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Abstract: This work presents a detailed numerical investigation on the required development length
(L = L/B) in laminar Newtonian fluid flow in microchannels with rectangular cross section and
different aspect ratios (AR). The advent of new microfluidic technologies shifted the practical
Reynolds numbers (Re) to the range of unitary (and even lower) orders of magnitude, i.e., creeping
flow conditions. Therefore, accurate estimations of L at Re ≤ O(1) are important for microsystem
design. At such low Reynolds numbers, in which inertial forces are less dominant than viscous
forces, flow characteristics become necessarily different from those at the macroscale where Re is
typically much larger. A judicious choice of mesh refinement and adequate numerical methods
allowed obtaining accurate results and a general correlation for estimating L, valid in the ranges
0 ≤ Re ≤ 2000 and 0.1 ≤ AR ≤ 1, thus covering applications in both macro and microfluidics.

Keywords: development length; 3D microchannels; newtonian fluid; effects of Reynolds number
and aspect ratio; numerical methods; finite volume method

1. Introduction

Over the past two decades, many microfluidic systems have been designed and built
for a wide range of applications. These systems are essentially formed by microchan-
nels and chambers whose geometries have a strong influence on the flow characteristics.
Improving the design of such systems requires understanding in detail the fluid flow
characteristics. One of the flow characteristics that still needs to be better quantified is
the microchannel entrance length, required to achieve fully developed flow, which is an
important design parameter especially when it represents a significant fraction of the total
microchannel length. However, entrance effects are typically ignored by researchers who
usually assume the laminar flow to be fully developed [1].

Different cross-sections (e.g., rectangular, trapezoidal, triangular, circular and elliptical)
have been used by numerous researchers with the purpose of exploring the flow behavior
in microchannels [2–9]. One important fact that should be highlighted is that the flow field
in rectangular channels is more complex than in circular channels, because of the additional
dependence on the aspect ratio (AR) of the cross-section, as shown in Figure 1.

When a fluid enters a rectangular channel, the initial uniform velocity profile is
gradually redistributed, accelerating around the centerplane(s) and de-accelerating near
the walls. The fluid will reach a location after which the velocity profile no longer changes
in all directions, and under such conditions the flow is considered to be fully developed.
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Figure 1. Schematic representation of the channel geometry. L is the dimensional development length.

Estimating this entrance length, also called development length, is one of the classical
problems in fluid mechanics with practical use in microsystems design and studies of tran-
sition to turbulence [10]. Here, following the criteria proposed by Shah and London [11],
the normalized development length, L = L/B, is defined as the non-dimensional distance
measured from the entrance of the microchannel, where the velocity profile is uniform,
up to the axial location where the flow reaches 99% of the corresponding fully developed
velocity profile. Many analytical, experimental and numerical works on the development
length problem have been published over the years [11–14].

Most of the previous works proposed a linear functional relation between the develop-
ment length and Reynolds number, L = C1 + C2Re, in which C1 represents the asymptotic
limit in the creeping flow regime, Re→ 0. The proposed values for C1 in the literature are
scattered, with the linear correlation hardly predicting the development length accurately
for low Reynolds number flows (see Table 1).

Table 1. Existing correlations to estimate L = f (Re) for low Re channel flows between parallel plates (Re = ρUL∗/η, with
L∗ representing the channel width). num. and exp. stand for numerical and experimental work, respectively.

Reference Type Geometry L = f (Re) C1 C2 C3 Re Range

Atkinson et al. [15] num. planar channel L = C1 + C2Re 0.625 0.044 - (0, 1000]
Chen [16] num. planar channel L = C1

1+C2 Re + C3Re 0.63 0.035 0.044 (0, 10, 000]

Durst et al. [17] num. planar channel L =
(

CC3
1 + (C2Re)C3

) 1
C3 0.631 0.0442 1.6 (0, 1000]

Lee et al. [18] exp. rectangular channel L = C1
1+C2 Re + C3Re 0.46 0.011 0.013 (0, 100]

Ahmad and Hassan [19] exp. rectangular channel L = C1
1+C2 Re + C3Re 0.55 0.13 0.065 (0, 1000]

Lobo and Chatterjee [20] num. square channel L = C1Re− C2ReC3 0.077 0.096 0.5 (20, 500]

The Reynolds number is defined in this work as Re = ρUB/η and the aspect ratio is
AR = H/B, where B is chosen as the larger side and H as the smaller side of the rectangular
channel (see Figure 1), thus in all cases 0 < AR ≤ 1.

