations, and this approach has been adopted in experimental studies
[31,32,42,49–53].

The streamwise evolution of ϕ at the shear-layer is shown at Fig. 10, for instabilities with four
different values of St. A linear variation can be clearly identified, in agreement with linear stability
theory. According to Eq. (13), the slope of the curves gives the wave number αr , and they were
obtained using linear interpolation at 2 � x/h � 4. The phase velocities follow from Eq. (15), and
the results are discussed below.

The values of Cph obtained from our DNS are shown in Fig. 11, together with experimental results
from the literature [31,32,42,50,52,53]. Comparison of Cph with experimental data is a challenging
test for a numerical simulation, and the good level of agreement displayed in Fig. 11 emphasizes
the robustness of our DNS.
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FIG. 11. Wave speeds (phase velocities) evaluated at y/h = 0.5 and normalized by centerline mean velocity
of the jet. Experimental and theoretical results from the literature are also shown for comparison with the
Newtonian DNS. The inset shows the data with the normalization proposed by Monkewitz and Huerre [33].

The phase velocity is particularly sensitive to the base flow parameters h/� and R = (Uc −
U∞)/(Uc + U∞), as demonstrated by linear stability analyses [33,39], whose results are also shown
in Fig. 11. In fact, Cph was predicted for the first time by Batchelor and Gill [38], using temporal
linear stability analysis of a cylindrical vortex sheet, i.e., a plug flow with θ0 = 0. The theoretical
result of Michalke [39], for spatially evolving disturbances to a hyperbolic-tangent profile with
h/� → ∞, is similar to that obtained by Batchelor and Gill [38] and is displayed in Fig. 11. In that
case, the long-waves limit of Cph is equal to the centerline velocity of the jet, and monotonically
decays towards the short-waves plateau at larger St, whose value depends on the amount of coflow
[33]; Cph(St � 0.03) = ū(x, y = δ0.5) ≈ (Uc + U∞)/2 and y = δ0.5 corresponds to a critical layer,
where the phase velocity equals the local mean velocity. For thin shear-layers with large but finite
h/�, Cph initially increases, reaches a local maximum where Cph > Uc, and then decreases towards
the short-waves limit. Bechert and Pfizenmaier [52] used the term “ultrafast wave motion” to
describe these perturbations, since they can travel faster than the maximum mean velocity of the
flow. All these results from linear stability theory are consistent with the experimental and DNS
data.

The phase velocities of viscoelastic jets at different values of Wi are also shown in Fig. 11.
Remarkably, all profiles approximately collapse into the same curve when normalized by the
centerline velocity. This indicates that Cph is invariant with respect to the Weissenberg number,
despite the very different growth rates of perturbations at different Wi.

A quantity that characterizes the instabilities at the nonlinear regime is the Strouhal number of
the plane jet column mode Stδ , which is defined by

Stδ = fpδ0.5

Uc − U∞
, (16)
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FIG. 12. Strouhal number of the jet column mode at x/h = 8.5 and y/δ0.5 = 1 as a function of the inlet
Weissenberg number Wi.

where all quantities are evaluated at the shear-layer (y/δ0.5 = 1), at the end of the potential core, i.e.,
at x/h = 8.5 and fp is the corresponding peak frequency of the fluctuating velocity spectrum. Stδ
corresponds to the nondimensional frequency of the passage of vortical structures at the end of the
potential core and for Newtonian planar jets an approximately universal value exists [44,48,54–59],
which is Stδ = 0.11 ± 0.03. This value compares well with the value calculated from our Newtonian
DNS that is shown in Fig. 12. For viscoelastic jets Stδ is shown to decrease with the Weissenberg
number, and we obtain Stδ = 0.06 for the viscoelastic jet at the higher Weissenberg number (Wi =
4), corresponding to a reduction by a factor near two. This effect is much stronger when the inlet
condition for the conformation tensor is the Couette flow solution: When the isotropic inlet condition
is used, the reduction of Stδ is weak and Stδ = 0.107 for Wi = 4.

C. Flow divergence

The locally parallel base flow assumption that has been adopted in linear stability analysis of
Newtonian [33,39] and viscoelastic [1–4] free shear-layers requires that the changes in the base
state are small over an instability wavelength. To test the accuracy of the assumption we calculate
the wavelength distribution,

λ = 2π

αr
, (17)

and plot transverse profiles of ū, their y derivatives, and the larger conformation tensor component
Cxx at different values of x/λ0.033, where λ0.033 is the wavelength of the most unstable mode.

The λ/h distributions are shown at Fig. 13. The inset of Fig. 13 displays the normalized wave
number αrθ0 obtained from our Newtonian DNS compared to experimental and theoretical results
from the literature [31,51], merely to show that, for this quantity, good agreement is obtained.
The wavelength of the most unstable mode, i.e., that with St = 0.033, is λ0.033 = 1.65h for both
Newtonian and viscoelastic jets. All modes with St � 0.02 have λ < 3h and for these waves at
least one instability wavelength is contained inside the linear region of perturbation growth. Modes
with St � 0.006 have λ > 18h, i.e., their wavelengths are larger than the computational domain size
Lx = 18h, a situation that would also be encountered in experiments due to the finite size of a wind
tunnel or water tank. Nevertheless, our domain size validation study demonstrates that this does not
have an influence on our results (cf. Appendix C).

