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Abstract. The high-order statistics (moments and cumulants of order higher than
two) have been widely applied in several fields, specially in problems where it is
conjectured a lack of Gaussianity and/or non-linearity. Since the INteger-valued
AutoRegressive, INAR, models are non-Gaussian, the high-order statistics can pro-
vide additional information that allows a better characterization of these processes.
Thus, an estimation method for the parameters of an INAR model, based on Least
Squares applied on third-order moments is proposed. The results of a Monte Carlo
study, to investigate the performance of the estimator, are presented and the method
is applied to a set of real data.
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1 Introduction

In the recent past, the high-order statistics (HOS) have been widely applied in
several fields, specially in problems where is conjectured a lack of Gaussianity
and/or non-linearity. By HOS it is meant the moments and cumulants of order
higher than two, in the time domain, and the corresponding multidimensional
Fourier transform (polyspectrum), in the frequency domain. In this work, the
time domain approach is considered.

Let {X:} be a kth-order stationary stochastic process. The kth-order joint
moment of Xi, Xiqs,,..., Xits, o, for s1,...,8.—1 € R, is a function of
k — 1 variables defined by px(s1,...,s5-1) = E[X¢ X4, ... Xigs,_,], With

Recently, the integer-valued autoregressive process has been proposed in
the literature to model time series of counts. The pth-order integer-valued
autoregressive, INAR(p), process is defined as a discrete time non-negative
integer-valued stochastic process, { X}, that satisfies the following equation
(Latour (1998)):

Xi=arx Xy 1 +ae* Xy o+ +ap* Xy p+ ey, (1)

where
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(i) {et}, designated the innovation process, is a sequence of independent
and identically distributed (i.i.d.) non-negative integer-valued random
variables with Ele;] = e, Var[e;] = 02 and E[e}] = 7.;

(ii) the symbol * represents the thinning operation (Steutel and Van Harn
(1979), Gauthier and Latour (1994)), defined by

Xi—i

ai*Xt—i: Z }/i,ja for izl,...,p,
j=1

where {Y; ;}, designated the counting series, is a set of i.i.d. non-negative

integer-valued random variables such that E[Y; ;] = «;, Var[Y; ;] = o2
and E[Yf]] = ;. All the counting series are assumed independent of
{echs

(iii) 0<a; <1,i=1,...,p—1,and 0 < o, < 1. Note that the stationarity
condition for the INAR(p) process is that Y 7_, ax < 1.

A special case is the Poisson INAR process with binomial thinning operation,
where {e;} has a Poisson distribution with parameter A and the counting

series, {Yj(z)}, are a set of Bernoulli random variables with P(ij =1) =
1- Py =0) = a.

Since the INAR models are non-Gaussian, the HOS can provide additional
information in the characterization of these processes. Thus, an estimation
method for the parameters of an INAR model that uses HOS is proposed
in this work. This method applies the Least Squares estimation method to

minimize the errors between the third-order moment of the observations and
of the fitted model.

This work is organized as follows: in Section 2 the third-order charac-
terization of INAR(p) models is provided and the proposed Least Squares
Estimation method using HOS is described. In Section 3 the results of a
simulation study to assess the small sample properties of the proposed esti-
mator are given and the method is applied to a set of observations concerning
the number of plants within the industrial sector. Finally, some remarks are
presented in Section 4.

2 Least squares estimation using HOS

The third-order characterization, in terms of moments and cumulants, of
INAR models has been obtained by Silva and Oliveira (2004, 2005) and Silva
(2005). In particular, the third-order moments of an INAR(p) process, defined
by (1), satisfy a set of Yule-Walker type equations similar to those satisfied
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by the bilinear process, that can be written as:

x(0,0) = 327 2201 Doy o px (i — i — k)
330 2 oitux (i = g) + 3ux (02 4+ pe?) Y0y i
+3he Doy 25—y i (i — J) + Bpxpie 307y 0i°
+ux doby (vi — 3o — o) + e,

px(0,k) =30 aipx (0,k — i) + pepx (0), k>0, (3)

x(k, k) =300 20 aiaux (b — ik — 5) + 307, 05 ux (k — ) )
F2pepx (k) = px(pe® —oc?), k>0,

px (k,m) =30 aspx (k,m —i) + pepx (k), m>k>0, (5)

where px(0) = >0 aipx (i) + prepx + Vp, is the second-order moment of
{X:}, with V,, = 0.2 + pux Zle 0;2, which represents the variance of the
one-step-ahead prediction error (Silva (2005)).

