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Laminar flow of a Newtonian fluid in an axisymmetric pipe expansion has been studied
numerically by means of the finite-volume approach. Predicted values of some of the
overall flow characteristics, such as recirculation length, its strength, and centre location,
were compared with available experimental data and correlations, and good agreement
was found. The purpose of the work was to evaluate the pressure-loss coefficient C, for a
range of Reynolds numbers and to compare the results with existing simplified theory,
which is based on a one-dimensional (1-D) overall balance of energy and momentum.
Considerable differences were found, which lead us to formulate corrected theoretical
equations in the scope of the 1-D approximation. These corrections were evaluated from
the numerical results and accounted for three effects: (1) differing actual and fully
developed wall friction; (2) distortion of velocity profiles from the parabolic shape at the
sudden expansion section; and (3) nonuniformity of pressure at the expansion plane.
Predicted values of the loss coefficient agreed to within 4% with the corrected theory and
were found to be proportional to the inverse of the Reynolds number for Re < 17.5 [with
effect (3) above predominant and accounting for up to 85% of C,] and approximately
constant for Re > 17.5 [with effect (1) above predominant and accounting for 20% of C,1.
Finally, a correlation for calculating the local loss coefficient as a function of the Reynolds
number for the 1:2.6 sudden expansion and fully developed conditions is proposed.
© 1997 by Elsevier Science Inc.
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Introduction Many applications of Newtonian sudden expansion flows per-
) . o tain to the turbulent flow regime, because they involve low-
Sudden expansion flows bring together geometric simplicity with viscosity fluids, such as air or water. Examples are ventilation

a complex flow behavior because of the interaction of a recircu-
lation region and a jet in a confined duct, but their relevance also
stems from the fact that they often occur in industry. This type of
flow has been thoroughly investigated in the past both numeri-
cally (Macagno and Hung 1967; Habib and Whitelaw 1982;
f;zt_/c.h;;cit a‘;l(-i ggssgkznldwe;pé:?;::agya; I\;[;zcgg;gréct’iezgllieiﬁigt istics can be laminar, as reported by McNaughton and Sinclair
al. 1989) amongst others, in the laminar and mainly in the (1966), Tadmor and Gogos (1979), and Boger (1981).

turbulent flow regimes and, thus, provides a good configuration Some of these industrial fluids are, indeed, more complex in

flows (Restivo and Whitelaw 1979), flows of relevance to aero-
nautics (Abbott and Kline 1962), and to combustion (Drewry
1978). However, in many other instances, where high-viscosity
fluids and/or tiny geometries are involved, as in glass melting,
polymer processing flows, and some mixing flows, their character-

for testing experimental and numerical work. Some of the flow rheology than the Newtonian constitutive .equation ?s capable of
characteristics of the more recent work on low-Reynolds number predicting, but the focus on non-Newtonian behavior is left to
flows are presented in Table 1, which is not meant to be an another occasion, because some basic features of Newtonian
exhaustive listing. laminar sudden expansion flows are still unknown and are re-

quired for an adequate understanding of the more complex fluid
flow hydrodynamics of those fluids.
Proper assessment of pumping power in ducts requires knowl-

Address reprint to Dr. F. T. Pinho, D.E.M.E.G.I, Faculty of Engi- edge of the friction and local losses in pipes and fittings. Only
neering, Rua dos Bragas, 4099 Porto Cedex, Portugal. one of the references (Idel’cik, 1971) in Table 1 presents some
Received 29 June 1996; accepted 22 March 1997 information on local loss coefficients for laminar sudden expan-
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Table 1 Some publications on axisymmetric sudden expansion flows at low Reynolds numbers

Reference Reynolds Number Flow condition Remarks
Macagno and Hung (1967) Re = up to 200* D,/D,=20 Exp. and Num.-FD
Back and Roshke (1972) Re=20 to 4200 D,/D,=26 Exp.-=U

Iribarne et al. (1972) Re=90to 13565 D,/D,=20 Exp.-=U
Badekas ahd Knight (1992) Re=50 to 200 D,/D,=15106.0 Compilation-FD
Stieglmeier et al. (1989) Re=15600 D,/D,=1.6 Exp.-FD

Idel’cik (1971) Re < 3500 and Re > 3500 D,/D,=general Campilation
Milos and Acrivos (1986) Re — o (Laminar) D,/D,=general Theo.-U

Scott et al. (1986) Re=50 to 200 D,/D;=15,2.0,3.0,40 Num.-FD

Monnet et al. (1982) Re=0.04 t0 29.4 D,/D,=2.26 Exp.-FD

U-uniform inlet velocity profile; FD-fully developed inlet velocity profile; Re=pD, T,/n
*Flow visualizations up to 4500 were also carried out, but the detailed work went up to 200

sion flows, but it is limited to the case of a plug inlet velocity
profile, with the remaining works concentrated on the measure-
ment or prediction of other flow features, such as the recircula-
tion bubble length, or its intensity. For low-Reynolds number
laminar flows, the length of pipe required for flow development
can be rather short, and fully developed flow is bound to occur
frequently. Classical fluid dynamics textbooks and references
such as Batchelor (1967), Idelcik (1971), Streeter and Wylie
(1975), or White (1979), emphasise the use of the theoretical
local loss coefficient, which has been validated for turbulent flow,

but is not correct in the laminar regime. Throughout this paper,
we refer to such derivation as the standard theory. Therefore, the
objective of this paper is to calculate the local loss coefficient in
an axisymmetric sudden expansion, and to assess numerically its
various contributions for the case of a Newtonian fluid with fully
developed inlet flow conditions.

