MECHANICAL BEHAVIOR OF Z-PINNED COMPOSITE LAMINATES USING CARBON FIBERS

Yong-Bin Parka, In-Hun Kima, Ik-Hyeon Choi†, Jin-Hwe Kweon a* and Jin-Ho Choi a

a Research Center for Aircraft Parts Technology, Department of Aerospace Engineering
Gyeongsang National University, Jinju, Gyeongnam 660-701, South Korea
a*Corresponding author. E-mail: jhkweon@gnu.ac.kr

† Korea Aerospace Research Institute, Daejeon, Korea
E-mail: ihchoi@kari.re.kr

Key words: Composite laminate, Z-pin, Mechanical properties, Homogenization.

Abstract. Composite laminates are more vulnerable to through-thickness loads than to in-plane loads. To overcome this weakness, through-thickness reinforcement is widely considered as an efficient way to improve the resistance of laminated composites against out-of-plane failures. However, through-thickness reinforcements, especially carbon z-pins which are popular for reinforcement, create resin-rich regions around the pins and warp the alignment of the fibers, and this causes the degradation of in-plane stiffness and strength of the composite laminates. In this study, carbon-epoxy composite laminates were reinforced by carbon z-pins to make up for their susceptibility to delamination. The main objective of this study is to investigate the effect of z-pin reinforcements on the mechanical properties of composite laminates produced by various manufacturing methods. Three different manufacturing methods were examined, namely, the normal ultrasonically assisted z-fiber (UAZ) process, a new z-pinning technique without ultrasonic equipment, and a modified UAZ process. Test results demonstrate that the modified UAZ method places the z-pins in better position; therefore, it provides higher effective moduli than other methods. The tested effective moduli of the z-pinned composite laminates are also compared with numerically predicted results using a homogenization method. The predicted effective moduli agree well with the test results.

Acknowledgement This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094015) and the Degree and Research Center for Aerospace Green Technology (DRC) of the Korea Aerospace Research Institute (KARI) funded by the Korea Research Council of Fundamental Science & Technology (KRCF).