Remark 1. It should be noted that, to present a correlation where the results for the different AR
can be comparable, the dimension B was used as the characteristic length scale in all dimensionless
development lengths. This means that this correlation cannot be compared with the one from Durst
et al. [17], for planar channels, AR → 0. We define Re = ρUB/η and ReH = ρUH/η, thus
ReH = AR× Re. Note also that the Reynolds based on the hydraulic diameter (Dh) is given by
ReDh = ρUDh/η, with Dh = 2BH/(B + H). Therefore, we have ReDh = Re[2H/(B + H)].
For a square duct, B = H and ReDh = Re.

The nonlinear behaviors of the entrance length with respect to the Reynolds number
for pipe and parallel plate flows were first investigated by Atkinson et al. [15], using a
linear combination of creeping flow with boundary-layer type solutions, and Chen [16],
using the integral momentum method to derive approximate solutions for the development
length. The resulting functional relations for L in planar channel flows are listed in Table 1,
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along with the appropriate fitting constants. These nonlinear correlations indicate that
the development length has a rational relationship with the Reynolds number when the
Reynolds number is small, with L approaching a constant value as Re→ 0.

When the Reynolds number increases, the constant and rational portions become less
dominant and the entrance length variation with Re becomes linear.

Sadri and Floryan [21] presented a linear correlation for the relation of L(Re) ranging
from Re = 0.01 to 2200. They relied on a numerical method based on the use of the
stream function and vorticity in the flow governing equations, with a compact fourth-order
finite-difference scheme. The values of their correlation overpredict the entry length at low
Re due to the omission of the upstream flow development and at high values of Re due
to the omission of flow separation effects (they decoupled the upstream and downstream
regions of channel entry). Sadri and Floryan also compared different definitions of the
entry length and studied their influence on the obtained development lengths of the flow.

More recently, Durst et al. [17] improved the linear functional prediction accuracy
by superimposing diffusion and convection together in their model while suggesting a
method to determine the normalized entrance length in laminar pipe and planar channel
flows. It should be noted that, in the works previously cited, 3D effects were neglected.

Recent experimental fluid flow analysis, focused in microchannels with rectangular
and square cross-sections [18,19], also present nonlinear correlations for L as a function
of Re. Their conclusion is that the development lengths were found to be shorter than
classical correlations found in [17]. The explanation for this difference is based on the effect
of the aspect ratio, the different off-center velocity maxima of the inlet profiles and due to
the pre-development of the axial velocity. Recently, Lobo and Chatterjee [20] presented a
numerical study on the development of flow in a square mini-channel, taking into account
the effect of flow oscillations. They also performed a steady-state study and proposed a
correlation for the development length for a square microchannel.

In this work, we present a detailed numerical investigation on the development length
(L = L/B) in rectangular microchannels by considering the laminar regime (including the
limit of creeping flow conditions) and the dependence on the aspect ratio, AR.

It should be remarked that, although some works dedicate particular attention to
the effects of surface roughness, wettability and the presence of gaseous layers (thus
multiphase flows) leading to interfacial slip typical of some specific fluids and particular
conditions [22], here we assume a single phase fluid and that the quality of manufacturing
is sufficiently good to ensure smooth surfaces (as in channels made of PDMS through soft
lithography [23] or made from fused-silica glass [24] so that the no-slip boundary condition
remains valid).

The remainder of this work is organized as follows. In the next section, we present
the governing equations, the numerical method and computational meshes used in the
simulations. In Section 3, we present the results and discussion. The paper ends with the
main conclusions.

