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Abstract

Muscle relaxant drugs are currently given during surgical operations. The design
of controllers for the automatic control of neuromuscular blockade benefits from
an individual tuning of the controller to the characteristics of the patient. A novel
approach to the characterization of the neuromuscular blockade response induced by
an initial bolus at the beginning of anaesthesia is proposed. This approach is based
on the statistical analysis of the data using principal components and Walsh-Fourier
spectral analysis. These methods provide information about the patients dynamics,
allowing the on-line autocalibration of the controller, using multiple linear regression
techniques. Observed and simulated data are used to compare different approaches
to the characterization of the bolus response.
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1 Introduction

The development of automatic control systems for the continuous adminis-
tration of drugs has been a subject of interest in the last decades and, in
particular, for the control of the neuromuscular blockade during a surgical
procedure. The non-depolarising types of muscle relaxant act by blocking the
neuromuscular transmission, thereby producing muscle paralysis. The extent
of muscle paralysis (or muscle relaxation) is then measured from an evoked
EMG obtained at the hand by electrical external stimulation. A variety of
different approaches to the design of an automatic control system for the neu-
romuscular blockade has been proposed (Linkens, 1994; Schilden and Olkkola,
1991; Wait et al., 1987). The design of these controllers is usually supported
on a prototype for the nonlinear dynamical relationship between the muscle
relaxant dose and the induced muscle paralysis. Such a prototype, which can
be deduced from the available pharmacokinetic and pharmacodynamic data
for the drug, merely describes the average characteristics of the response to
the drug. However, in practice, a large variability of the individual responses
to the infusion of the muscle relaxant is observed (Lago et al., 1998; Mendonça
and Lago, 1998). This variability suggests the need for an individual tuning
of the controller according to the characteristics of the patient (Lago et al.,
1998; Mendonça and Lago, 1998).

For clinical reasons, the patient must undergo an initial bolus dose to induce
total muscle relaxation in a very short period of time (usually shorter than 5
minutes). It is reasonable to assume that the response of the patient to the
bolus carries valuable information that should be accounted for in the design
of an automatic control system for the neuromuscular blockade, thus resulting
in an improved tuning of the controller to the patients individual dynamics
and dosage requirements.

Methods for the on-line autocalibration of a digital PID controller parameters
for the administration of a muscle relaxant have been already proposed (Lago
et al., 1998, 2000; Mendonça and Lago, 1998). The parameters of the PID
controller (namely the proportional gain, the derivative gain and the integral
time constant) have been obtained from the L and R parameters deduced
from the Ziegler-Nichols step response method (Franklin, 1994), applied to
the pharmacokinetic/pharmacodynamic model for the muscle relaxant. The
subsequent tuning of the controller to the dynamics of a patient undergoing
surgery is performed by adjusting multiple linear regression models of L and
R−1 on explanatory or predictor variables extracted from the observed bolus

response. Here, three different approaches to the characterization of the ob-
served bolus response are considered. The bolus response is analysed using two
statistical techniques: principal components analysis, PCA, and Walsh-Fourier
spectral analysis, WFA, thus obtaining predictor variables for the controller
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parameters. The descriptions of the bolus response proposed here, PCA and
WFA, are compared with an alternative method based on the bolus response
shape parameters, SPA (Lago et al., 1998, 2000; Mendonça and Lago, 1998).

2 Bolus Response Data Analysis

In this section the neuromuscular blockade model is presented and three dif-
ferent approaches are used to characterize the observed bolus response.

2.1 Empirical Model

The dynamic response of the neuromuscular blockade may be modelled by a
Wiener structure (Lago et al., 1998; Weatherley et al., 1983). It is composed
by a linear compartmental pharmacokinetic model relating the drug infusion
rate u(t) (µg kg−1min−1), to the plasma concentration cp(t) (µgml−1), and a
nonlinear dynamic model relating cp(t) to the induced pharmacodynamic re-
sponse, r(t) (%). The variable r(t), normalized between 0 and 100, measures
the level of the neuromuscular blockade, 0 corresponding to full paralysis and
100 to full muscular activity. In this study the muscle relaxation drug used
is the atracurium (Ward et al., 1983; Weatherley et al., 1983). The pharma-
cokinetic model may be described by the state equations,



