The next section presents the theory and definitions required
in this work; it is followed by an outline of the numerical
procedure, the specifications of the calculation domain, and the
boundary conditions. The presentation and discussion of the

Notation

wetted perimeter area
cross section area
corrective pressure coefficient
general pressure coefficient
pipe diameter
Darcy fraction factor
geometrical expansion factors (=3, ,/9,)
step height
length
number of internal cells of computational
grid
pressure
pressure difference
radial coordinate
pipe radius
e Reynolds number (= pDu, /)
axial velocity component
axial coordinate (X =x/D,)
axial position of eddy centre (X, =x./D,)
recirculation length (X, =x,/D))
height of the wedge-shaped computa-
tional domain
half-size of the base of the wedge-shaped
computational domain
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Greek

a profile shape factor for energy (= u*/u*)
profile shape factor for momentum
(=u2/a?)

size of a computational cell

dynamic viscosity

p density

o area ratio

T shear stress

Subscripts

c-th theoretical values corrected for friction
and momentum effects

cc-th theoretical values corrected for friction,
momentum, and pressure effects

F fully-developed wall frictional contribu-
tion

4 irreversible contribution

inl inlet conditions

num numerical value

p0 nonuniform pressure effect

R reversible contribution

RI total coefficient of pressure without fully
developed friction contribution (R + 1)

T total pressure coefficient

th standard theoretical value

r radial direction

x axial direction

w pipe wall

B momentum effect

01 plane just upstream of the expansion

02 plane just downstream of expansion

1 inlet pipe

2 outlet pipe

Superscripts

! denotes actual value of wall friction

—(overbar) cross-section area average

=(double overbar) straight line fit

~ (tilde) modified pressure coefficient
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pressure drop results are preceded by an assessment of the
uncertainties of the calculations and by comparisons of other
computed quantities with experimental data and correlations to
validate the procedures. This paper ends with a summary of the
main conclusions.

Theory

As mentioned above, we concentrate on the laminar flow in a
pipe expansion with a fully developed condition some distance
upstream of the sudden expansion plane. For reasons that be-
come evident later, the fully developed condition is not applied
at the inlet section proper; rather there is a long pipe upstream
of the expansion, and the flow is allowed by develop from a
rectangular inlet profile to a fully developed flow, well before
reaching the sudden expansion plane. The following theoretical
derivation is based on the nomenclature and geometry of Fig-
ure 1.

In pressure drop calculations in piping networks, it is engi-
neering practice to consider that the flow is fully developed in
the straight pipes or ducts, with all other effects, such as flow
distortions and redevelopment in fittings, curves, and other ele-
ments, introduced via their respective local loss coefficients.
Therefore, the total pressure variation between stations 1 and 2
of the sudden expansion (see Figure 1) is usually decomposed
into a reversible pressure increase (Apg-Bernoulli effect at-
tributable to the decrease of velocity across the expansion), an
irreversible pressure drop (A p,), which includes the inefficient
dissipation of kinetic energy as the fluid decelerates, thus creat-
ing a recirculation zone, and the pressure variation attributable
to fully developed friction on the walls (App):

A, =p,—pi=Apr—Ap,—App ey

In this way, the local loss coefficient is identified with the
irreversible pressure drop, defined as

A
c =2 2)

1 —2
2PU)

Clearly, C, includes a friction effect, because the actual
friction between stations 1 and 2 (this is denoted Apj) is
certainly different from the corresponding fully developed fric-
tion. The terms in Equation 1 can be written as pressure differ-
ence coefficients, based on the upstream dynamic pressure, as
defined in Equation 2 unless otherwise stated, so that it becomes

Cp=Cr—C;—Cp=Cpy—Cp )

Dy

Figure 1 The sudden expansion geometry and its control

volume

520

In the derivation below it will be necessarjy to introduce the
profile shape factors for energy, a= F/ ¥’ and momentum
B=u’/ %', where an overbar denotes area averaging. Integral
conservation of momentum and energy applied to the control
surface formed by stations 1 and 2, where the flow is assumed to
be fully developed, and the inside pipe walls, is expressed as:

—2 _
p1A +pA B +(A; APy,

—2 ’ ’
=pyA; +pABu; +A APy +A,ApE, “@
—
pi+ 3pai
—
=py+3pait; +Ape +Apg, +Ap, ()

The fully developed friction terms of Equation 5 are given by

L1 _,
Apr, =fxD— L (6a)
1
L,1 _,
Apr, =f232‘ Epuz (6b)

In Equation 4, the pressure pg, is an area-average pressure
acting on the step wall area A4, —A,, just downstream of the
expansion. At stations 1 and 2 the pressure is assumed uniform,
and, therefore the overbar is unnecessary. The symbol App
represents the actual integrated wall stress calculated by

A ! d ! Dd
pF_A LTW a= (1TD2/4)-/;TW1T X
4 L
=B—fL~rwdw=4B~rw @)

where A is the cross-sectional area and a the wetted perimeter
area.

In a reversible flow, the energy equation reduces to the
Bernoulli equation:

1, 1
Pir T 5Py =Popt Sp0oH, =Apr=(p,—pi)r
—2
1 o, |u
22
1wy

From mass conservation Au; =A4,u, and after defining the area
ratio as ¢ = A, /A,, the reversible pressure increase coefficient
becomes

Q)
=a,[1 - —0c? ()]
Cr a,( alo‘ )

Some manipulation of Equation 4 yields

! 1

- B
c,=2228 =2610(1 - —20)
2P, B

10)

—2

_ Aprpz + O'Ap;-l - (1 - 0')([_702 _Pl)
70U,
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To eliminate pressure p, from this equation, it is necessary to
perform again a momentum balance, this time to the control
volume between stations 1 and 01 (Figure 1):

—2 - —2 ,
P1A+pA B =Py Ay +pA By, +A1A Py (n
where By, is the momentum factor just upstream of the expan-

sion. Introducing this equation into the one above, yields:

Cp= 2310(1 - gia) — [Chr + Cry = 20— 0)(B, — Bo)
1
+( = 0)(Cpor — a2 )] (12)

where the actual friction coefficients are denoted by a prime.
The area-averaged pressure coefficients at the expansion plane
in Equation 12 follow from the adopted notation:

= Pmn 1

Co=—==—-—1| pndd (13a)
po1 —2 —2 0
) Uy A j:“l
= _ Pw 1 :
Con="—5 =7/ Pndd (with Aj=A; -4,
2Pl 2Py Ay “Ao