2. Governing Equations, Numerical Method and Computational Meshes

To predict the developing flow field within the microchannel, we assume that the
flow is three-dimensional, laminar, isothermal, incompressible and steady. The governing
equations for such conditions are those expressing conservation of mass,

∇ · u = 0, (1)

and the momentum equation,

ρ

(
∂u
∂t

+∇ · uu
)
= −∇p +∇ · τ (2)
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where u is the velocity vector, p is the pressure, t is the time, ρ is the fluid density and τ is
the Newtonian extra stress tensor, defined as:

τ = η
(
∇u +∇uT

)
= 2ηD (3)

with D representing the symmetric rate of strain tensor and η the dynamic viscosity. An
in-house finite-volume method code (FVM) was used in this numerical study (for more
details, see [25,26]). In this code, all diffusive terms are discretized using second-order
central differences, and the advective term in the momentum equation is discretized with
the CUBISTA high-resolution scheme [25], which is formally of third-order accuracy. The
term ∇ · τ in Equation (2) is usually represented as η∇2u in Newtonian fluid flows, but
our numerical method is also applicable for more complex fluids and uses the stress
tensor notation.

The channel geometry is represented in Figure 1. A uniform velocity, U, is imposed at
the inlet (y/B = 0) of the microchannel, where all other velocity components and deviatoric
stresses are set to zero. Vanishing streamwise gradients are applied to all variables at the
outlet plane, except for the pressure, which is linearly extrapolated to the outlet from the
two nearest upstream cells. The classical no-slip condition is imposed at the channel walls.

The iterative time stepping procedure was stopped whenever the L2−norm
(√

∑n
i=1 |xi|2

)
of the residuals vector of the system of equations was less than a tolerance of 10−8, which
corresponds to steady-state flow. The calculations for the creeping flow limiting case,
Re→ 0, were carried out by dropping out the convective term of the momentum equation.

In order to achieve mesh-independent results, the full physical domain depicted in
Figure 1 was discretized into eight different sets of computational domains, with consec-
utively refined meshes. A detailed summary of those meshes is presented in Table 2. To
avoid an effect of the computational domain on the calculated development length, the
microchannel was made significantly longer than the value of L, so that, at the end, the
length of the microchannel domain varied between four and twenty times the calculated
development length. In turn, this depended also on the Reynolds number. The number of
cells (NC) in the axial direction increased with the length of the computational domain,
and a non-uniform distribution of the cells sizes was used, with the ratio of the geometric
progression of the cell spacing equal to 1.04040 for meshes M1, M2, M3, M4, M9, M10, M11
and M12 and 1.02 in meshes M5, M6, M7, M8, M13, M14, M15 and M16.

Table 2. Details of the channel meshes used in the accuracy tests.

LC /B H/B Mesh NC(y× z× x) ∆ymin/B ∆zmin/B

10

0.1 M1 25× 51× 11 0.0660 0.0095
0.25 M2 50× 21× 21 0.0323 0.0119
0.5 M3 50× 21× 21 0.0324 0.0238
1 M4 50× 21× 21 0.0324 0.0476

10

0.1 M5 50× 101× 21 0.0324 0.0048
0.25 M6 100× 41× 41 0.0160 0.0061
0.5 M7 100× 41× 41 0.0160 0.0122
1 M8 100× 41× 41 0.0160 0.0244

100

0.1 M9 96× 51× 11 0.0660 0.0095
0.25 M10 191× 21× 21 0.0324 0.0119
0.5 M11 191× 21× 21 0.0324 0.0238
1 M12 191× 21× 21 0.0324 0.0476

100

0.1 M13 191× 101× 21 0.0323 0.0048
0.25 M14 381× 41× 41 0.0160 0.0061
0.5 M15 381× 41× 41 0.0160 0.0122
1 M16 381× 41× 41 0.0160 0.0244

For the x direction, the cells were uniformly distributed with the total number of
cells, NC, shown in Table 2. The present mesh refinement strategy was designed in order
to provide a consistent estimate of uncertainty of our simulations using Richardson’s
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extrapolation technique [27]. This method allows us to estimate the mesh independent
extrapolated development length (Lext) as Lext = LM4 + (LM4 −LM3)/(2p − 1) based on
our numerical simulations in meshes M3 and M4, for the sake of example, where p is the
order of accuracy of the computations. Assuming a second-order accuracy, p = 2, Lext can
be estimated as Lext = LM4 + (LM4 −LM3)/3.

