THE EFFECT OF ORIENTATION ON THE SHOCK WAVE STRUCTURE OF A CARBON FIBRE-EPOXY COMPOSITE

Alexander A. Lukyanov
Research & Development, Schlumberger,
Abingdon OX14 1UJ, UK
e-mail: aaluk@mail.ru

Key words: Composite structures, Modelling, Shock Waves, Equation of State.

Summary. The effect of the fibre orientation on the shock wave structure of a carbon fibre-epoxy composite (CFC) of any symmetry has been studied using an anisotropic equation of state (EOS) for accurate extrapolation of high-pressure shock Hugoniot (anisotropic and isotropic) states to other thermodynamic (anisotropic and isotropic) states. The proposed EOS, using a generalised decomposition of a stress tensor, represents a mathematical and physical generalisation of the Mie-Grüneisen EOS for isotropic material and reduces to this equation in the limit of isotropy. A two-wave structure between the generalised anisotropic bulk shock velocity and particle velocity (non-linear anisotropic and isotropic elastic waves) that accompanies damage softening process was proposed for describing CFC behaviour under shock loading. The final set of governing equations describing isothermal steady-state shock wave propagation is the hyperbolic and has a divergent form. The Rankine-Hugoniot equations for the two-wave shock structure expressing the conservation laws of the governing equations are derived as:

\[\rho^i_{a} U^i_{a} = \rho^0_{a} U^0_{a} = m_{i,a}, \quad \frac{m_{i,a}^2}{\rho_{a}^0} - \sigma_{n}^i_{a} = \frac{m_{i,a}^2}{\rho_{a}^0} - \sigma_{n0}^i_{a} \]

where \(\rho^i_{a} \) and \(\rho^0_{a} \) are the densities behind and in front of the isotropic and anisotropic shock waves, \(m_{i,a} \) are the given mass flux values across the isotropic and anisotropic shock waves, \(\sigma_{n}^i_{a} \) and \(\sigma_{n0}^i_{a} \) are the stress behind and in front of the isotropic and anisotropic shock waves. The constitutive equations (contraction by repeating low indexes is assumed here) are written as:

\[\sigma_{kl}^i_{a} = -p^{*} \alpha_{kl}^i_{a} + \tilde{\sigma}_{kl}^i_{a}, \quad p^{*} = p^{EOS} + \frac{\beta_{kl}^i_{a} \tilde{\sigma}_{kl}^i_{a}}{\beta_{kl}^0}, \quad \sigma_{n}^i_{a} = n_{k} \sigma_{kl}^i_{a} n_{l} \]

where \(\sigma_{kl}^i_{a} \) and \(\tilde{\sigma}_{kl}^i_{a} \) are the isotropic and anisotropic stress and generalised deviatoric stress tensors, \(\alpha_{kl}^i_{a} \) and \(\beta_{kl}^i_{a} \) are the material tensors, \(n_{k} \) is the components of the normal to the shock wave surfaces. An analytical calculation showed that Hugoniot Stress Levels (HELS) in different directions for a CFC composite subject to the isothermal compressive two-wave structure agree with experimental measurements at low and at high shock intensities.