Transverse profiles of ū(x, y)/UJ and their y derivatives are shown in Figs. 14(a)–14(d), for both
Newtonian and viscoelastic jet with Wi = 4, at five different stations within the potential core:
x/λ0.033 = 1, 2, 3, 4, and 5, corresponding to x/h = 1.65, 3.3, 4.95, 6.6, and 8.25. For Newtonian
jet at the linear region, the change of ū(x, y)/UJ is small over one instability wavelength [Figs. 14(a)
and 14(b)], which validates the local instability approximation. At the nonlinear region, more
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FIG. 13. Wavelength of instabilities at y/h = 0.5. The inset shows the wave-number distribution obtained
from our Newtonian jet DNS compared with experimental and theoretical results from the literature.

pronounced changes are observed, which can be explained by the emergence of larger Reynolds
stresses in that region (cf. Fig. 4).

In contrast, for the viscoelastic jet there are strong distortions of ū(x, y)/UJ over one instability
wavelength at both linear and nonlinear regions of perturbation growth (Figs. 14(c) and 14(d)]. The
suppression of the velocity gradient at the shear-layer—and the appearance of additional inflection
points on the base flow profile—is already visible at x/λ0.033 = 2. This effect is even larger at
x/λ0.033 = 3 but starts loosing its intensity at downstream stations.

FIG. 14. Nondimensional transverse profiles of mean velocity [(a) and (c)], velocity derivative ∂ ũ/∂ ỹ =
(h/UJ )∂ ū/∂y [(b) and (d)], and first normal component of the conformation tensor (e) at five different x stations
within the potential core, for Newtonian and viscoelastic jet with Wi = 4.
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At the linear region, the geometric shape of the transverse profile of Cxx does not change
considerably, but its maximum value decreases by a significant amount over the distance of one
instability wavelength, from max Cxx ≈ 2149 to 1258 at x/λ0.033 = 1 and 2, respectively, indicating
that the polymers are predominantly relaxing in that region. However, the decay rate of max Cxx

is much smaller downstream, e.g., max Cxx ≈ 660 and 637 at x/λ0.033 = 4 and 5, respectively. In
contrast, at x/λ0.033 = 3, 4, and 5, and at y locations such as y/h = 0.25 and 0.75, there is actually
a strong increase on the value of Cxx [Fig. 14(e)]. For example, at y/h = 0.75 we have Cxx = 68,
275, and 440 at x/λ0.033 = 3, 4, and 5, respectively, which means that the polymers are stretching at
these locations, instead of relaxing.

In summary, our results show strong flow divergence for viscoelastic jets at high Wi at both linear
and nonlinear regimes of perturbation growth. Thus, the parallel base flow approximation that has
been adopted in linear stability analysis of viscoelastic mixing-layers and jets [1–4] becomes less
accurate as Wi is increased, and the inclusion of a nonparallel base flow as a refinement of those
theories should be considered in the future.

For Newtonian jets, the effect of a slowly diverging base flow has been successfully incorporated
into linear stability theories, using, e.g., multiple-scales analysis under the WKB approximation [60]
and parabolized stability equations (Gudmundsson and Colonius [61] and references therein). These
approaches ignore nonlinear intermodal interactions, but to some extent the effect of nonlinearities is
implicitly captured by the changes of the base state ū, which is typically obtained from experimental
measurements or DNS. Our DNS database of turbulent viscoelastic jets can be particularly useful
in this framework, not only for providing reference results to compare the theory with but also
because it can provide, in addition to ū, the components of the base-state conformation tensor Ci j and
polymer stresses σi j

[p]—quantities that presently cannot be experimentally measured in turbulent
flows.

D. Jets with thick shear-layers: h/� = 5

The instabilities of the jet are qualitatively different depending on the shape of the base flow
profile. This was shown by Batchelor and Gill [38], who demonstrated using linear analysis of
temporally evolving perturbations that round jets with thick shear-layers can only amplify anti-
symmetrical disturbances—termed sinuous instabilities due to an earlier study by Lord Rayleigh
[46]—in contrast to the symmetrical or varicose instability of thin shear-layer jets discussed in
previous sections. Additionally, the spatiotemporal stability analysis of Ray and Zaki [4] revealed
that viscoelastic effects are substantially weaker when the shear-layers are thick. In order to verify
and complement these previous theoretical results, we performed jet DNS at h/� = 5, i.e., jets with
thick shear-layers (cf. Fig. 2). This section is devoted to these results, focusing on the characteristics
that differ from the thin shear-layer results that were discussed in previous sections.

Two-dimensional contours of instantaneous vorticity magnitude are displayed in Fig. 15 for both
Newtonian and viscoelastic jet at Wi = 8. The upper and lower vorticity sheets are approximately
parallel to the flow direction up to x/h ≈ 15, indicating a much lengthier linear region in comparison
to that of thin shear-layer jets. Not surprisingly, these vorticity sheets are much thicker than those
of thin shear-layers. For both Newtonian and viscoelastic jets, antisymmetrical undulations of the
upper and lower vorticity sheets can be observed at 15 � x/h � 25, confirming that the sinuous
mode of instability is the dominant one for thick shear-layer jets. Additionally, the double vortex
sheet structure observed earlier for the thin shear-layer jet at Wi = 4 [Fig. 3(b)] is absent for
the viscoelastic thick shear-layer jet [Fig. 15(b)], despite the higher value of Wi of the latter,
demonstrating that viscoelastic effects at the transition region are weaker for thick shear-layer jets.
These observations are consistent with linear stability analyses [4,38]. The addition of polymers
appears to have a larger influence on the flow structures predominantly at the fully turbulent region,
at x/h � 30, where a depletion of small-scale eddies is observed.