(13b)

Similarly, for the fully developed and the actual wall friction
coefficients, respectively,

App, L, , Ap, Lyt
CFIEﬁz I—D—, CFlE : _2=4D—j2 (143)
7PU 1 3Pl 1y
in the inlet pipe, and
Apps L, , Apr, L, 7,
Cro=T—==9%hp Cn=1—==45 7 —;  (14b)
2P 2 2P 2 7Py

in the outlet pipe. The irreversible loss coefficient is now ob-
tained from the decomposition defined by Equation 3; i.e.,

C, =0L1(1 - 20'2) - 2810(1 - &0')
@) By

- [ACF +2(1-a)(By — Byy) — (1 - U)(€p01 - 6,;02)]
(15)
where the following definitions were introduced
ACp=Cr—Cy
with
ACpy = (Cpy —Cpy) and ACp =(Cpy — Cky) (16)

which represent the difference between fully developed pressure
drop and the actual pressure drop due to a variable wall shear
stress. Equation 15 is the main result of this analysis and may be
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written in a compact notation as:
Cr=(C))y, —{AC + ACy — AC,,0} 17)

where (C,),, is the standard theoretical loss coefficient (two first
terms on the right-hand side of Equation 15) and the corrective
factors other than those due to wall friction are defined as:

ACy =2(1 - 0)(B, — By) (18)
and
AC,=(1-0)(Cpos ~ Cyn2) (19

The total pressure variation coefficient, without considering
fully-developed wall friction, is given by:

Cr,= 2310(1 — %0) +{ACE + AC; — AC,) (20)

1

Equations 17 and 20 given the correct theoretical values of
the irreversible and total (without fully developed fraction) pres-
sure coefficients, respectively. It should be noted that these
coefficients do not depend upon the extension of the control
volume, provided the flow conditions at the inlet and outlet
planes are fully developed, because each pressure difference of
type Apg — Ap) then tends to a constant value.

The terms in braces in Equations 17 and 20, represent correc-
tions to the standard theory. Whenever the wall friction can be
neglected relative to other effects, the momentum and energy
coefficients assumed constant along the two pipes, and a uniform
pressure is assumed to apply at the expansion plane, then the
above equations reduce to the following “uncorrected,” but
widely used formulas here referred to as the standard theory:
(Cpyy =1 —oXa + ala —2B); (Cg;)y = 2Bo(1 — ). For uni-
form velocity profiles, then a =B =1 and the pressure coeffi-
cients become Cyr =(1 — a2); (Cg)yy =201 —0); (C)), =0 ~
o)?, which are the equations usually found in textbooks and valid
to a good approximation for turbulent flows; here (C,), is the
so-called Borda—Carnot coefficient. Because the present applica-
tion is for laminar flow, where the fully developed velocity profile
is given by a parabolic law, a and B take the values 2 and 4/3,
respectively. With these values, the “uncorrected” forms of the
pressure coefficients become:

Cr=2(1-02);(Cr )y = 30(1 — 0);(C))y, =201 — ) — §0)
(21)

In the pressure variation Section 4, it is shown that the
corrective terms within the braces of Equations 17 and 20 are
important. Because these corrections cannot be evaluated theo-
retically, they either have to be computed from numerical results
or experimentally measured. The former was the option for this
work, and planes 1 and 2 were selected in regions of fully
developed flow, as mentioned above; i.e., the energy and momen-
tum factors are «; = a, =2 and B, = B, = 4/3, respectively.

Calculation procedure

In this section, the numerical method adopted for solution of the
transport equations is fully described and details are given on the
grid testing. After selection of an adequate grid, the programme
is further validated by carrying out a number of comparisons with
experimental and numerical data from the literature. In this
section, the focus is on such quantities as the recirculation length
and eddy intensity, and the prediction of the pressure variation
for the fully developed pipe flow regions.
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Numerical method and grid testing

The mass and momentum differential conservation equations
were discretised by the control volume-based finite difference
scheme described by Patankar (1980), and later adapted by Peri¢
(1985) for nonstaggered, nonorthogonal grids. The main code is
interfaced with a mesh generation preprocessor and adequate
data post processor, as described by Oliveira (1992). The basic
differencing schemes were all second order,; namely, central
differencing for the diffusion terms and the linear upwind scheme
(LUDS), described by Peri¢, for the convective terms. The pres-
sure velocity coupling was dealt with by a time-marching form of
the SIMPLEC algorithm and all the calculations were performed
in a HP 715 /75 workstation.

Solution of the present two-dimensional (2-D) axisymmetric
flow with a full three-dimensional (3-D) code based on Cartesian
velocity components requires use of a computational domain
with the shape of a wedge of triangular cross section. This entails
a small difference (less than 1.2%) between the actual and the
computational cross-sectional area; in the comparison with the
theory, the average velocity is corrected as (A#),, = (AR),,,,, to
maintain the flow rate, with A, =(wD?/4) (15/360) for a
section having a 15° angle at the apex and A, = YZ. Results
presented in the pressure variation section (namely, the radial
profiles of the fully developed axial velocity component in Figure
6 and the differences of no more than 0.4% and 0.7% between
the predicted and theoretical friction factors in the inlet and
outlet fully developed pipe flows, respectively) prove that this
small correction does not introduced any artefacts into the
analysis.

The boundary conditions were as follows. On the two side
planes of the wedge symmetry, boundary conditions were set; on
the centreline, the boundary condition was axisymmetry; and at
the wall, all velocity components were set to zero. In the outflow
plane, the longitudinal velocity gradients for all components of
the velocity vector were also set to zero. This outflow plane was
located far downstream of the expansion to allow a complete
flow redevelopment. At the inlet duct, the flow was allowed to
develop from a plug velocity profile into the traditional parabolic
shape well before reaching the expansion plane. The ratio of the
inlet pipe (D,) to the outlet pipe (D,) diameters defined the
expansion ratio used throughout this paper.