ẋ1(t) = −λ1x1(t) + a1u(t),

ẋ2(t) = −λ2x2(t) + a2u(t),

cp(t) =
2

∑

i=1

xi(t),

(1)

where ai (kgml−1) and λi (min−1) (i = 1, 2) are the pharmacokinetic patient-
dependent parameters, u(t) is the quantity of drug administered by time unit,
xi(t) (i = 1, 2) are the state variables and cp(t) is the plasma concentration.
The pharmacodynamic effect for atracurium may be modelled by the Hill
equation,

r(t) =
100Cβ

50

Cβ
50 + cβe (t)

, (2)

where the effect concentration ce(t) (µgml−1) is related to cp(t) by

3



ċe(t) = ke0cp(t) − ke0ce(t), (3)

where ke0 (min−1), C50 (µgml−1) and β are also patient-dependent param-
eters. Figure 1a) illustrates the responses induced on 85 patients by the ad-
ministration of a bolus of 500 µg kg−1 of atracurium in the beginning of the
surgery. In order to accommodate the clinical data, the model for atracurium

has been modified including on the linear part of the system a first order block,

g(s) =
1/τ

s + 1/τ
, (4)

in a series connection. The time constant τ (min) is assumed to be a random
variable independent of the remaining pharmacokinetic / pharmacodynamic
parameters (Lago et al., 1998).

Therefore, the linear part of the resulting empirical model may be represented
by the following transfer function from u to ce,

hL(s) =
(

a1

s+ λ1

+
a2

s+ λ2

)

ke0

s+ ke0

1/τ

s+ 1/τ
. (5)

The neuromuscular relaxation level is simulated assuming an uniform distribu-
tion for τ and a multidimensional log-normal distribution for the seven phar-
macokinetic/pharmacodynamic parameters and used throughout this study.
Also, for a better replication of the clinical environment, simulated measure-
ment log-normal noise is added to each of the generated models. Figure 1b)
illustrates 100 responses simulated the empirical model (equations (2) and (5))
using an uniform distribution for τ on the interval [0,3.5] minutes. As illus-
trated, the empirical model replicates well the characteristics of the patients
responses in figure 1(a).

2.2 Bolus Response Shape Parameters

A method to characterize the bolus response based on shape parameters ob-
tained on-line, has been proposed (Lago et al., 1998; Mendonça and Lago,
1998; Lago et al., 2000). The diagram on figure 2 represents the shape param-
eters used to characterize the response induced by a bolus of muscle relaxant
administered at t = 0 minutes. T80, T50 and T10 are elapsed times between
the bolus administration and the time the response r(t) becomes less than
80%, 50% and 10%, respectively. S is a slope parameter and P is a persistence
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Fig. 1. The responses induced by a bolus of 500 µg kg−1 of atracurium on 85 patients
undergoing surgery-(a) and simulated responses (100 models) induced by a bolus of
500 µg kg−1 of atracurium with added measurement noise-(b)

parameter, since it describes the duration of the bolus effect on the patient.
However, in a clinical situation the bolus response may not reach a sufficiently
low level to allow the estimation of parameter P. Thus, although the param-
eter P is used in this study with simulated data, it cannot be used in a real
situation.

 

P 

r(t) 

S 

80% 

50% 

10% 

T80 T50 T10 time (min) 

Fig. 2. Parameters used to characterize the neuromuscular blockade response induced
by a bolus of a muscle relaxant administered at t = 0 minutes.

2.3 Bolus Response Principal Components Analysis

Principal component analysis is a statistical procedure which is performed
in order to simplify the description of a set of correlated variables. In the
present situation those variables are the m time consecutive measurements,
r(1), ..., r(m), of the muscle relaxation response induced by the bolus of muscle
relaxant given in the beginning of anaesthesia. The measurements are taken
every δt seconds on the interval [0, (m − 1).δt] (δt = 20 seconds is a typical
value). Let r be the random vector r = [r(1), ..., r(m)]T with mean r0 and
correlation matrix Σ.
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Fig. 3. Simulated responses (100 models) induced by a bolus of 500 µg kg−1 of
atracurium without added noise -(a) and projections of these simulated responses
using 3 principal components -(b).

