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Abstract. The high-order statistics (moments and cumulants of order higher than
two) have been widely applied in several fields, specially in problems where it is
conjectured a lack of Gaussianity and/or non-linearity. Since the INteger-valued
AutoRegressive, INAR, models are non-Gaussian, the high-order statistics can pro-
vide additional information that allows a better characterization of these processes.
Thus, an estimation method for the parameters of an INAR model, based on Least
Squares applied on third-order moments is proposed. The results of a Monte Carlo
study, to investigate the performance of the estimator, are presented and the method
is applied to a set of real data.
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1 Introduction

In the recent past, the high-order statistics (HOS) have been widely applied in
several fields, specially in problems where is conjectured a lack of Gaussianity
and/or non-linearity. By HOS it is meant the moments and cumulants of order
higher than two, in the time domain, and the corresponding multidimensional
Fourier transform (polyspectrum), in the frequency domain. In this work, the
time domain approach is considered.

Let {Xt} be a kth-order stationary stochastic process. The kth-order joint
moment of Xt, Xt+s1

, . . . , Xt+sk−1
, for s1, . . . , sk−1 ∈ R, is a function of

k − 1 variables defined by µX(s1, . . . , sk−1) = E[XtXt+s1
. . . Xt+sk−1

], with
µX = E[Xt].

Recently, the integer-valued autoregressive process has been proposed in
the literature to model time series of counts. The pth-order integer-valued
autoregressive, INAR(p), process is defined as a discrete time non-negative
integer-valued stochastic process, {Xt}, that satisfies the following equation
(Latour (1998)):

Xt = α1 ∗Xt−1 + α2 ∗Xt−2 + · · ·+ αp ∗Xt−p + et, (1)

where
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(i) {et}, designated the innovation process, is a sequence of independent
and identically distributed (i.i.d.) non-negative integer-valued random
variables with E[et] = µe, V ar[et] = σ2

e and E[e3
t ] = γe;

(ii) the symbol ∗ represents the thinning operation (Steutel and V an Harn
(197 9), Gauthier and Latour (1994)), defined by

αi ∗Xt−i =

Xt−i
∑

j= 1

Yi,j , for i = 1, . . . , p,

where {Yi,j}, designated the counting series, is a set of i.i.d. non-negative
integer-valued random variables such that E[Yi,j ] = αi, V ar[Yi,j ] = σ2

i

and E[Y 3
i,j ] = γi. All the counting series are assumed independent of

{et};

(iii) 0 ≤ αi < 1, i = 1, . . . , p− 1, and 0 < αp < 1. Note that the stationarity
condition for the INAR(p) process is that

∑p

k= 1 αk < 1.

A special case is the P oisson INAR process with binomial thinning operation,
where {et} has a P oisson distribution with parameter λ and the counting

series, {Y
(i)
j }, are a set of Bernoulli random variables with P (Y

(i)
j = 1) =

1− P (Y
(i)
j = 0) = αi.

Since the INAR models are non-Gaussian, the HOS can provide additional
information in the characterization of these processes. Thus, an estimation
method for the parameters of an INAR model that uses HOS is proposed
in this work. This method applies the Least Squares estimation method to
minimize the errors between the third-order moment of the observations and
of the fitted model.

This work is organized as follows: in Section 2 the third-order charac-
terization of INAR(p) models is provided and the proposed Least Squares
Estimation method using HOS is described. In Section 3 the results of a
simulation study to assess the small sample properties of the proposed esti-
mator are given and the method is applied to a set of observations concerning
the number of plants within the industrial sector. Finally, some remarks are
presented in Section 4.

2 L east sq uares estimation using HOS

The third-order characterization, in terms of moments and cumulants, of
INAR models has been obtained by Silva and Oliveira (2004, 2005 ) and Silva
(2005 ). In particular, the third-order moments of an INAR(p) process, defined
by (1), satisfy a set of Y ule-W alker type equations similar to those satisfied
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by the bilinear process, that can be written as:

µX(0, 0) =
∑p

i= 1

∑p

j= 1

∑p

k= 1 αiαjαk µX(i− j, i − k)

+3
∑p

i= 1

∑p

j= 1 αjσi
2µX(i − j) + 3µX(σ2

e + µe
2)

∑p

i= 1 αi

+3µe

∑p

i= 1

∑p

j= 1 αiαjµX(i− j) + 3µXµe

∑p

i= 1 σi
2

+µX

∑p

i= 1 (γi − 3αiσi
2 − α3

i ) + γe,

(2)

µX(0, k) =
∑p

i= 1 αiµX(0, k − i) + µeµX(0), k > 0, (3)