The computational grids were generated using patched blocks,
one for the inlet pipe and two for the larger outlet pipe. The
presence of the inlet pipe does not create any numerical diffi-
culty (such as computational cells out of the flow domain)
because of use of a special indirect addressing strategy, as
explained in Oliveira (1992). Except in some initial testing, the
mesh spacing was nonuniform, with more mesh points concen-
trated near the expansion plane and along the wall of the inlet
pipe, so as to properly resolve the shear layer starting at the
expansion corner. Also, for purposes of mesh continuity, the
expansion factors used to define the control volume dimensions
were carefully chosen to guarantee a smooth variation in the
whole domain, with particular attention to the interface between
the mesh-generating blocks. Finally, following the recommenda-

tions of Castro (1979), the local cell Reynolds number in the
vicinity of the corner did not exceed, and was usually consider-
ably lower than, a value of about 1.0, in order to reduce possible
errors generated at the corner, which may then be convected
downstream.

A series of tests with different grids was initially performed to
assess the adequate size of the computational domain for grid-
independent results and to help define the length of the inlet and
outlet ducts required for full velocity profile development. In this
preliminary stage of the investigation, the effect of much refine-
ment and the relationship between all those parameters, the
Reynolds number, and the accuracy of the results were analysed.

The grid analysis closely followed the 1:2.6 sudden expansion
of Back and Roshke’s (1972) experiments. A uniform velocity
profile was assigned at the inlet of a short duct (here taken as
L, =D,), located upstream of the sudden expansion, defining an
inlet Reynolds number equatl to 50. Table 2 gives some character-
istics of the computational meshes and the corresponding pre-
dicted recirculation bubble length. Grid 3 has the double number
of cells along x, in the outlet pipe, compared with grid 2», and
the number of cells along r was then doubled for grid 4. More
details of the mesh refinement study can be found in Oliveira
and Pinho (1995).

The results of Table 2 indicate that further grid refinement
beyond that of grid 2n does not improve the prediction of x, and
that the uncertainty of the results is, at most, 0.2%. Similar
conclusions were drawn from inspection of the predicted pres-
sure profiles and maximum values of the stream function within
the recirculation zone. The key factor is the smallest mesh
spacing in the vicinity of the re-entrant corner. The uncertainty
remains constant with the Reynolds number, provided the mini-
mum spacing in both the x- and r-directions in that region is
about 0.10 mm (in nondimensional form dx/(D,/2) = 1/47 and
dx/((D; - D)/2)=1/76). For the higher-Reynolds number
flows, the domain had to be extended further on the downstream
side of the expansion, in order to attain fully developed flow, but
always maintaining the main geometric characteristics of the grid
2n as in Table 2. Other characteristics of this grid for the Back
and Roshke’s runs were: NX =20 and NR =20 with f, = 0.874
and f, =0.924 for the inlet pipe block; NX =70 and NR =20
with f, =1.091 and f,=0.924 for the outlet pipe block down-
stream of the inlet pipe; and NX =70 and NR =32 with f, =
1.091 and f, = 1.05 for the outlet pipe block located downstream
of the expansion wall.

Validation tests

In this validation, the experimental results of the 1:2.6 expansion
of Back and Roshke (1972), already used in the grid tests, and
the 1:2 expansions of Marcagno and Hung (1967) and Halmos
and Boger (1975) were selected. The experimental results of the
latter authors were also accurately predicted by the numerical
computations of Halmos et al. (1975).

The numerical correlations developed by Scott et al. (1986),
specifically for the 1:2 sudden expansion, and the more general
correlations of Badekas and Knight (1992), which are valid for a

Table 2 Maximum and minimum grid size and predicted recirculation length (Re = 50)

Grid NC 8 X i Y B Xoma 8 max X,

Grid 1 4040 0.24 0.24 34.7 0.24 35.5
Grid 2 4040 0.24 0.10 34.7 0.45 35.7
Grid 2n 4040 0.10 0.10 414 0.45 35.6
Grid 3 7680 0.10 0.10 18.3 0.45 35.6
Grid 4 13760 0.10 0.10 18.3 0.14 35.6

NC=total number of internal cells for L,=D,, values in mm; note that 0, =0.5 mm

522 Int. J. Heat and Fluid Flow, Vol. 18, No. 5, October 1997



wider range of expansion ratios, were also used here. Whereas
the numerical correlations derived by Scott et al. (1986) for
various quantities are optimised for each particular expansion
ratio, those of Badekas and Knight are general and are based on
a compilation of data from different sources of both computa-
tional and experimental work; thus, they are prone to a higher
uncertainty. The latter authors also indicate that their correla-
tions are only valid for inlet Reynolds numbers between 50 and
200.

Prediction of the recirculation length of Back and Roshke’s
(1972) flow, with a plug velocity profile imposed one diameter
upstream of the plane of the expansion, did not compare well
with the experimental data, as can be seen in Fig. 2a, because of
the difficulty in assessing the correct inlet condition used in the
experiments. The sudden expansion of Back and Roshke’s exper-
iments was located immediately downstream of the settling
chamber with a very short inlet pipe between the two. So, the
real velocity profile at the exit of the settling chamber was never
a plug flow because of the no-slip condition at the wall.