These equations indicate that the INAR processes have a non-linear struc-
ture, therefore the first- and second-order moments are not sufficient to de-
scribe the dependence structure of the process.

Let {x1,x2,...,2,} be a realization of a non-negative integer-valued sta-
tionary stochastic process with third-order moments w©(0,%k), & > 0. The
approximating model considered is an INAR(p) process (order known) with
parameters o, ..., ap, fle, 02 and third-order moments ux (0, k), k > 0, sat-
isfying (3), which can be represented in the following matrix form

B3 x = M3 x o+ prepix (0)1,, (6)
where pg y is defined as
ps x =[x (0,1) -+ px(0,p)]"

M3 x is the p x p non-symmetric Toeplitz matrix of the third-order moments
of the INAR(p) process

px(0,0)  px(L,1) ...px(p—1,p—1)
px(0,1)  px(0,0) ...pux(p—2,p—2)
MS,X = . . . . )
px(0,p—1) px(0,p—2) ... px(0,0)
with p1x (-, ) given in (2) to (5), @ = [y --- a7 is the vector of coefficients,

px (0) is the second-order moment of the INAR(p) process and 1, is a p x 1
vector of ones.
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Defining
H=[M;x px(0)1,] and  0=[o1 - oy pel’
equation (6) can be rewritten as
K3 x = Ho,

suggesting that @ may be estimated by least squares, i.e., minimizing the
squared error between the third-order moments of the fitted INAR(p) model,
K3 x, and the third-order moments of the data,

s = [p(0,1) -+ p(0,p)]"

Thus, é, the Least Squares estimator of 8 based on HOS (LS_HOS) sat-
isfies X
0= mein {L*(0)}
where
L7(8) = (113 — HO)" (11, — HO).

In practice, the estimator is calculated by substituting the moments in
s and H by their sample counterparts.
Thus,

6 = min {L*(6)} = min { (s — F16)" (1, — F16)).

Note that an estimator for o2 can be obtained by 62 =V}, — XyP 62
where X is the sample mean of the observations, 62 is an estimator of the

)

counting series variance for the ¢-th thinning operation, a;*X;_;,i =1,...,p,
and V, = R(0) — Y0, & R(i), with R(i) = £ SN (X; — X)(Xips — X),

representing the sample autocovariance function. The estimation of 62 de-
pends on the distribution of the counting series, for instance, in the case
of the binomial thinning operation (when the counting series are Bernoulli
distributed), 67 = d;(1 — &), for i =1,...,p.

3 Monte Carlo results and application to real data

The aim of the simulation study presented in this section is twofold: to ex-
amine the small sample properties of the estimator previously described and
compare its performance with other estimation methods for the parameters
of an INAR process.

Thus, 1000 realizations of Poisson INAR(p) processes (e; ~ Po(N)), with
binomial thinning operation, are generated, for p = 0,...,3. The sample
sizes used are N = 50,200,500 and 1000 and parameter values considered
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Fig. 1. Boxplots of the sample bias for the estimates obtained in 1000 realizations
of 50 and 200 observations of the INAR(1) model: X; = 0.9 * X;_1 + e, where
et ~ Po(1).

are: A € {1.0,3.0}, for p = 1, o € {0.1,0.4,0.6,0.9}, for p = 2, (a1,0) €
{(0.1,0.6), (0.6,0.1), (0.3,0.4), (0.4,0.3), (0.1,0.1), (0.4,0.4)}, and for p = 3,
(a1, o2, a3) € {(0.1,0.1,0.4), (0.1,0.4,0.1), (0.4,0.1,0.1), (0.3,0.3,0.3)}.