µX(k, k) =
∑p

i= 1

∑p

j= 1 αiαj µX(k − i, k − j) +
∑p

i= 1 σi
2µX(k − i)

+2µeµX(k)− µX(µe
2 − σe

2), k > 0,
(4)

µX(k, m ) =
∑p

i= 1 αiµX(k, m − i) + µeµX(k), m > k > 0, (5 )

where µX(0) =
∑p

i= 1 αiµX(i) + µeµX + Vp, is the second-order moment of
{Xt}, with Vp = σe

2 + µX

∑p

i= 1 σi
2, which represents the variance of the

one-step-ahead prediction error (Silva (2005 )).
These equations indicate that the INAR processes have a non-linear struc-

ture, therefore the first- and second-order moments are not suffi cient to de-
scribe the dependence structure of the process.

Let {x1, x2, . . . , xn} be a realization of a non-negative integer-valued sta-
tionary stochastic process with third-order moments µ(0, k), k > 0. The
approx imating model considered is an INAR(p) process (order known) with
parameters α1, . . . , αp, µe, σ

2
e and third-order moments µX(0, k), k > 0, sat-

isfying (3), which can be represented in the following matrix form

µ3,X = M3,Xα + µeµX(0)1p, (6)

where µ3,X is defined as

µ3,X = [µX(0, 1) · · · µX(0, p) ]T ,

M3,X is the p×p non-symmetric Toeplitz matrix of the third-order moments
of the INAR(p) process

M3,X =















µX(0, 0) µX(1, 1) . . . µX(p− 1, p− 1)

µX(0, 1) µX(0, 0) . . . µX(p− 2, p− 2)
...

...
. . .

...

µX(0, p− 1) µX(0, p− 2) . . . µX(0, 0)















,

with µX(·, ·) given in (2) to (5 ), α = [α1 · · · αp ]T is the vector of coeffi cients,

µX(0) is the second-order moment of the INAR(p) process and 1p is a p× 1
vector of ones.
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D efining

H = [M3,X µX(0)1p] and θ = [α1 · · · αp µe ]T ,

equation (6) can be rewritten as

µ3,X = Hθ,

suggesting that θ may be estimated by least squares, i.e., minimiz ing the
squared error between the third-order moments of the fitted INAR(p) model,
µ3,X , and the third-order moments of the data,

µ3 = [µ(0, 1) · · · µ(0, p) ]T .

Thus, θ̂, the Least Squares estimator of θ based on HOS (LS HOS) sat-
isfies

θ̂ = min
θ

{L∗(θ)}

where
L∗(θ) = (µ3 −Hθ)T (µ3 −Hθ).

In practice, the estimator is calculated by substituting the moments in
µ3 and H by their sample counterparts.

Thus,

θ̂ = min
θ

{L̂∗(θ)} = min
θ

{(µ̂3 − Ĥθ)T (µ̂3 − Ĥθ)}.

Note that an estimator for σ2
e can be obtained by σ̂2

e = V̂p −X
∑p

i= 1 σ̂2
i ,

where X is the sample mean of the observations, σ̂2
i is an estimator of the

counting series variance for the i-th thinning operation, αi∗Xt−i, i = 1, . . . , p,

and V̂p = R̂(0) −
∑p

i= 1 α̂iR̂(i), with R̂(i) = 1
N

∑N−i

t= 1 (Xt −X)(Xt+i −X),
representing the sample autocovariance function. The estimation of σ̂2

i de-
pends on the distribution of the counting series, for instance, in the case
of the binomial thinning operation (when the counting series are Bernoulli
distributed), σ̂2

i = α̂i(1− α̂i), for i = 1, . . . , p.

3 M onte C arlo results and ap p lication to real data

The aim of the simulation study presented in this section is twofold: to ex -
amine the small sample properties of the estimator previously described and
compare its performance with other estimation methods for the parameters
of an INAR process.

Thus, 1000 realizations of P oisson INAR(p) processes (et ∼ P o(λ)), with
binomial thinning operation, are generated, for p = 0, . . . , 3. The sample
sizes used are N = 5 0, 200, 5 00 and 1000 and parameter values considered
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F ig . 1 . B ox plots of the sample bias for the estimates obtained in 1 000 realizations
of 50 and 200 observations of the INAR(1 ) model: Xt = 0.9 ∗ Xt−1 + et, where
et ∼ Po(1 ).

are: λ ∈ {1.0, 3.0}, for p = 1, α1 ∈ {0.1, 0.4, 0.6, 0.9}, for p = 2, (α1, α2) ∈
{(0.1, 0.6), (0.6, 0.1), (0.3, 0.4), (0.4, 0.3), (0.1, 0.1), (0.4, 0.4)}, and for p = 3,

(α1, α2, α3) ∈ {(0.1, 0.1, 0.4), (0.1, 0.4, 0.1), (0.4, 0.1, 0.1), (0.3, 0.3, 0.3)}.