Using a longer inlet duct, with a fully developed velocity
profile, yielded results much closer to the measurements of Back
and Roshke (1972). To achieve the fully developed inlet profile, a
uniform velocity profile was submitted to a long inlet section of
L,/D, =20, as shown in Figure 1. Note that the higher Reynolds
number investigated here was less than 250, for which the
Langhaar formula (White 1979) predicts a development length of
L,/D,=0.0575 Re =14.4. The differences in the predictions
show how important it is to compare data pertaining to well-
defined inlet conditions, because the flow characteristics down-
stream of the expansion are strongly sensitive to it, and especially
so to the velocity in the wall region of the inlet pipe. To quantify
this point, the prediction of X, with the uniform velocity profile
imposed right at the expansion (no inlet section) is 30% shorter
than the previous case of L,=D, (for Re=200). Also, in
preliminary studies differences of about 6% were observed in X,
when the fully developed velocity profile is imposed at x=0
compared to the case of naturally developed flow in a long inlet
section. Thus, the remaining comparisons with the literature
pertain to a well-defined inlet condition, that of a fully developed
flow imposed some distance upstream of the sudden expansion.
In this case, there is a significant improvement in the predictions,
as well as in comparison with the correlation of Badekas and
Knight (1992) for a fully developed inlet flow, also included in
Figure 2a.
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Figure 2a Recirculation bubble length versus inlet Reynolds
number for a 1:2.6 sudden expansion flow of Newtonian
fluids; a Back and Roschke; O long inlet prediction; a short
inlet prediction; — Badekas and Knight (1992)
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Figure 2b concerns a 1:2 expansion and includes data from
Macagno and Hung (1967), the Newtonian predictions of Halmos
et al. (1975), the correlation of Badekas and Knight (1992) and
our numerical predictions. This time, the data are very close to
each other, with our predictions and Macagno and Hung’s results
very slightly lower than the correlation of Badekas and Knight, a
good result that now stems from well-known and well-defined
inlet velocity profiles. The linear dependence of the recirculation
length on the Reynolds number is a well-established result also
observed here, provided the Reynolds number is not too small,
and it comes as no surprise that the correlation of Badekas and
Knight for the 1:2 expansion ratio is the same as that proposed
before by Scott et al. (1986).

The comparisons between the current predictions and Badekas
and Kings (1992) correlation for the relative eddy intensity are in
Figure 3, for both expansion ratios. The differences are under 7
and 5% for the expansion ratios of 2 and 2.6, respectively.
Nonlinearities in the correlated quantities makes it more difficult
to develop universal correlations (as is the case of Badekas and

wmax,winl -1

0.5 eI

T 1 17T
1 4. 1.1

0.4

LB
L4 1

0.3

T T T T
>
[ o
»>
|

Al 11

0011\1|111 1 )l ll]llllll

0 50 100 150 200pR.250

Figure 3 Comparison between calculated { o), Badekas and
Knight's {1992) correlation (—) and Scott et al. (1986) corre-
lation {----) for the relative eddy intensity, with +5% error
bars; open symbol (1:2); closed symbols (1:2.6)
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Knight equation), and this is well shown in the good comparison
of our predictions with the specific equation developed by Scott
et al. (1986) for the 1:2 expansion.

The discrepancies between Badekas and Knight’s (1992) gen-
eral correlation and Scott et al.’s (1986) specific correlation are
particularly well shown in the comparisons pertaining to the eddy
centre location in Figure 4. The determination of the recircula-
tion length relies on the interpolation close to the wall; whereas
the eddy centre is the locus of the maximum value of the stream
function, which happens in a region of elongated shape. So, the
calculation of the maximum value of the stream function is not
so accurate as the determination of the eddy length, but despite
this, the current predictions are within 2.5% of those of Scott
et al. for the same expansion ratio. The general correlation of
Badekas and Knight behaves better at larger expansion ratios
(less than 10% difference) than at smaller expansion ratios,
where the discrepancies can be more than 20%. This is also clear
from the major difference between the two equations, which
have a zero (Badekas and Knight) and a nonzero (Scott et al.)
ordinate, from which results some different behaviour of the
correlations.

The set of extensive comparisons with well-defined cases,
together with the grid refinement study of the previous section,
was deemed sufficient to validate all aspects of the calculation
procedure and to give us confidence in its capacity to predict
other such flow characteristics as the pressure variation through
the expansion accurately, which is the main objective of this work
and for which experimental data are scarce in the Reynolds
number range here considered.

Pressure variation: results and discussion

The investigation of the pressure coefficient behavior was under-
taken in the 1:2.6 sudden expansion geometry of Back and
Roshke (1972), but for the fully developed inlet condition de-
fined well upstream of the expansion plane.

First, the computed fully developed flow friction factors in the
upstream and downstream pipes were compared to the theoreti-
cal values. The Darcy fraction factors can be computed from
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their definition

_Alp/ip®) _ AC,
©AG/D) T AX (22)

A L1
=f— —pU* =
p=f53¢
with the derivative obtained from curve fitting pressure variation
along the axis. Instead of directly fitting a straight line to the
numerical data of C, versus x(r=0), it has been found more
accurate to use a different pressure function defined as:

p

C = for <0, and

T =

i (1-0)C,0 +C

¢, =2 - R for x>0 (23)
2PU; o

where 6‘,01 is the intercept with the y-axis at x=0 of the
straight line fitted to the fully developed C, data pertaining to
x<0.

This modified C » has the advantage of possessing the same
inclination along the smaller and the larger pipes; whereas, the
curve of C, versus x (Figure Sa) flats out along the larger pipe
(x > 0) impeding an accurate line-fitting from which both f and
C, are determined. The friction factor f results from the inclina-
tion of C s and C; from the intersection with the y-axis, of the
straight line fit given by the equations:

C,=~fiX+Cpp (X<0) and

= fa
D,/D,

X+Cppy (X>0) 4)

which are represented by the solid lines in Figure 5b, for Re =
200. It is straightforward to check that the local irreversible loss
coefficient can then be determined from the difference of values
of ép at the intersection with the y-axis at x = 0, thus

c - UZ(EPO, - Epoz) (25)

An additional precaution to limit the errors inherent to the
line-fitting of Equation 24, and their propagation in the evalua-
tion of C,, is to apply the fitting process only to those points
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lying in the regions of fully developed flow; i.e., for X;, <X <X,
in the small diameter pipe and X > X, in the larger pipe (see
Figure 1). This range was checked for every Reynolds number,
typical values being [X,,, X;,]=[—10, —0.5] and X,, =15 but
| X;,| tending to increase as Re decreases (X, = —1.2 for Re =
1). Without this precaution, the error committed on C, was
about 2.5% at Re = 100.