Each principal component is a linear combination of these variables. The co-
efficients of these linear combinations are chosen such that they define or-
thogonal directions of maximum variability and are obtained as the eigenvec-
tors, ν1, . . . ,νm, of Σ. Considering only the k most significant eigenvalues,
θ1, . . . , θk, the vector r is projected on a lower dimensional space without loos-
ing much information, as follows

r ≈ r0 + νa, (6)

where

a = ν
T (r− r0), (7)

and ν = [ν1, . . . ,νk].

The proportion of the total variation in the original data explained by the first
k components is given by

pk =

∑k
j=1

θj
∑m

j=1
θj

.

Consider the 100 simulated responses induced by a bolus of 500 µgkg−1 of
atracurium without added noise, represented in Figure 3(a). Performing PCA
on this data, it is found that the proportions of the total variation explained
by the first 3, 5 and 10 principal components are p3 = 98.5%, p5 = 99.8%
and p10 = 100%, respectively. Thus, for practical purposes it is considered
that the muscle relaxation response can be accurately represented by the first
three principal components. The projections of each simulated response on this
lower dimensional space is obtained from equation (6) for k = 3. Figure 3(b)
illustrates the projections for the set of 100 simulated responses represented
in figure 3(a).
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2.4 Bolus Response Walsh-Fourier Spectral Analysis

Walsh-Fourier spectral analysis is a procedure used to analyse and characterize
time series, specially when sharp discontinuities and changes of level occur in
the data. The procedure is similar to the well known Fourier analysis, used
to characterize periodic variation in a continuous signal. The Walsh-Fourier
analysis is based in the Walsh functions which form a complete, ordered and
orthonormed set of rectangular waves taking the values -1 and 1 (Beauchamp,
1975; Harmuth, 1977; Kohn, 1980). The Walsh functions may be ordered in
the so called Walsh or sequency order, which is comparable to the frequency
order of sines and cosines. The sequency-ordered Walsh functions are denoted
by W (n, t), where t ∈ [0, 1[ and n = 1, 2, . . . , the sequency, represents the
number of times that the function switches signs in the unit interval.

Let {X(t)} be a stationary stochastic process, with zero mean and absolutely
summable autocovariance function, R(k). The Walsh-Fourier spectral density

function of X(t) is defined as (Morettin, 1981; Robinson, 1972; Stoffer, 1987,
1991)

f(λ) =
∞
∑

τ=0

Γ(τ)W (τ, λ), 0 ≤ λ < 1, (8)

where Γ(j) is the logical covariance defined by

Γ(j) =
1

N

N−1
∑

k=0

R(j ⊕ k − k), 1 ≤ j < N, (9)

with ⊕ being the dyadic sum (Robinson, 1972). Let x(0), . . . , x(N − 1) be N
observations of the process. An estimator of the spectral density is the Walsh

periodogram of the data

IW (λj) =

[

1√
N

N−1
∑

n=0

x(n)W (n, λj)

]2

, (10)

where λj is a sequency of the form λj = j/N, 1 ≤ j ≤ N − 1. One can plot
IW (λj) versus λj to inspect for peaks. In the sequency domain, a peak indicates
”a switch each λj time points”.

Considering that during the surgical intervention a patient attains different
levels of neuromuscular blockade, we investigate how the Walsh-Fourier anal-

ysis, WFA, can contribute to improve the controller. Accordingly, the Walsh
periodogram of the induced neuromuscular blockade, r(t), is evaluated on
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Fig. 4. Walsh periodogram of one of the patients.

data collected during surgery: 34 clinical trials with neuromuscular blockade
induced by a bolus of atracurium, measured during, approximately, 42 min-
utes, in a total of 128 samples. The periodograms thus obtained present peaks
in the neighbourhood of the sequencies 3/128, 7/128 and 15/128 which cor-
respond to average periods (Harmuth, 1977) of 14.2 minutes, 6.1 minutes and
2.8 minutes, respectively. In Figure 4 the Walsh periodogram of one of the real
cases is exhibited.

To investigate the relationship between the relaxation level at the average

periods given by the Walsh-Fourier spectral analysis and the shape parame-
ters (T10, T50, T80, S and P), the correlation coefficients are computed, for
simulated models with and without added noise and for the set of real data
available, and found significant. Table 1 presents the correlation coefficients
between T50 and the relaxation level at some of the average periods, which
are highly significant (p-value < 0.001), thus establishing a clear relationship
between these parameters and validating the use of T50 to characterize the
individual dynamic model (Lago et al., 1998, 2000; Mendonça and Lago, 1998).