This technique also allows us to estimate the accuracy of a specific calculation, de-
fined as

eR,Mi =
|Lext −Li|
Lext

. (4)

where Li is the length computed numerically in mesh Mi. In addition to the mesh-
dependency study, another parameter used for estimating the accuracy in this work is the
velocity relative error (eu,Mi ) for mesh Mi, defined as,

eu,Mi =
umax,num − umax,theo

umax,theo
, (5)

where umax,num is the predicted maximum velocity at the outlet plane and umax,theo is the
corresponding fully developed theoretical maximum velocity value computed using the
analytical solution [28].

It should be remarked that preliminary tests with different meshes where conducted
initially, in order to select the most appropriate meshes, without compromising the conver-
gence accuracy and the computational time needed to perform the simulations.

3. Results and Discussion
3.1. The Development Length

In order to estimate L, simulations were conducted from small Re (creeping flow
conditions) up to Re = 2000, covering the laminar regime. Note that for high AR the
simulations were performed for lower values of Re, so that the flow stays laminar (see,
e.g., [18]).

The computational domain size of the microchannel for the 3D flow field is shown in
Table 2. A square section (AR = 1) and three additional rectangular sections with AR = 0.5,
AR = 0.25 and AR = 0.1 were investigated.

The results obtained for Lext considering different AR are presented in Table 3, for a
number of representative Re values. It should be remarked that the errors are below 3.5%,
within the asymptotic range of convergence (see Appendix A, Tables A1–A4 for a detailed
study on the error for the different meshes and AR).

The values of Lext in simulations up to Re = 20, 100, 500 and 2000 performed in meshes
M1–M4, M5–M8, M9–M12 and M13–M16, respectively, are shown to be independent of
the length of the computational domain, as observed in the values of Lext presented in
Tables A1–A4.

The data shown in Table 3 can be better understood by looking at Figure 2. A decrease
of the development length with the decrease of AR is observed for the whole range of Re
considered. For creeping flow, we note a more pronounced decrease of L as AR deviates
from AR = 1. For low Re, the difference in the development length for the different
AR is less significant when compared with the results obtained for high Re. For high Re,
convection starts to play an important role, and, to understand this flow behavior, the local
velocity profiles must be analyzed.

Note that we also compare our results with the experimental data of Lee et al. [18]
for AR = 0.4 and 0.38. The experimental results are qualitatively in agreement with our
numerical predictions.
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Table 3. Values of Lext for different Re and AR.

Re
Lext

AR = 0.1 AR = 0.25 AR = 0.5 AR = 1

0.001 0.3945 0.5184 0.5820 0.6907
0.01 0.3945 0.5185 0.5823 0.6908
0.02 0.3945 0.5185 0.5823 0.6902
0.05 0.3945 0.5186 0.5825 0.6915
0.1 0.3946 0.5187 0.5830 0.6924
0.2 0.3947 0.5190 0.5840 0.6942
0.5 0.3950 0.5197 0.5870 0.6997
1 0.3955 0.5212 0.5922 0.7110
2 0.3965 0.5240 0.6029 0.7363
5 0.3994 0.5347 0.6449 0.8314
10 0.4044 0.5627 0.7372 1.0636
20 0.4143 0.6385 0.9950 1.7051
50 0.4439 0.9714 2.0416 3.8671

100 0.4933 1.6614 3.8916 7.5320
200 0.5922 3.0721 7.5692 14.8345
500 0.8887 7.0889 18.4299 36.4319

1000 1.3829 13.4546 - -
2000 2.3713 25.7523 - -

Re

0.1

1

10

100

0.001 0.01 0.1 1 10 100 1000 10000

AR=0.1
AR=0.25
AR=0.5
AR=1

Fit
Durst et al. [17]

Exp. Results [18] (AR=0.4)
Exp. Results [18] (AR=0.38)
Eq. 4 from [20]
Eq. 72 from [29]

Figure 2. Development length L for different AR, compared against the experimental results given
in [18]. The dashed lines show the fit obtained with the correlation given in Equation (6). We also
show a comparison with the correlation proposed in [20], and a good agreement is observed (except
for low Re where the correlation proposed by [20] fails). The correlation proposed in [29] also shows
good agreement with the correlation proposed in [20] (in [20], several correlations are developed to
account for different duct shapes).