Values of the friction factor obtained from Equation 22,
following this line-fitting procedure, agreed to within 0.7%, with
the theoretical Darcy friction factor for laminar flow, f; =
64/Re. An alternative way is to compute the friction factors
from the wall shear stress, as stems from a momentum balance,
which for the wedge-shaped cross section, yields

47, D 26)
L

with 7, calculated from Newton’s law of the viscosity

7, = p(du/or). 7N
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The corrective term on the right-hand side of Equation 26
takes into account the differences in cross-section shape and is
equal to 1.0085 and 1.0090 for the upstream and downstream
pipes, respectively. Values of the friction factor obtained with
this alternative procedure were virtually identical to those from
equation 22, demonstrating the self-consistency of the computed
results and giving an additional justification for the corrective
factor D /2Y in Equation 26. Were that factor not included, and
an apparent imbalance of about 0.9% would have arisen between
the pressure drop and the wall stress.

The marks in Figure 5a are the predicted C, along the axis of
symmetry for two flow cases, Re =150 and 200. If the fully
developed linear pressure decay on both sides of the expansion
were extrapolated to the expansion plane (x =0), there would
result a net pressure increase, the pressure jump at x =0, here
denoted Cg; = C,g, — C,;. With the reversible pressure rise Cg
given by Equation 9, which yields Cr = 1.956 for a parabolic
velocity profile, then from Equation 3 we would obtain the loss
coefficient: C; =Cg — Cp,. Instead of that, with the modified
pressure coefficient C,, plotted in Figure 5b for Re = 200, the
loss coefficient results directly according to Equation 25.

The left part of Table 3 gives the irreversible loss coefficient
computed from Equation 25 with the predicted numerical values
of C,, as well as the total pressure coefficient of Equation 3
without the fully developed friction contribution (Cg,), for vari-
ous Reynolds number flows. At low-Reynolds numbers, the local
loss coefficient (C,) is inversely proportional to the Reynolds
number, because the flow characteristics of the sudden expan-
sion are dominated by the viscous forces. Here we encounter the
typical straight line variation of the loss coefficient with the
Reynolds numbers in log—log coordinates, shown later in Figure
9 of this work, a behavior similar to that of fully developed
laminar duct flows, where by virtue of symmetry conditions, the
convective terms of the Navier—Stokes equation vanish.

However, at high-Reynolds numbers, the flow downstream of
the expansion becomes dominated by inertial forces, and the
local loss coefficient tends to a constant value. Here Cy, is
positive, thus indicating that the reversible pressure increase
(Cg) is greater than the irreversible pressure drop (C,), but for
low-Reynolds numbers, this trend is reversed to that close to
Re = 1, the coefficient C, is one order of magnitude higher than
C and increasing for Jower values of the Reynolds number. The
uncorrected theoretical values of the irreversible and Cp, coeffi-

Table 3 Predicted (C,), corrections, and corrected theoretical (C,,_,) loss coefficients at the expansion

Re C, Cr/ x,/D; Bo1 ACg ACgy ACg, Cin error %
1 16.61 —14.65 0.41 1.223 0.188 —2.588 1.225 2.800 +494
2 8.369 -6.413 0.45 1.228 0.180 —-1.250 0.644 2.046 +309
35 4.830 —2.874 0.52 1.237 0.164 —-0.678 0.402 1.732 +178
5 3.458 -1.502 0.59 1.244 0.152 —0.453 0.310 1.611 +114
10 1.981 —-0.025 0.89 1.265 0.116 —0.200 0.226 1.476 +34
12.5 1.726 0.230 1.06 1.272 0.105 -0.111 0.217 1.410 +22
175 1.508 0.448 1.43 1.282 0.0875 —0.0992 0.218 1.414 +6.6
25 1.379 0.577 2.01 1.292 0.0704 —0.0468 0.227 1.370 +0.8
35 1.331 0.625 2.81 1.299 0.0585 —-0.0404 0.237 1.365 —-25
50 1.306 0.650 4.03 1.306 0.0466 -0.0189 0.247 1.346 -29
75 1.301 0.655 6.07 1.312 0.0364 -0.0110 0.2566 1.339 -28
100 1.304 0.652 8.13 1.316 0.0295 —-0.0074 0.261 1.337 —-25
125 1.308 0.648 10.18 1.319 0.0244 —0.0055 0.262 1.337 —-2.2
150 1.311 0.645 12.24 1.320 0.0227 —-0.0043 0.266 1.336 -1.9
175 1.312 0.644 14.32 1.322 0.0193 —0.0045 0.267 1.338 -1.9
200 1.315 0.641 16.39 1.323 0.0176 —0.0037 0.269 1.338 -1.7
225 1.317 0.639 18.45 1.324 0.0159 —-0.0032 0.270 1.338 —-1.6
Note: Cp=1.956
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cients, given by Equation 21 of the standard theory yield (C,),, =
1.620 and (Cg;)y, = 0.336, which may be compared with the
computed values in Table 3. There is considerable difference
and; whereas the standard theory yields independent of the
Reynolds number, the predictions do show a variation, which is
very intense at low-Reynolds numbers and of the order of 20 and
50% at high-Reynolds numbers for C, and Cpg,, respectively. To
explain this discrepancy, the uncorrected standard theory coeffi-
cients were corrected with the first two terms within the braces
of Equation 17, which were evaluated from the numerical results
and are also given in Table 3. This table does not include the
effect of nonuniform pressure at the expansion plane, the last of
the three terms within the braces, which will be considered later.

On the right part of Table 3, B, is the momentum factor at
the expansion, computed from the numerical integration of the
velocity profile just upstream of the expansion plane, and the
corrective coefficient ACy is the term defined in Equation 18.
The presence of the expansion distorts the velocity profile from
its parabolic shape just upstream of the expansion plane, making
B, depend on the Reynolds number and differ from the theoret-
ical value of 4/3 = 1.333. The difference entails a corrective
factor AC, to be subtracted from the theoretical C;, which is
quite important for the low-Reynolds number flows and drops to
about 1.5% at higher-Reynolds numbers.