The streamwise evolution of the normalized perturbation and mean components of velocity are
shown in Fig. 16. At the linear region of perturbation growth, displayed in the inset of Fig. 16(a),
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FIG. 15. Two-dimensional contours of instantaneous vorticity magnitude at the middle plane (z/h = 0) for
(a) Newtonian and (b) viscoelastic jet with Wi = 8. Both jets have thick shear-layers at the inlet, with h/� = 5,
and the sinuous mode of instability is observed.

destabilization is promoted by viscoelasticity only for the jet with Wi = 8, and at the nonlinear
regime at 15 � x/h � 25 the perturbation velocities of the Newtonian and viscoelastic jets are
nearly indistinguishable. This is in contrast with the results reported earlier for thin shear-layer jets
and attest that the influence of the polymers on the instabilities is much weaker for thick shear-layer
jets.

In the fully turbulent region at x/h � 25, however, a different picture is observed and increasing
Wi leads to a suppression of the normalized perturbation velocity [Fig. 16(a)] and a decrease of the
decay rate of the centerline mean velocity [Fig. 16(b)].

The striking differences between thin and thick shear-layer viscoelastic jets at the transition
region can be explained by the different levels of polymer stretching that exist for the two cases,
that results from the different levels of deformation rates imposed by the inlet velocity gradients.
For thick shear-layers, the mean component of the velocity gradient is not large enough to promote
the stretching of polymers at the shear-layer, and the fluctuating component is only significant at the
late stages of transition and at the fully turbulent region. For thin shear-layers, on the other hand, the
mean velocity gradient is substantially larger (cf. Fig. 2) and stretches the polymers considerably.

This is confirmed in Fig. 17, which shows two-dimensional contours of the instantaneous trace
of the conformation tensor for both thick and thin shear-layer jets. In both cases, thin sheets of
highly stretched polymers can be observed, but only at x/h � 25 for thick shear-layers, which in
this case are triggered by the emergence of turbulent deformation rates at this region. For the thin
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FIG. 16. Streamwise evolution of normalized rms velocity along the centerline (a) and centerline mean
velocity difference (b) for jets with thick shear-layers (h/� = 5). The inset in panel (a) shows a zoom at
0 � x/h � 12.5.

shear-layer jet, the polymers are highly stretched not only at the fully turbulent far-field but also at
the transitioning shear-layers, since there the mean velocity gradients are large enough.

These results indicate that the definition of the Weissenberg number that more accurately
quantifies the viscoelastic influence on the transition of jets and mixing-layers is one that is
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FIG. 17. Two-dimensional contours of the trace of the instantaneous conformation tensor at the middle
plane (z/h = 0) for (a) viscoelastic jet with thick shear-layers at the inlet (h/� = 5) and Wi = 8 and (b) vis-
coelastic jet with thin shear-layers at the inlet (h/� = 40) and Wi = 4.
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FIG. 18. Two-dimensional contours of the flow instantaneous classification parameter Q̃ for Newtonian
(a) and viscoelastic jet with Wi = 4 (b) and thin shear-layers (h/� = 40).

based on the actual mean velocity gradient at the inlet, instead of the velocity difference, i.e.,
Wi∂u = τpmax|∂ ū/∂y|. Using this definition for the cases with Wi = 4, we have Wi∂u ≈ 40 and
3.75 for thin and thick shear-layer jets at h/� = 40 and 5, respectively, i.e., the thin shear-layer jet
has a Wi∂u that is one order of magnitude larger, despite the same value of Wi.

IV. PHYSICAL MECHANISMS

This section discusses the physical mechanisms that are involved in the destabilization and
stabilization promoted by the polymers at the different regimes of perturbation growth. First, we
identify the flow kinematics in the jet configuration using a flow classification criterion in Sec. IV A.
The physical mechanisms are discussed in Sec. IV B, where we analyze the interactions between
polymers and flow from an energetic viewpoint. Finally, Sec. IV C investigates whether the concept
of tensioned streamlines can be useful to explain the observed behavior.

A. Flow kinematics

Viscoelastic fluids behave differently depending on the flow kinematics and therefore it is
important to identify which regions of the flow are dominated by shear, extensional, or rotational
motions [62]. Here we adopt a flow classification criterion based on the flow parameter Q̃, defined
by

Q̃ = ||W ||2 − ||S||2
||W ||2 + ||S||2 , (18)

where W = (∇u − ∇uT )/2 and S = (∇u + ∇uT )/2 are the vorticity and rate of strain tensors,
respectively, and the Euclidean norm of a second-order tensor A is ||A|| =

√
tr(A · AT ). This is sim-

ilar to the Q criterion proposed by Hunt et al. [63] for vortex identification but with a normalization
that has been adopted for flow classification. Values in the range −1 � Q̃ < 0 represent regions
dominated by extension, whereas 0 < Q̃ � 1 represents rotational regions and Q̃ = 0 represents
regions that are shear-dominated. These regions are also termed hyperbolic, elliptical, and parabolic,
respectively.