3.2. Flow Dynamics

Figure 3a,c shows non-dimensional transverse profiles of streamwise velocity at
various streamwise locations y for Re = 0.001 (creeping flow) and two different aspect
ratios AR = 0.1 and AR = 1. Figure 4a,c shows the corresponding profiles but considering
inertial effects at Re = 100. The profiles are presented only for half of the channel due to
the flow symmetry.
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Figure 3. Velocity profiles obtained for AR = 0.1 (a) and AR = 1 (c) in the x−plane, for Re = 0.001 at different y positions
along the microchannel (z = 0). (b) Velocity profiles obtained for AR = 0.1 and Re = 0.001 in the z−plane, for different y
positions along the microchannel (x = 0).
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Figure 4. Velocity profiles obtained for AR = 0.1 (a) and AR = 1 (c) in the x−plane, for Re = 100 and different y positions
along the microchannel (z = 0). The inset in (a) shows the velocity profiles obtained for the case Re = 1000. (b) Velocity
profiles obtained for AR = 0.1 and Re = 100 in the z−plane, for different y positions along the microchannel (x = 0).
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Comparing Figure 3a,c, we observe that for the lower aspect ratio the overshoot is
more pronounced, possibly due to the restrictive no slip boundary condition of the top
and bottom walls that are much closer to the center than the side walls. Figure 3b shows
the evolution of the non-dimensional axial velocity component at several axial positions
along the z−direction for the case of AR = 0.1 and Re = 0.001 (the results are qualitatively
similar for other AR). In this case, the left and right walls are far from the development
region, and we have an almost 2D case, where a more parabolic profile is obtained.

The overshoots are generated as a result of the abrupt local fluid deceleration near
the channel wall at the inlet section due to the no-slip boundary condition. Since the fluid
near the symmetry axis is not accelerated immediately, whereas the fluid near the wall is
stationary as soon as it enters the inlet region, to satisfy the continuity equation, velocity
overshoots are formed near the wall, close to the inlet section. This behavior was also
reported by Durst et al. [17] for Newtonian fluids in 2D channels.

We can also observe that there is a dependence on the development of the axial velocity
with Re, with the increase of inertia leading to longer axial development lengths to achieve
fully developed flow (see also Figure 2). The non-dimensional axial velocity component
presents a local maximum that becomes more pronounced and closer to the channel walls
as the Reynolds number increases.

By comparing the evolution of the non-dimensional axial velocity component at
several axial positions along the z−direction for the case of AR = 0.1 and Re = {0.001, 100},
we observe that near the entrance the case of Re = 0.001 shows a more pronounced
development, while the combination of inertia/diffusion effects requires higher L to
stabilize the flow field in the case of Re = 100 (see Figures 3b and 4c).

The evolution of the non-dimensional streamwise velocity along the center of the
duct is shown in Figure 5 for creeping flow conditions and Re = 100 for AR = 1. The
development of the axial velocity profiles is not linear, following a logistic-type function
behavior. Initially, the fluid evolves slowly as a plug (before the the momentum diffusion
from the wall reaches the center) and then quickly evolves to its fully developed value. This
occurs for both values of Re considered, but, as expected, achieving the fully developed
regime takes higher L when convection plays an important role.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10

y/B

Re=

Re=

y

B

100

0.001

H

Figure 5. Axial velocity development along the y−axis in the centerline (x = 0, z = 0) for AR = 1
and Re = {0.001, 100}.

3.3. Entrance Length Correlation

In order to obtain a nonlinear correlation between L and Re, we performed a fit to
the numerical results shown in Table 3. The following correlation, valid in the ranges
0 ≤ Re ≤ 2000 and 0.1 ≤ AR ≤ 1, was obtained:

L =
(

CC3
1 + (C2Re)C3

) 1
C3 (6)
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The correlation follows the same structure of the one proposed by Durst et al. [17], but now
C1, C2 and C3 are functions of AR. For the range of AR studied in this work, we obtained
the following functions: 

C1 = 0.7AR0.25

C2 =
6.8AR3.75

1 + 90AR2.8

C3 = 1 + AR

(7)

An overall average relative error of 2.2% and a maximum relative error of 6.0% were
obtained, and the good quality of fit is shown in Figure 2 (dashed lines).