The upstream influence of the expansion was assessed from
plots of the streamlines and pressure contours. These are not
presented here for brevity, but the main resulting points pertain-
ing to typical low- and high-Reynolds number cases are briefly
discussed. The pressure field at the entrance was much more
distorted for Re = 12.5 than for Re = 200. At low-Reynolds num-
bers, the influence of inertial forces is small compared with that
of molecular diffusion, which acts in all directions and clearly
influences the flow upstream via two effects. First, there is a
stronger radial viscous diffusion of momentum, which changes
the shape of the recirculation bubble, as indicated in the differ-
ent curvature of the streamlines. Whereas the separation stream-
line for Re = 200 follows the direction of the oncoming flow and
starts to curve further downstream (convex bubble shape) behav-
ing like a mixing layer between a jet and the recirculating region,
the separation streamline for Re =12.5 curves immediately at
the expansion edge (concave bubble shape). The second effect
stems from the axial viscous diffusion, which gives the flow some
predictive memory; it will sense the oncoming expansion and the
flow starts to change earlier than for the higher-Reynolds num-
ber inertia-dominated flow.

The velocity profile distortion is shown in the comparison
between the radial profiles of the axial velocity component some
distance upstream from the expansion, and just before the ex-
pansion (station 01) in Figure 6, for Reynolds numbers of 12.5
and 100. The velocity profile attains a fully developed parabolic
shape for X < —1, but it is then distorted by the presence of the
expansion and deviates “considerably” from that shape at the
entrance of the expansion. This deviation is more pronounced for
the low-Reynolds number case (Re = 12.5), for which a,; also
changes to 1.810 (instead of the fully developed parabolic profile
value of 2) and B, becomes 1.272 (instead of 1.333), as would be
anticipated from the increased pressure distortion to be dis-
cussed below. For Reynolds numbers below 12.5, these effects
are intensified, thus explaining the higher corrections.

The correction resulting from differing actual and fully devel-
oped wall friction is quite important for the full range of Reynolds
numbers, affecting C, to a level of about 15 to 20% for Reynolds
numbers higher than 50 and increasing in absolute values as the
Reynolds number is reduced. The effect is well illustrated in
Figure 7, where the actual local friction factor f is compared
with the fully developed value (marked f,, in the figure). It is
also clear from the figure that ACy; is negligible for a Reynolds
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Figure 6a Distortion of the parabolic shape of the velocity
profile at the entrance of the expansion (a) relative to the
theoretical shape (—) and to the profile at x/D,=—1.2 (a)
for Re=125

number of around 200, because the flow has a strong convection
that maintains the upstream flow fully developed until very close
to the expansion. At high-Reynolds numbers, the main contribu-
tion to this correction comes from the outlet pipe (AC;,) for the
same reason; i.e., the strong jet at the expansion takes longer to
diffuse to the wall and to evolve towards a fully developed flow.

At lower-Reynolds numbers (less than 10), the correction
from the inlet pipe also is important and in such way that it
becomes higher (but of the same order of magnitude) than that
introduced by the downstream pipe, for two reasons. First, for
low-Reynolds number flows, the fully developed friction factor
increases and any distortion imposed by the expansion on the
upstream pipe, however small, will have a greater impact. Sec-
ondly, as the flow slows down with the reduction in the Reynolds
number, the longitudinal viscous diffusion becomes more impor-
tant and contributes more to distort the flow upstream of the
expansion, as confirmed by the raising ratio ACy,/f, and the
increased values of AC;.

Initially, it was assumed that the last corrective term within
the braces of Equation 17 was of minor importance. However, in
order to explain the large discrepancy still present in Table 3 for
the low-Reynolds number flows, and also the fact that the error
for the higher-Reynolds number flows seems to be systematic, we
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Figure 6b Distortion of the parabolic shape of the velocity
profile at the entrance of the expansion () relative to the
theoretical shape (—) and to the profile at x/D,=—1.2 (a)

for Re=100
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from Equation 26 and 27 and comparison with theory for
Re=200

need to include that effect. The remaining corrective term is
attributable to a nonuniform pressure distribution at the expan-
sion plane (the AC,, term in Equation 17) observed in the
pressure contour plots not presented here but discussed above.
The two pressure coefficients in Equation 19 were obtained from
area-averaging the numerical results for the pressure distribution
immediately upstream ( p,) and downstream ( py,) of the expan-
sion plane (Figure 1), following exactly the definitions in Equa-
tions 13. Because the local pressure profile is not uniform, as
shown in Figure 8, C,, becomes different from C,g,. In this
figure, the y-scale is the same for the two flow cases (Re = 12.5
and Re =100) in order to emphasise the stronger effect for
low-Reynolds numbers.

The final corrected values of the standard theoretical C,, now
including the effects of nonuniform pressure and wall friction,
are listed in Table 4. Its inspection shows that the effect of
nonuniform pressure at the expansion plane leads to corrections
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Figure 8 Nonuniformity of the radial pressure profile at the
expansion plane: 01—just upstream of the sudden expan-
sion; 02—just downstream of the sudden expansion; pres-
sure coefficients are relative to area-averaged value at sta-
tion 01
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Table 4 Correction to C, attributed to nonuniform
pressure at the expansion

Re C, AC,, Cich Crec-th Error %
1 16.61 14.514 2.80 17.31 4.1
2 8.369 6.645 2.046 8.691 3.7
35 4.830 3.290 1.732 5.022 3.8
5 3.458 1.976 1.611 3.587 3.6
10 1.981 0.564 1.476 2.039 29
125 1.726 0.336 1.410 1.746 1.0

175 1.5608 0.129 1414 1.543 20
25 1.379 0.025 1.370 1.379 1.0
35 1.331 -0.019 1.365 1.346 1.0
50 1.306 —-0.035 1.346 1.311 04
75 1.301 -0.036 1.339 1.303 0.1
100 1.304 -0.033 1.337 1.304 0
125 1.308 -0.029 1.337 1.308 0
150 1.311 —-0.026 1.336 1.310 0.1
175 1.312 -0.023 1.338 1.314 0.2
200 1315 -0.021 1.338 1.316 0.1
225 1.317 -0.019 1.338 1.318 0.3