For each realization, the estimation methods used to obtain θ̂ = [α̂1, . . . ,

α̂p, µ̂e]
T are Y ule-W alker (Y W ), C onditional Least Squares (C LS), W hittle

(W HT) and Least Squares using HOS (LS HOS). For a detailed descrip-
tion of the Y W , C LS and W HT estimation methods see Silva (2005 ). The
minimizations necessary in the methods C LS, W HT and LS HOS are per-
formed through the MATLAB function fm in u n c , which finds a minimum
of a scalar unconstrained multivariable function by using the BFGS Q uasi-
Newton method with a mix ed quadratic and cubic line search procedure
(MathW orks (2004)). The initial values of the iterative methods (C LS, W HT
and LS HOS) are the Y W estimates. For each case, the mean bias, variance
and mean square error are evaluated.

W ith respect to the small sample properties of the LS HOS estimator, the
following conclusions can be drawn from the analysis of all the simulations.
In general, the sample bias, variance and mean square error decrease as the
sample size increases, indicating that the distribution of the estimators is
consistent and symmetric. However, for a small sample size there is evidence
of departure from symmetry in the marginal distributions, specially for values
of the parameter near the non-stationary region.

W hen the several estimation methods are compared it is found that the
LS HOS provides similar results, in terms of the smallest values of sample
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bias, variance and mean square error, to the other methods. It is also verified
that, in general, the proportion of non-admissible estimates of the methods
is less for LS HOS, followed by W HT and C LS. In order to illustrate some
of these conclusions, Figure 1 shows the box plots of the sample bias for the
estimates obtained from 5 0 and 200 observations of the INAR(1) process with
parameter values (α1, λ) = (0.9, 1.0). Note that the value of α is near the
non-stationary region, however, even for N = 5 0 observations, the LS HOS
estimates presents the best results.
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Real data

LS_HOS

CLS

F ig . 2 . The number of Swedish mechanical paper and pulp mills, from 1 921 to
1 98 1 , and the fitted values considering the LS H O S and CLS estimates.

Figure 2 presents the number of Swedish mechanical paper and pulp
mills, from 1921 to 1981, used by Brännäs (1995 ) and Brännäs and Hell-
ström (2001). These authors fitted an INAR(1) process to this dataset using
some ex planatory variables. Here, an INAR(1) process where the innovations
are i.i.d. with mean µe and variance σ2

e is considered. Since the mean of the
data is 20.40 and its variance is 15 5 .16, a P oisson innovation process is not
assumed but then the method does not require that or anyother assumption
on the distribution of the innovations. Table 1 presents the parameter esti-
mates obtained by C LS and LS HOS methods. The fit of both models, based
on LS HOS and C LS estimates, are also shown in Figure 2. The mean square
errors (MSE) between the observations and the fitted values are ex hibited in
Table 1. It can be seen that the MSE is slightly smaller for the LS HOS fit
than for C LS fit. The last two columns of the table present the mean and
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variance of the estimated models:

µ̂x =
µ̂e

1− α̂
and σ̂2

x =
(1 − α̂)(µ̂eα̂ + σ̂2

e)

(1− α̂)2(1 + α̂)
.

It is noticeable that the model estimated by LS HOS presents mean and
variance closer to the sample values. The residuals from both fitted models
are uncorrelated.

Method α̂ µ̂e σ̂2

e MSE µ̂x σ̂2

x

CLS 0.9591 0.201 7 1 5.2268 8 .5494 4.93 1 5 1 92.27 64

LS H O S 0.9269 1 .3 63 5 1 9.2253 7 .4465 1 8 .6525 1 45.451 3

T able 1 . The parameter estimates of the number of Swedish mechanical paper and
pulp mills, from 1 921 to 1 98 1 .

4 F inal remark s

The principal advantage of HOS is the capability to detect and characterize
the deviations from Gaussianity and non-linearity of the processes. Thus in
this work a new estimation method for the parameters of INAR processes
based on HOS is proposed. This method uses the Least Squares estimation
to minimize the errors between the third-order moment of the observations
and of the fitted model. A Monte C arlo study indicates that this estima-
tion method provides good results in small samples, in terms of sample bias,
variance and mean square error. Moreover, when used in the contex t of a
non-P oisson real dataset the LS HOS estimates provide a model with mean,
variance and autocorrelations closer to the sample values.
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B RÄNNÄS, K . (1 995): Ex planatory variables in the AR(1 ) count data model. U me̊a
E co n omic S tud ies 3 8 1 .
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