Without With Real

noise noise data

r (1.7) r (3.0) r (1.7) r (3.0) r (3.0) r (7.0)

T50 0.86 0.94 0.85 0.93 0.90 0.77

Table 1
Correlation coefficients.

3 Regression models for the controller parameters

In this section, multiple linear regression models for each of the controller
parameters, L and R−1, on the explanatory (or predictor) variables extracted
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from the observed bolus response are constructed as follows. Consider a set of
N independent observations (φi, ψi1, . . . , ψip), i = 1, . . . , N where φi represents
the observed value of the controller parameter, either L or R−1, and the ψij

represent the observed values of the explanatory or predictor variables. Here
the explanatory or predictor variables considered are: the shape parameters
(SPA), the principal components (PCA) and the values of the bolus response
at the Walsh-Fourier periods (WFA). Preliminary data analysis indicates that
a multiple linear regression model is adequate.

Let Φ(N × 1) represent the vector of the controller parameter variables, as-
sumed uncorrelated. Let Ψ be a N × (p + 1) matrix of observed constants
extracted from the bolus response,

Ψ =





















1 ψ11 . . . ψ1p

1 ψ21 . . . ψ2p

. . . . . . . . . . . .

1 ψN1 . . . ψNp





















, (11)

and let α denote a ((p + 1) × 1) vector of unknown parameters. Then, the
controller parameters and the bolus response are related by the equation,

Φ = Ψ α + ε, (12)

where ε is a vector of uncorrelated random variables, normally distributed
with mean 0 and variance σ2. The observations on Φ and Ψ are obtained
from a set of N = 500 simulated models for the neuromuscular blockade
response, without and with added noise, as introduced in section 2.1. The
multiple regression models are then fitted by least-squares. The variables to
be included in the model, are chosen by a stepwise selection method (Draper
and Smith, 1981) and the usual residual checks are performed for all the
regression models. In the following sections, the regression models presented
are obtained from the simulated data without added noise. In the last section,
to compare the different approaches, the worst case is considered: simulated
data (neuromuscular blockade level) with added noise.

3.1 Regression on the Shape Parameters

In this section the shape parameters are used as explanatory variables for the
controller parameters. Linear regression models of L and R−1, on T50, T10,
T80, S and P are computed and summarized in table 2 with the corresponding
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Without noise

Model R2 MSE

SP1 L̂ = 1.199 + 1.171 T50 87 0.125

SP2 L̂ = -0.184 + 1.303 T50 + 0.039 P 94 0.060

SP3 L̂ = 0.591 + 1.092 T50 + 0.007 S + 0.047 P 95 0.048

SP4 L̂ = 0.984 - 2.482 T80 + 4.729 T50 - 0.975 T10 90 0.098

SP5 L̂ = 0.402 - 0.717 T80 + 1.679 T50 + 0.007 S + 0.051 P 95 0.047

SP6 R̂−1 = 135.529 + 37.033 T50 42 1168.358

SP7 R̂−1 = 263.978 + 24.786 T50 - 3.582 P 70 610.963

SP8 R̂−1 = 239.010 + 13.990 T50 + 0.721 S 49 1028.655

SP9 R̂−1 = 271.716 + 485.487 T80 - 579.857 T50 + 128.376 T10+ 0.741 S 61 790.814

SP10 R̂−1 = 319.767 + 383.120 T80 - 392.637 T50 + 64.762 T10+ 0.316 S

- 3.415 P 73 560.076

Table 2
Linear regression models on the shape parameters

Mean Square Error (MSE) and R2, the percentage of variation in the data
explained by the model.

The parameter T50 alone explains 87% of the variation of L and 42% of the
variation of R−1. These values are increased with the inclusion of the variables
S and P, T10 and T80 as explanatory variables. Similar conclusions can be
drawn when the observations are obtained in the presence of noise.

3.2 Regression on Principal Components

For each of the simulated models, the bolus response is observed for the
first 10 minutes, in a total of 30 observations. The principal components of
r = [r(1), r(2), . . . , r(30)] are obtained and used as explanatory variables in
a multiple regression model for the variables L and R−1 (the controller pa-
rameters). The models thus obtained are summarized in table 3 with the
corresponding MSE and R2.