Two-dimensional contours of instantaneous Q̃ are shown in Fig. 18, where for clarity a zoom
is applied in the region given by 3 � x/h � 7.5 and −1.15 � y/h � 1.15. Near the jet centerline,
at −0.2 � y/h � 0.2, and at the free-stream regions, at y/h � 1 and y/h � −1, the flow is ex-
tensional. However, at the upper and lower shear-layers, at 0.2 � y/h � 1 and −1 � y/h � −0.2,
respectively, the flow is more complex and presents mixed kinematics, containing a combination
of rotation, shear, and extension. Spanwise rollers can be clearly observed, and these rollers are
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connected by shear-dominated strips that are oriented on the direction of the maximum mean
shear. For the viscoelastic jet, we verified by a comparison with two-dimensional contours of Cii,
similar to those displayed at Fig. 17(b), that the polymers are considerably stretched nearby the
shear-dominated strips, and Fig. 18(b) shows that this is associated with distortions of the flow
parameter Q̃ on their periphery, where extension-dominated regions also appear. These distortions
can also be observed at the centers of some spanwise rollers.

B. Energy transfers between polymers and flow field

The analysis in Sec. III has shown that in the linear region the polymers are predominately
relaxing [Fig. 14(e)], the perturbation velocity amplifies and the mean velocity neither grows nor
decays (Fig. 4) and is merely distorted by the action of the polymers. This suggests the following
mechanism for the viscoelastic destabilization that is obtained when Wi is increased: The relaxing
polymers release their potential elastic energy, which is partially absorbed by the perturbations,
increasing their kinetic energy.

In order to verify this hypothesis, we perform an inspection of all terms of the evolution
equation of the total perturbation kinetic energy q̄ = (u′2 + v′2 + w′2)/2:

ū · ∇q̄ = − 1

ρ
∇ · p′u′ − 1

2
∇ · u′u′ · u′ + ν[s]∇2q̄ − u′u′ : ∇u − ε[s]

+ 1

ρ
∇ · σ′[p] · u′ − 1

ρ
σ′[p] : ∇u′. (19)

The last two terms on the right-hand side of Eq. (19) represent fluxes of energy between the
perturbations and the polymers and can be positive or negative depending on whether the pertur-
bations are absorbing from or releasing energy to the polymers, respectively. Transverse profiles
of all terms of Eq. (19) at x/h = 3 are shown in Figs. 19(a) and 19(b). For the viscoelastic jet,

∇ · σ′[p] · u′/ρ − σ′[p] : ∇u′/ρ is the largest and therefore dominant term of the equation, and it is
positive everywhere, confirming that the relaxing polymers destabilize the flow by transferring part
of their energy to the perturbations.

The budgets of perturbation kinetic energy are also useful to elucidate the mechanism of
viscoelastic stabilization at the nonlinear region. In this region, the polymers are still relaxing at the
middle of the shear-layer, albeit at a much smaller rate than upstream, but are stretching considerably
on its periphery, as shown by Fig. 14(e) described earlier. It is tempting to think that the polymers in
these regions stretch by absorbing the kinetic energy of the perturbations, therefore stabilizing the
flow. However, our results revealed that this is not the case, and the actual mechanism involves an
indirect action of the polymers on perturbations, discussed below.

As the perturbations travel in the flow direction and enter the nonlinear region, the maximum
value of Cii becomes progressively smaller [Fig. 14(e)], whereas the Reynolds stresses become
progressively larger [Fig. 4(a)] until the production of perturbation by the mean flow, the term
−u′u′ : ∇u of Eq. (19), surpasses the viscoelastic flux and assumes the role of the dominant
production term [Fig. 19(d)]. However, the polymers action on the mean flow causes a significant
distortion of the base flow, resulting in a suppression of the mean velocity gradient ∇u (Fig. 6)
that leads to a reduction of −u′u′ : ∇u. Since −u′u′ : ∇u is now the dominant production term, the
suppression of ∇u causes stabilization of the perturbations, resulting in smaller Reynolds stresses
u′u′ and therefore this stabilization mechanism is self-enhancing. Thus, at the nonlinear region, the
polymers act indirectly on the perturbations, furnishing stabilization by a distortion of the mean
flow field.

Figure 19(d) also shows that in the nonlinear region the viscoelastic flux ∇ · σ′[p] · u′/ρ −
σ′[p] : ∇u′/ρ is actually destabilizing, since it is positive everywhere. Thus, there are two competing
processes at play: (i) a direct one that destabilizes the flow through transfer of energy from
the polymers directly to the perturbations and (ii) an indirect one that stabilizes the flow by a
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FIG. 19. Transverse profiles of the terms appearing in the balance equation of the total perturbation kinetic
energy [Eq. (19)] at two x/h stations, within the linear [(a) and (b)], and nonlinear [(c) and (d)] regions
of perturbation growth. All terms have been normalized by U 3

c /δ0.5. Notice the different scales used at the
ordinates and abscissas of the plots.

distortion of the base state ū that leads to a suppression of the production of turbulent energy.
Overall stabilization or destabilization depends on which process is the dominant one. At the linear
region, the perturbation velocities and Reynolds stresses are too small, and the direct polymer
destabilization (i) dominates. At the nonlinear region, the perturbations become much larger and
the indirect stabilization by a distortion of the base state (ii) is the dominant mechanism.

C. Polymer normal stresses along perturbed streamlines

The concept of tensioned streamlines has been widely used to explain a variety of viscoelastic
flow phenomena. For example, when the mean-flow streamlines are curved the polymers intro-
duce hoop stresses that lead to the rod-climbing effect [64] and to purely elastic instabilities at
low Reynolds numbers [62,65,66]. The base-state streamlines of planar jets are predominately
straight, except at a small portion of the irrotational region due to fluid entrainment. However, the
instantaneous (perturbed) three-dimensional streamlines develop curvature at the shear-layer by the
action of transverse perturbations, which becomes significant at the nonlinear regime of transition
[Fig. 20(a)].