4. Conclusions

An extensive and systematic numerical study was carried out regarding the entrance
length, L, for Newtonian fluids in 3D microchannels with rectangular cross section. An
adequate choice of meshes, with consistent mesh refinement, and accurate numerical
methods allowed the prediction of accurate values of L, and a unified nonlinear correlation
was proposed for estimating L, valid in laminar regime for 0 ≤ Re ≤ 2000 and 0.1 ≤ AR ≤
1. This correlation allows an accurate prediction of entrance length and represents a novel
tool for the design and fabrication of efficient microfluidic devices.
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Nomenclature

AR Aspect Ratio
B With of the rectangular channel
H Height of the rectangular channel
L Dimensional development length
L Dimensionless development length
Lext Extrapolated dimensionless development length
Lc Length of the flow channel
x Spanwise x-direction
y Streamwise y-direction
z Spanwise z-direction
C1 Model constant
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C2 Model constant
C3 Model constant
Re Reynolds number
f Generic function
ρ Density of the fluid
U Velocity imposed at the entrance of the channel
Mi, i = 1, ..., 16 Mesh number i
∆ymin Minimum size of a computational cell in the y direction
∆zmin Minimum size of a computational cell in the z direction
∇ Gradient operator
u Velocity vector
t Time
p Pressure
τ Newtonian extra stress tensor
η Dynamic viscosity
D Symmetric rate of strain tensor
eR,Mi Accuracy of a specific calculation Li
umax,num Predicted maximum velocity at the outlet plane
umax,theo Theoretical maximum velocity value computed using the analytical solution

Appendix A. Mesh Accuracy Tests and Development Lengths for AR = 0.1, 0.25, 0.5, 1

Table A1. Mesh accuracy tests and development lengths for AR = 0.1.

Re
L

Lext eu,M5 (%) eR,M5 (%)
M1 M5

0.001 0.39482 0.39457 0.39449 0.44 0.02
0.01 0.3948 0.3946 0.3945 0.47 0.02
0.02 0.3948 0.3946 0.3945 0.47 0.02
0.05 0.3946 0.3946 0.3945 0.47 0.02
0.1 0.3947 0.3947 0.3946 0.47 0.02
0.2 0.3950 0.3948 0.3947 0.47 0.02
0.5 0.3954 0.3951 0.3950 0.47 0.03
1 0.3959 0.3956 0.3955 0.53 0.02
2 0.3969 0.3966 0.3965 0.47 0.03
5 0.3999 0.3996 0.3994 0.47 0.03
10 0.4044 0.4044 0.4044 0.47 0.002
20 0.4142 0.4142 0.4143 0.47 0.004
50 0.4413 0.4433 0.4439 0.47 0.15

100 0.4868 0.4917 0.4933 0.47 0.33

Re
L

Lext eu,M13 (%) eR,M13 (%)
M9 M13

10 0.4044 0.4044 0.4044 0.47 0.003
20 0.4142 0.4142 0.4143 0.47 0.01
50 0.4413 0.4433 0.4439 0.47 0.15

100 0.4868 0.4917 0.4933 0.47 0.33
200 0.5816 0.5895 0.5922 0.47 0.45
500 0.8703 0.8841 0.8887 0.47 0.52

1000 1.3562 1.3762 1.3829 0.47 0.44
2000 2.3341 2.2620 2.3713 0.47 0.40
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Table A2. Mesh accuracy tests and development lengths for AR = 0.25.