The first 3 principal components explain 85% of the variation of L and 47% of
the variation of R−1. This percentage of explained variation increases with the
inclusion of more principal components as expected, attaining a value of 92%
for L and 66% for R−1, with the first 10 principal components. The inclusion
of the shape parameter P as one of the explanatory variables improves the fit
of the regression models, PC2, PC4, PC6, PC8, PC10, PC12. The con-
clusions remain the same when observations with added noise are considered.
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Without noise

Model R2 MSE

PC1 L̂ = 3.468 - 0.008 a1 - 0.002 a2 + 0.013 a3 85 0.144

PC2 L̂ = 2.077 - 0.010 a1 - 0.003 a2 + 0.015 a3 + 0.048 P 95 0.051

PC3 L̂ = 3.468 + 0.004 a2 - 0.008 a3 - 0.002 a4 + 0.013 a5 86 0.143

PC4 L̂ = 2.062 - 0.002 a2 - 0.010 a3 - 0.003 a4 + 0.015 a5 + 0.048 P 95 0.050

PC5 L̂ = 3.468 - 0.121 a2 + 0.172 a3 - 0.032 a4 + 0.013 a5 - 0.004 a6

+ 0.004 a7 - 0.008 a8 - 0.002 a9 + 0.013 a10 92 0.076

PC6 L̂ = 2.301 - 0.051 a2 + 0.045 a3 - 0.010 a8 - 0.003 a9 + 0.014 a10

+ 0.040 P 95 0.048

PC7 R̂−1 = 207.288 - 0.333 a1 + 0.424 a3 47 1084.168

PC8 R̂−1 = 307.118 - 0.159 a1 + 0.283 a3 - 3.415 P 71 599.759

PC9 R̂−1 = 207.288 + 1.172 a1 - 0.485 a2 - 0.333 a3 + 0.424 a5 49 1035.771

PC10 R̂−1 = 305.549 + 0.806 a1 - 0.162 a3 + 0.286 a5 - 3.361 P 71 584.472

PC11 R̂−1 = 207.288 + 8.316 a2 - 12.031 a3 + 2.638 a4 - 1.070 a5

+ 1.172 a6 - 0.485 a7 - 0.333 a8 - 0.066 a9 + 0.424 a10 66 699.776

PC12 R̂−1 = 291.317 + 3.230 a2 - 2.886 a3 + 0.859 a6 - 0.186 a8 + 0.306 a10

- 2.874 P 72 574.500

Table 3
Linear regression models on the PCA.

3.3 Regression on Walsh-Fourier periods

Table 4 summarizes the regression models obtained when the explanatory vari-
ables are the relaxation levels at the WFA average periods. The neuromuscular
blockade level at the average periods found by WFA of the bolus response ex-
plain 93% of the variation of L and 69% of the variation of R−1. A model with
a smaller mean square error is found when the parameter P is added as an
explanatory variable. When the analysis is carried out considering data with
added noise the conclusions are similar.

3.4 Choosing the controller parameters predictors

In this section the regression models obtained so far are compared in terms of
their predicting performance. Thus, a new set of 100 responses are simulated
from the empirical model (equations (2), (5)) and the values of the parameters
L and R−1 of a PID controller are obtained by the Ziegler-Nichols step response
method as described in section 1. For each of the simulated models, with
and without added noise, the shape parameters T80, T50, T10, S and P are
computed. Moreover, PCA and WFA are accomplished and estimates for the
controller parameters, L and R−1, are obtained. The three different approaches
are compared through the prediction error, computed as the difference between
the observed and the estimated or predicted values for L and R−1, errorL and
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Without noise

Model R2 MSE

WF1 L̂ = 1.448 + 0.008 r(0.7) + 0.010 r(1.3) + 0.005 r(1.7) + 0.025 r(3.0)

+ 0.108 r(7.0) - 0.445 r(14.0) 93 0.065

WF2 L̂ = 0.179 + 0.008 r(0.7) + 0.010 r(1.3) + 0.006 r(1.7) + 0.025 r(3.0)

+ 0.082 r(7.0) - 0.161 r(14.0) + 0.036 P 95 0.048

WF3 L̂ = 2.094 + 0.016 r(1.3) + 0.027 r(3.0) + 0.104 r(7.0) - 0.445 r(14.0) 93 0.067