This section analyzes whether the polymer normal stresses along perturbed streamlines play
a role on the linear destabilization or nonlinear stabilization mechanisms discussed in Sec. III.
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FIG. 20. Three-dimensional instantaneous streamlines at the nonlinear upper shear-layer region of (a) New-
tonian jet and (b) viscoelastic jet with Wi = 4. (c) Two-dimensional contours of first normal polymer stress
component along instantaneous streamlines, indicating the regions with polymer tension (σ [p]

uu > 0) and com-
pression (σ [p]

uu < 0) along streamlines. Only the upper part of the jet is shown and as before the centerline is
located at y/h = 0.

The first normal component of the polymer stress tensor projected along the direction of the
instantaneous streamlines, σ

[p]
uu , is calculated using the following expression:

σ [p]
uu = eT · σ[p] · e, (20)

where e is the unitary vector that is everywhere tangent to the streamlines e = (1/||u||)u (||u|| is
the Euclidean norm of u), written in column matrix notation and eT is its transpose.

At the nonlinear regime, the perturbed streamlines of the viscoelastic jet with Wi = 4 are
considerably straighter in comparison to the Newtonian jet streamlines [Fig. 20(a) and 20(b)]. This is
a consequence of the stabilizing effect of the polymers at the nonlinear regime, and possible reasons
for that are (i) extra polymer tension along streamlines (σ [p]

uu > 0) that increase their resistance to
transverse deformations imposed by the perturbations, (ii) weaker perturbations in the viscoelastic
case compared to the Newtonian case, and (iii) a combination of (i) and (ii). However, possibilities
(i) and (iii) are ruled out when we analyze the two-dimensional contours of σ

[p]
uu , shown at Fig. 20(c).

In the nonlinear region, at x/h � 5, the polymers impose both tractive (σ [p]
uu > 0) and compressive

(σ [p]
uu < 0) stresses, and at the nonlinear shear-layer there is a predominance of polymer compression

instead of tension.
These results indicate that the dominant mechanism for viscoelastic stabilization at the nonlinear

regime does not involve the concept of extra tension along perturbed streamlines. The suppression of
the production term of velocity perturbation resulting from the distortion of the base state discussed
in Sec. IV B seems to be the dominant mechanism at the nonlinear region.

On the other hand, at the linear region of perturbation growth the shear-layer is dominated by the
presence of polymer tension along streamlines [σ [p]

uu > 0, see Fig. 20(c) at x/h � 4 and 0.4 � y/h �
0.6], and this is one of the ingredients of the mechanism for viscoelastic destabilization proposed
by Page and Zaki [67], based on nonmodal linear stability analysis, where polymer tension along
mean-flow streamlines provide support for the propagation of amplified vorticity waves.

V. CONCLUSIONS

Highly accurate direct numerical simulations (DNS) of spatially evolving submerged jets with
viscoelastic FENE-P fluids at high Reynolds numbers were performed in order to study the influence
of viscoelasticity on the evolution of the perturbations at the linear and nonlinear regimes of
perturbation growth.
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At the linear regime viscoelasticity is destabilizing; shorter waves destabilize first and as the
Weissenberg number Wi is increased this effect propagates towards longer waves until most modes
become more unstable. The frequency domain of instability of the viscoelastic jet at the highest
Wi extends up to a Strouhal number of St ≈ 0.35, which is much larger than St ≈ 0.08 of the
Newtonian jet.

In contrast, at the nonlinear regime viscoelasticity is stabilizing; the polymers attenuate the
velocity gradients at the shear-layer region originating additional inflection points on the base flow
velocity profile and a resultant double-sheet vortical structure that does not roll-up according to the
Newtonian Kelvin-Helmholtz mechanism. This is accompanied by lower growth rates of fluctuating
velocity at the nonlinear region and by a decrease of the nondimensional passage frequency of
vortices by a factor of 1.8 for the case with the highest Wi. This dual character of the polymers, i.e.,
destabilizing or stabilizing at different regimes, has been documented in recent experimental studies
of round and planar jets with polyethylene oxide [6,7] and illustrates the rich dynamics of polymer
solutions.

Two competing instability mechanisms have been identified and analyzed to explain the observed
results. The first one is destabilizing and involves a direct transfer of elastic energy from the relaxing
polymers to the kinetic energy of perturbations. The second mechanism is an indirect one, where the
polymers promote flow stabilization by causing a distortion of the base-state mean velocity profile
that reduces the production of perturbation energy by the mean flow. Overall flow stabilization
or destabilization depends on which mechanism is the dominant one at each regime; at the linear
regime the former dominates, whereas the latter is dominant at the nonlinear regime.

Viscoelastic jet destabilization at the linear regime has been predicted by spatiotemporal local
linear analysis [4], but a theory that considers nonlinearities of the perturbation equation of the
viscoelastic jet is still lacking. Our results suggest that for thin shear-layers it is more adequate to
include nonparallel base flow effects in the analysis, since strong flow divergence has been observed
both at the linear and nonlinear regions of transition.
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APPENDIX A: LATERAL AND OUTFLOW BOUNDARY CONDITIONS

This Appendix discusses the details of the boundary conditions used at the outlet boundary of
the domain and at the boundaries facing the transverse and spanwise directions.