(Ci..¢n from Table 3 and C,.¢.,, is the C, corrected for all
effects)

(AC,y) of similar magnitude as those arising from upstream
velocity profile distortion (AC, in Table 3) for Reynolds num-
bers higher than 50, but then as the flow tends to the creeping
flow regime, it becomes the most important corrective term
followed by ACp,. Thus, AC,, accounts for a difference in C; of
19% for Re = 12.5, about 1.5% for Re = 225 but increases to
more than 85% at Re = 1. In all cases, the application of this
correction to the standard theory loss coefficient, following
Equation 17, brings the corrected values very close to the pre-
dicted values, with differences of less than 0.5% for Reynolds
numbers higher than 50 and of less than 4% for the Reynolds
number range limited by 1 and 25.

To summarise the work, Figure 9a shows a plot of the local
loss coefficient (C,) as a function of the Reynolds number, as
well as its major contributions, as indicated by Equation 17.
Inspection of this figure substantiates what has been mentioned
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Figure 9a Variation of the local loss coefficient and its
contributions with the Reynolds number, for a 1:2.6 sudden
expansion
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before: AC,, is the main contribution to C, at low-Reynolds
numbers and the correction AC,, to C, ,, dominates at higher-
Reynolds numbers. The low- and high-Reynolds number range
can be separated at Re = 17.5. Particularly insightful is the plot
of C; versus Re in the log-log scale shown in Figure 9b, from
which it is clear that it has two limiting behaviors at low (C; =
A/Re) and high-Reynolds numbers (C; = B), respectively, but
the intermediate variation is rather complicated as the value of
C, goes through a minimum. This last effect is brought by the
ACy, contribution and becomes stronger for larger expansion
ratios.

An outcome of the present work with practical importance is
the development of a correlation for calculating the local loss
coefficient as a function of the Reynolds number and expansion
ratio. For the 1:2.6 sudden expansion, with a fully developed inlet
flow and Reynolds numbers between 1 and 225, Equation 28 is
able to predict the computed local loss coefficient with an
accuracy better than 1% Reynolds numbers below 10 and above
50, and an error of 3% in the intermediate range, as shown in
Figure 9b.

19.2
)= qoom — 255+ 2.87logRe — 0.542 (log Re)’ (28)

The first term on the right-hand side mainly accounts for the
viscous behavior, and its form is almost inverse linear as ex-
plained throughout the text, and the remaining terms are related
to the intermediate and high-Reynolds number behaviour.

The different dependencies of the various corrective terms in
Equation 17 on the Reynolds number and expansion ratio, lead
to a rather complex correlation for C;, especially if intended for
accurate predictions over a wide range of Reynolds numbers and
expansion ratios. The dependence of C; on the expansion ratio
follows (1 — o) for low Re, because, in accordance with Equation
19, C;=(C))y, + AC,y. For high-Reynolds numbers, C,; =
(Cpy — ACr, and so we would expect to observe C;0% to
provide a universal correlation, but an exponent of sigma closer
to 0.4 seems more appropriate, although it still fails to provide
the correct dependence. The relevance of the many corrective
terms at intermediate Reynolds numbers and the way they vari-
ate with Re makes C, go through a minimum and complicates
the task of deriving a general equation. Such work is currently
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under way, and its results will be the subject of a technical note
to be presented in the near future, which will include correla-
tions for each corrective term in equation 17 as well as for the
total local loss coefficient.

Conclusions

The formulae presented in the literature for calculating the local
loss coefficient in sudden expansions is based on the simplified
theory that yields values significantly in error for laminar flow,
especially at low-Reynolds numbers. To understand those differ-
ences and derive better correlations, the quasi—one-dimensional
theory for the pressure drop in expansion flows was reformulated
(corrected theory), and a numerical study of the pressure-drop
characteristics of laminar flow of Newtonian fluids in sudden
expansion geometries was undertaken.

The numerical predictions were carried out using a finite
volume procedure based on second-order differencing schemes.
The calculated values of the recirculating bubble length, the eddy
strength and the location of the eddy centre matched available
experimental and numerical data, when approximately fully de-
veloped conditions were imposed at inlet. The computed fully
developed wall friction factors in the constant cross-section up-
stream and downstream pipes deviated less than 0.8% from the
theoretical values.

The local loss coefficient in a 1:26 sudden expansion was
predicted for inlet Reynolds numbers between 1 and 225 and
compared with the theoretical values of the standard theory. The
discrepancies between these two coefficients, which differed by
more than 900% relative to the standard literature correlation at
Reynolds numbers of the order of 1, were identified and quanti-
fied from the presented corrected-theory as:

(1) difference between the actual and the fully developed fric-
tional loss of the walis;

(2) distortion of the velocity profile upstream of the expansion;
and

(3) nonuniform pressure acting on the expansion plane.

At high-Reynolds number inertia-dominated flows, the fric-
tional effect was the most important, of the order of 20% of the
local loss coefficient, and the remaining effects were of opposite
signs and of the order of 1.5%; whereas, at the low-Reynolds
number viscous-dominated flows, the nonuniform pressure effect
accounted for more than 80% of the coefficient.

After correcting the local loss coefficient based on the stan-
dard theory for the aforementioned effects, the differences be-
tween the corrected and predicted coefficients were less than 1%
for Reynolds numbers above 17.5 and less than 4% for the
Reynolds numbers between 1 and 17.5. In this range, the loss
coefficient was found to be inversely proportional to the Reynolds
number; whereas, it was approximately constant for Reynolds
numbers above 17.5.

Finally, a correlation is proposed for the calculation of the
local loss coefficient in the 1:2.6 sudden expansion as a function
of the Reynolds number. Further work is currently under way to
extend this equation to a wider range of Reynolds numbers and
different expansion ratios.
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