For each realization, the estimation methods used to obtain 6 = [G,. ..,
Gy, fre]T are Yule-Walker (YW), Conditional Least Squares (CLS), Whittle
(WHT) and Least Squares using HOS (LS_HOS). For a detailed descrip-
tion of the YW, CLS and WHT estimation methods see Silva (2005). The
minimizations necessary in the methods CLS, WHT and LS_HOS are per-
formed through the MATLAB function fminunc, which finds a minimum
of a scalar unconstrained multivariable function by using the BFGS Quasi-
Newton method with a mixed quadratic and cubic line search procedure
(MathWorks (2004)). The initial values of the iterative methods (CLS, WHT
and LS_HOS) are the YW estimates. For each case, the mean bias, variance
and mean square error are evaluated.

With respect to the small sample properties of the LS_HOS estimator, the
following conclusions can be drawn from the analysis of all the simulations.
In general, the sample bias, variance and mean square error decrease as the
sample size increases, indicating that the distribution of the estimators is
consistent and symmetric. However, for a small sample size there is evidence
of departure from symmetry in the marginal distributions, specially for values
of the parameter near the non-stationary region.

When the several estimation methods are compared it is found that the
LS_HOS provides similar results, in terms of the smallest values of sample
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bias, variance and mean square error, to the other methods. It is also verified
that, in general, the proportion of non-admissible estimates of the methods
is less for LS_HOS, followed by WHT and CLS. In order to illustrate some
of these conclusions, Figure 1 shows the boxplots of the sample bias for the
estimates obtained from 50 and 200 observations of the INAR(1) process with
parameter values (ag,\) = (0.9,1.0). Note that the value of « is near the
non-stationary region, however, even for N = 50 observations, the LS_HOS
estimates presents the best results.
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Fig. 2. The number of Swedish mechanical paper and pulp mills, from 1921 to
1981, and the fitted values considering the LS_HOS and CLS estimates.

Figure 2 presents the number of Swedish mechanical paper and pulp
mills, from 1921 to 1981, used by Brénnéds (1995) and Brannés and Hell-
strom (2001). These authors fitted an INAR(1) process to this dataset using
some explanatory variables. Here, an INAR(1) process where the innovations
are i.i.d. with mean y. and variance o2 is considered. Since the mean of the
data is 20.40 and its variance is 155.16, a Poisson innovation process is not
assumed but then the method does not require that or anyother assumption
on the distribution of the innovations. Table 1 presents the parameter esti-
mates obtained by CLS and LS_HOS methods. The fit of both models, based
on LS_HOS and CLS estimates, are also shown in Figure 2. The mean square
errors (MSE) between the observations and the fitted values are exhibited in
Table 1. It can be seen that the MSE is slightly smaller for the LS_HOS fit

than for CLS fit. The last two columns of the table present the mean and
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variance of the estimated models:

fip = _ and 5_3 _ (1 _éé)/\(ﬂed—i_?g)

1—é& (1—-a)201+a)
It is noticeable that the model estimated by LS_HOS presents mean and
variance closer to the sample values. The residuals from both fitted models
are uncorrelated.

Method & fie &2 MSE [l 52
CLS 0.9591 0.2017 15.2268 8.5494 4.9315 192.2764
LS_HOS 0.9269 1.3635 19.2253 7.4465 18.6525 145.4513

Table 1. The parameter estimates of the number of Swedish mechanical paper and
pulp mills, from 1921 to 1981.

4 Final remarks

The principal advantage of HOS is the capability to detect and characterize
the deviations from Gaussianity and non-linearity of the processes. Thus in
this work a new estimation method for the parameters of INAR processes
based on HOS is proposed. This method uses the Least Squares estimation
to minimize the errors between the third-order moment of the observations
and of the fitted model. A Monte Carlo study indicates that this estima-
tion method provides good results in small samples, in terms of sample bias,
variance and mean square error. Moreover, when used in the context of a
non-Poisson real dataset the LS_HOS estimates provide a model with mean,
variance and autocorrelations closer to the sample values.
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