As mentioned in Sec. II B, periodic boundary conditions are imposed on the y and z directions.
For the boundaries facing the vertical direction they are

u(x, y = −Ly/2, z, t ) = u(x, y = Ly/2, z, t ),

C(x, y = −Ly/2, z, t ) = C(x, y = Ly/2, z, t ), (A1)

while for the boundaries facing the spanwise direction the conditions are given by

u(x, y, z = −Lz/2, t ) = u(x, y, z = Lz/2, t ),

C(x, y, z = −Lz/2, t ) = C(x, y, z = Lz/2, t ). (A2)
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A nonreflective outflow condition is used at the outlet boundary [27]. The starting point is the
following equation:

∂u

∂t
= −Cu(y, z, t )

∂u

∂x
− v

∂u

∂y
− w

∂u

∂z
+ ν[s]

(
∂2

∂y2
+ ∂2

∂z2

)
u + ∂σ

[p]
xy

∂y
+ ∂σ

[p]
xz

∂z
, (A3)

which is similar to the x direction momentum equation except that the streamwise diffusion,
polymer, and pressure gradient terms are absent and the convective velocity Cu = Cu(y, z, t ) ap-
pears in place of u for one of the inertial terms. Equation (A3) is evaluated at the plane located
upstream the outlet plane, to obtain Cu, and the result is extrapolated to the outlet plane. The
streamwise derivative is calculated with a first-order backward differencing scheme, and the y
and z directions are treated with pseudospectral methods, for velocity, and second-order central
finite differences, for the polymer stresses. We also define the maximum and minimum values
that Cu is allowed to have in order to avoid convection velocities that are too large or too
small [27]. They are Cu,min = 0.25[u(x = nx − 2, y, z, t ) + u(x = nx − 1, y, z, t )]/2 and Cu,max =
0.75[u(x = nx − 2, y, z, t ) + u(x = nx − 1, y, z, t )]/2. Finally, after the calculation of the local val-
ues of Cu(y, z, t ), Eq. (A3) is evaluated at the outlet plane, and advanced on time using the same
third-order low-storage Runge-Kutta scheme adopted for Eqs. (1) and (3). No special treatment is
given for the transverse and spanwise components of the velocity at the outlet boundary.

This nonreflective outflow condition guarantees that the vortical structures leave the compu-
tational domain without distortions. This was already shown in previous works [68,69] and can
also be observed here in Figs. 3 and 15. When reflective outflow conditions are used instead of
nonreflective ones used here, there is considerable accumulation of enstrophy (vorticity norm) at
the outlet boundary, as demonstrated by Craske and van Reeuwijk (see Fig. 1 of their paper) [70],
which can cause the loss of numerical stability of the simulation. This effect is clearly absent in our
simulations.

The advection term of the conformation tensor equation is calculated with the Kurganov-Tadmor
scheme [26], which requires special treatment at the outlet boundary in order to avoid terms
that are not available in the computational grid, e.g., to avoid terms at x = Lx + �x. Nearby the
outlet boundary, special care is taken in the calculation of the conformation tensor C±

i, j,k , where
the superscripts ± represent its limiting values at a given point (with indexes i, j and k) when
approached from the right (+) or from the left (−). The calculations are carried out according to the
following expressions:

C+
nx+1/2, j,k = Cnx, j,k, (A4)

C−
nx+1/2, j,k = Cnx, j,k, (A5)

C+
nx−1/2, j,k = Cnx, j,k, (A6)

C−
nx−1/2, j,k = Cnx−1, j,k, (A7)

for the control volumes centered at the outlet boundary corresponding to x = Lx and by

C+
nx−1+1/2, j,k = Cnx, j,k, (A8)

C−
nx−1+1/2, j,k = Cnx−1, j,k + �x

2

(
∂C
∂x

)
nx−1, j,k

, (A9)

C+
nx−1/2, j,k = Cnx, j,k − �x

2

(
∂C
∂x

)
nx, j,k

, (A10)

C−
nx−1−1/2, j,k = Cnx−2, j,k + �x

2

(
∂C
∂x

)
nx−2, j,k

, (A11)
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FIG. 21. Streamwise evolution of normalized statistics from three DNS of Newtonian jets with thin shear-
layers (h/� = 40) that use different number of grid points on each direction, nx , ny, and nz, assessing the
influence of mesh resolution on the results: (a) mean velocity, (b) perturbation velocity, and (c) solvent viscous
dissipation rate.

for the control volumes centered at x = Lx − �x, where the streamwise derivatives are calculated
using first-order backward finite differences.

Equations (A5)–(A8) correspond to the Kurganov-Tadmor formulation in a first-order configura-
tion, whereas Eqs. (A9)–(A11) correspond to the Kurganov-Tadmor formulation in a second-order
configuration and the condition given by Eq. (A4) has been imposed as boundary condition. This
outlet condition allows the exit of the conformation tensor structures without distortion, as can be
seen clearly in Fig. 17.

APPENDIX B: MESH RESOLUTION STUDY

The impact of mesh resolution has been assessed by comparing results of the DNS used in the
main body of the paper and new simulations that use different values of the grid spacing of the
uniform mesh, �x. This was done by changing the number of grid points on each space direction
(nx, ny, and nz), while the remaining parameters were kept unchanged. The results for Newtonian
jets are discussed first, in Appendix B 1, while Appendix B 2 deals with the viscoelastic simulations.
The results are discussed in physical space, but the same conclusions were obtained in Fourier space.