Re
L

Lext eu,M6 (%) eR,M6 (%)
M2 M6

0.001 0.5189 0.5185 0.5184 0.01 0.03
0.01 0.5189 0.5186 0.5185 0.01 0.02
0.02 0.5190 0.5186 0.5185 0.01 0.03
0.05 0.5191 0.5187 0.5186 0.01 0.02
0.1 0.5191 0.5188 0.5187 0.01 0.03
0.2 0.5195 0.5191 0.5190 0.01 0.03
0.5 0.5205 0.5199 0.5197 0.01 0.04
1 0.5220 0.5214 0.5211 0.01 0.04
2 0.5254 0.5243 0.5240 0.01 0.07
5 0.5365 0.5352 0.5347 0.01 0.08
10 0.5610 0.5623 0.5627 0.01 0.08
20 0.6359 0.6378 0.6385 0.01 0.10
50 0.9410 0.9638 0.9714 0.01 0.78

100 1.5540 1.6346 1.6614 0.01 1.62

Re
L

Lext eu,M14 (%) eR,M14 (%)
M10 M14

10 0.5610 0.5623 0.5623 0.01 0.08
20 0.6359 0.6378 0.6385 0.01 0.10
50 0.9410 0.9638 0.9715 0.01 0.80

100 1.5540 1.6346 1.6614 0.01 1.62
200 2.8116 3.0069 3.0721 0.01 2.12
500 6.4053 6.9180 7.0889 0.01 2.41

1000 12.2340 13.1495 13.4546 0.01 2.27
2000 23.8107 25.2669 25.7523 0.01 1.88

Table A3. Mesh accuracy tests and development lengths for AR = 0.5.

Re
L

Lext eu,M7 (%) eR,M7 (%)
M3 M7

0.001 0.5899 0.5840 0.5820 0.01 0.34
0.01 0.5901 0.5842 0.5823 0.01 0.34
0.02 0.5902 0.5842 0.5823 0.01 0.34
0.05 0.5905 0.5845 0.5825 0.01 0.34
0.1 0.5910 0.5850 0.5830 0.01 0.34
0.2 0.5920 0.5860 0.5840 0.01 0.34
0.5 0.5952 0.5891 0.5870 0.01 0.35
1 0.6005 0.5943 0.5922 0.01 0.35
2 0.6115 0.6050 0.6029 0.02 0.36
5 0.6491 0.6459 0.6449 0.01 0.17
10 0.7454 0.7393 0.7372 0.01 0.28
20 1.0048 0.9974 0.9949 0.02 0.25
50 2.0225 2.0368 2.0416 0.02 0.24

100 3.8325 3.8769 3.8916 0.02 0.38

Re
L

Lext eu,M15 (%) eR,M15 (%)
M11 M15

10 0.7454 0.7392 0.7372 0.01 0.28
20 1.0048 0.9974 0.9949 0.02 0.25
50 2.0224 2.0368 2.0416 0.02 0.23

100 3.8325 3.8769 3.8916 0.02 0.38
200 7.4093 7.5292 7.5692 0.02 0.53
500 17.9970 18.3217 18.4299 0.02 0.59
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Table A4. Mesh accuracy tests and development lengths for AR = 1.

Re
L

Lext eu,M8(%) eR,M8 (%)
M4 M8

0.001 0.7048 0.6942 0.6907 0.01 0.51
0.01 0.7050 0.6944 0.6908 0.01 0.51
0.02 0.7051 0.6945 0.6910 0.01 0.51
0.05 0.7057 0.6951 0.6915 0.01 0.51
0.1 0.7065 0.6960 0.6924 0.01 0.51
0.2 0.7083 0.6978 0.6942 0.01 0.51
0.5 0.7137 0.7032 0.6997 0.01 0.50
1 0.7226 0.7139 0.7110 0.01 0.41
2 0.7486 0.7394 0.7363 0.01 0.42
5 0.8475 0.8354 0.8314 0.01 0.48
10 1.0847 1.0689 1.0636 0.01 0.49
20 1.7201 1.7088 1.7051 0.01 0.22
50 3.8870 3.8721 3.8671 0.01 0.13

100 7.5479 7.5360 7.5320 0.01 0.05

Re
L

Lext eu,M16 (%) eR,M16 (%)
M12 M16

10 1.0847 1.0689 1.0636 0.01 0.49
20 1.7201 1.7088 1.7051 0.01 0.22
50 3.8870 3.8721 3.8671 0.01 0.13

100 7.5479 7.5360 7.5320 0.01 0.05
200 14.8814 14.8462 14.8345 0.01 0.08
500 37.2204 36.6290 36.4319 0.01 0.54
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