1. Newtonian jets

For jets with thin shear-layers (h/� = 40), three DNS that use nx = ny = 4nz = 384, 768, and
1024 were considered, i.e., we compare the reference DNS of the paper with one DNS whose grid
spacing is coarser by a factor of two, and a finer mesh DNS where the grid spacing is refined by
a factor of 1024/768 ≈ 1.33. For jets with thick shear-layers (h/� = 5), we also consider three
different cases, with nx = ny = 4nz = 384, 768, and 1152, for a fixed domain length of Lx = Ly =
4Lz = 36h, i.e., we compare a simulation with the same resolution of the reference DNS analyzed in
the main text with two additional DNS that use coarser meshes, with grid spacing larger by factors
of 1152/768 = 1.5 and 1152/384 = 3.

The results are displayed in Figs. 21 and 22 for thin and thick shear-layers, respectively. The
figures show the streamwise evolution of the normalized mean and perturbation velocities, and the
mean rate of dissipation of turbulent kinetic energy of the solvent, evaluated at the centerline. For
all cases the results are virtually unaffected by the grid spacing. This is true not only for quantities
characteristic of the large scale flow structures, such as mean and perturbation velocities, but also
for the dissipation ε[s], whose dynamics are predominant at the smallest scales of the flow and
therefore need finer resolution to be captured. Even the simulations with the coarsest mesh exhibit
relative differences that are everywhere smaller than 6%, which shows that the Newtonian reference
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FIG. 22. Streamwise evolution of normalized statistics from three DNS of Newtonian jets with thick shear-
layers (h/� = 5) that use different number of grid points on each direction, nx , ny, and nz, assessing the
influence of mesh resolution on the results: (a) mean velocity, (b) perturbation velocity, and (c) solvent viscous
dissipation rate.

DNS discussed in the body of the paper use grid spacings that are much more refined than actually
needed, by a factor of at least two, for thin shear-layers, and at least three for thick shear-layers.

2. Viscoelastic jets

For viscoelastic jets we conducted simulations with nx = ny = 4nz = 512, 768, and 1024, for
Wi = 2. At the nonlinear region of transition and at the fully turbulent far-field, i.e., at x/h � 4 and
x/h � 14, respectively, the mean and perturbation components of velocity obtained from the three
DNS are virtually the same [Figs. 23(a) and 23(b)], attesting that the grid spacing is sufficiently
small. The same holds true at the linear region of transition, but only for the two DNS with finer
resolutions, whereas the coarser DNS at nx = ny = 4nz = 512 is poorly resolved at the linear region
[inset of Fig. 23(b)]. The dissipation rate obtained from the coarser DNS is slightly underestimated
at the turbulent far-field [Fig. 23(c)] but follows the same qualitative behavior of the finer grid
simulations. The conclusion is that the viscoelastic DNS analyzed in the body of the paper, with
nx = ny = 4nz = 768, is well resolved at all regions of the flow.

This conclusion is corroborated by the inspection of the centerline and maximum absolute
values of the mean conformation tensor components, shown at Fig. 24. The centerline values

FIG. 23. Streamwise evolution of normalized statistics from three DNS of viscoelastic jets with thin shear-
layers (h/� = 40) and Wi = 2 that use different number of grid points on each direction, nx , ny, and nz,
assessing the influence of mesh resolution on the results: (a) mean velocity, (b) perturbation velocity, and
(c) solvent viscous dissipation rate.

103301-27



GUIMARÃES, PINHO, AND DA SILVA

FIG. 24. Streamwise evolution of mean conformation tensor components from three DNS of viscoelastic
jets with thin shear-layers (h/� = 40) and Wi = 2 that use different number of grid points on each direction,
nx , ny, and nz: [(a)–(c)] normal components at the centerline, [(d)–(f)] at the position where their values are
maximum, and (g) maximum shear component.

start to grow only at the fully turbulent region, and there even the DNS with the coarser mesh
(nx = ny = 4nz = 512) gives accurate predictions of the conformation tensor [Fig. 24(a)–24(c)].
This is also true for max|Ci j | [Fig. 24(d)–24(g) at x/h � 12]. However, at the transition region
of the flow the viscoelastic DNS with the coarsest mesh is not able to predict the evolution of
max|Cyy|, max|Czz|, and max|Cxy|, not even qualitatively [Fig. 24(e)–24(g) at 0 � x/h � 12]. Only
the largest and therefore the most important max|Cxx| component is well predicted everywhere by
the coarsest DNS with nx = ny = 4nz = 512 [Fig. 24(d)]. In contrast, the viscoelastic simulation
that uses nx = ny = 4nz = 768 is able to predict the evolution of all components of the conformation

FIG. 25. Streamwise evolution of normalized statistics from five DNS of Newtonian jets with thin shear-
layers (h/� = 40) that use different domain widths Lz/h and nz, at the same mesh resolution: (a) mean velocity;
[(b) and (c)] perturbation velocities, and (d) solvent viscous dissipation rate.
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tensor, at both the transition and fully turbulent regions, attesting once again that this simulation is
well resolved.

APPENDIX C: ASSESSMENT OF THE SIZES Lx, Ly, AND Lz USED IN THE SIMULATIONS

We performed numerical tests to validate the domain sizes used in our DNS. This was done
by comparing results obtained from simulations that use the same grid resolution (fixed �x/h)
and different values of Lx/h, Ly/h, and Lz/h, which is achieved by proportionately changing the
number of grid points in each direction. The tests were conducted for jets with both thin and thick
shear-layers, corresponding to h/� = 40 and 5, respectively. Due to computational constraints, the
tests were done for Newtonian jets only and use grid spacings that are coarser than those used in
the core of this work, since it was shown in Appendix B that those grid resolutions are already
sufficiently fine for Newtonian simulations. The results for h/� = 40 are discussed first, followed
by those obtained from jets with h/� = 5.

In order to verify that the domain width Lz/h of the DNS at Re = 1500 and h/� = 40 is suf-
ficiently large, we performed five new simulations that use nx = ny = 384 and Lx/h = Ly/h = 18,
while the values of the nondimensional domain width are Lz/h = 0.75, 1.5, 3, 4.5, and 12, with
corresponding nz given by nz = 16, 32, 64, 96, and 256, respectively. The results are shown in
Fig. 25. It is clear that the cases with Lz/h = 0.75 and 1.5 are confined on the z direction, since very
large changes on some statistics can be observed when we increase Lz/h from 0.75 to 1.5, and from

1.5 to 3. The effect of confinement on the z direction is to increase the values of
√

u′2/(Uc − U∞) and√
v′2/(Uc − U∞) and to considerably suppress

√
w′2/(Uc − U∞) and ε. For example, at x/h = 15

the nondimensional dissipation rate is εh/UJ = 0.64, 3.03, and 4.48 for the cases with Lz/h = 0.75,

1.5, and 3, respectively, and the normalized spanwise rms velocity is
√

w′2/(Uc − U∞) = 0.28, 1.4,
and 1.95 for the same cases. In contrast, the cases with Lz/h = 4.5 and Lz/h = 12 show virtually
no differences, attesting that the domain width of the DNS analyzed in the body of the paper,
Lz/h = 4.5, is sufficiently large. In fact, even the case with Lz/h = 3 appears to be sufficiently
large.

A similar test was carried out to verify that the computational domain length Lx and height
Ly are sufficiently large by comparing results from simulations that use Lx/h = Ly/h = 18 and
36, with nx = ny = 384 and 768, respectively. The Reynolds number is Re = 1500 and h/� = 40,
while Lz/h = 4.5 and nz = 96 for both DNS. The results are displayed in Fig. 26 and show that
the normalized mean and perturbation velocities and dissipation rate of turbulent kinetic of the

FIG. 26. Streamwise evolution of normalized statistics from two DNS of Newtonian jets with thin shear-
layers (h/� = 40) that use different domain lengths Lx/h and heights Ly/h, at the same mesh resolution:
(a) mean velocity, (b) perturbation velocity, and (c) solvent viscous dissipation rate.
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FIG. 27. Streamwise evolution of normalized statistics from three DNS of Newtonian jets with thick shear-
layers (h/� = 5) that use different domain widths Lz/h and nz at the same mesh resolution: (a) mean velocity,
[(b) and (c)] perturbation velocities, and (d) solvent viscous dissipation rate.

solvent that are obtained from the two simulations are nearly indistinguishable, confirming that
Lx/h = Ly/h = 18 is sufficiently large.

The validation study of the domain sizes was also performed for jets with thick shear-layers,
i.e., jets with h/� = 5. To validate the domain width Lz/h, three simulations that use Lz/h = 4.5,
9, and 18, with corresponding nz given by nz = 96, 192, and 384, respectively, and Lx/h = Ly/h =
36, nx = ny = 768, Re = 1500, were considered. The description of the results, shown in Fig. 27,
follows similar lines of that for thin shear-layers, but for thick shear-layers a larger domain width
Lz/h = 9 has to be used to avoid confinement effects. A possible explanation for this is the fact
that, for h/� = 5, the mean velocity profile at the inlet decays to zero only at y/h ≈ 1, instead of
y/h ≈ 0.5 (see Fig. 2), suggesting that for this case the length scale that better characterizes the jet
slot width is 2h, instead of h.

To validate the domain length Lx and height Ly used for thick shear-layer jets with h/� = 5,
we compared the results of two DNS that use Lx/h = Ly/h = 36 and 48, with nx = ny = 1152 and
1536, respectively, while Lz/h = 9 and nz = 288 for both simulations. The results, displayed in
Fig. 28, demonstrate that Lx/h = Ly/h = 36 is sufficiently large.

FIG. 28. Streamwise evolution of normalized statistics from two DNS of Newtonian jets with thick shear-
layers (h/� = 5) that use different domain lengths Lx/h and heights Ly/h at the same mesh resolution: (a) mean
velocity, (b) perturbation velocity, and (c) solvent viscous dissipation rate.
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FIG. 29. Transverse profiles of the Reynolds stress and mean velocity components at the fully turbulent
far-field region of a Newtonian planar jet normalized as in the classical theory. The results are compared with
numerical and experimental data available from the literature.

APPENDIX D: COMPARISONS BETWEEN EXPERIMENTAL AND DNS DATA AT THE
FULLY-TURBULENT FAR-FIELD

Several comparisons between our DNS data and experimental results from the literature at the
transitioning region of the flow were already presented through the main core of the paper. Figure 29
shows additional comparisons at the fully turbulent far-field region. Transverse profiles of all mean
velocity and Reynolds stress components at x/h = 16 are compared to the experimental data of
Miller and Comings [71], Bradbury [54], Gutmark and Wygnanski [72], Everitt and Robins [55],
Browne and Antonia [73], Ramaprian and Chandrasekhara [74], Gordeyev and Thomas [75], Deo
et al. [76], and to the DNS data of Stanley et al. [29]. Good agreement is observed, attesting that our
simulations are large enough to attain a fully turbulent condition at the far-field and therefore cover
all transition region of the jet.
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