WF4 L̂ = 0.816 + 0.014 r(1.3) + 0.003 r(1.7) + 0.026 r(3.0)

+ 0.081 r(7.0) - 0.161 r(14.0) + 0.036 P 95 0.049

WF5 R̂−1 = 100.659 + 0.573 r(0.7) + 0.429 r(1.7) + 0.288 r(3.0)

- 1.417 r(7.0) + 30.568 r(14.0) 69 638.302

WF6 R̂−1 = 180.072 + 0.593 r(0.7) + 0.350 r(1.7) + 0.307 r(3.0)

+ 13.138 r(14.0) - 2.243 P 72 569.560

WF7 R̂−1 = 153.535 + 0.504 r(1.7) + 0.232 r(3.0) - 1.277 r(7.0) + 30.365 r(14.0) 68 647.796

WF8 R̂−1 = 233.641 + 0.425 r(1.7) + 0.261 r(3.0) + 13.354 r(14.0) - 2.212 P 72 579.985

Table 4
Linear regression models on the WFA average periods.

SP1 SP2 SP3 SP4 SP5 PC1 PC2 PC3 PC4 PC5 PC6 WF1 WF2 WF3 WF4
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Fig. 5. Boxplots of the errors, errorL and errorR−1 obtained from 100 simulated
neuromuscular blockade level models with added noise noise.

errorR−1 , respectively.

The results presented in this section refer to the worst case, which is when the
data is observed with noise.

Figure 5 represents the boxplots of errorL and errorR−1. Concerning param-
eter L, the errors that present a higher dispersion are those obtained from
the models with the PCA and WFA regressors. Also L is, generally, under-
estimated by SP and PCA and overestimated by WFA. Now, consider the

12



With noise

Model R2 MSE

SP4 L̂ = 1.130 + 1.920 T50 - 0.458 T10 89 0.105

SP5 L̂ = 0.223 + 0.565 T80 + 0.454 T50 + 0.176 T10 + 0.004 S + 0.044 P 94 0.059

M1 L̂ = 1.210 + 1.273 T50 - 0.253 r(14.0) 91 0.087

PC1 L̂ = 3.468 + 0.008 a1 - 0.002 a2 + 0.013 a3 85 0.145

PC2 L̂ = 2.129 + 0.010 a1 - 0.003 a2 + 0.015 a3 + 0.045 P 94 0.057

M2 L̂ = 3.719 + 0.010 a1 - 0.004 a2 + 0.014 a3 - 0.310 r(14.0) 91 0.092

WF3 L̂ =2.127 + 0.015 r(1.3) + 0.029 r(3.0) + 0.067 r(7.0) - 0.335 r(14.0) 90 0.096

WF4 L̂ = 0.689 + 0.013 r(1.3) + 0.004 r(1.7) + 0.026 r(3.0)

+ 0.079 r(7.0) - 0.117 r(14.0) + 0.040 P 94 0.056

SP9 R̂−1 = 208.877 + 76.627 T80 - 123.180 T50 + 52.049 T10+ 0.418 S 57 880.635

SP10 R̂−1 = 276.985 + 27.283 T80 + 0.103 S - 3.439 P 69 627.804

M3 R̂−1 = 205.484 + 85.045 T80 - 80.426 T50 + 16.118 T10 + 0.436 S

+ 21.472 r(14.0) 64 738.834

PC7 R̂−1 = 207.288 + 0.316 a1 + 0.424 a3 46 1090.990

PC8 R̂−1 = 304.874 + 0.128 a1 + 0.287 a3 - 3.282 P 70 618.584

M4 R̂−1 = 187.053 + 0.099 a2 + 0.307 a3 + 24.981 r(14.0) 63 749.225

WF5 R̂−1 = 153.924 + 0.503 r(1.7) + 0.299 r(3.0) + 25.173 r(14.0) 62 767.205

WF7 R̂−1 = 248.650 + 0.383 r(1.7) + 0.359 r(3.0) + 10.223 r(14.0) - 2.585 P 71 601.216

Table 5
Multiple regression models with regressor P replaced by regressor r(14.0)

prediction of parameter R−1. Observing the boxplots in figure 5 it is notori-
ous that the inclusion of parameter P as a predictor variable in the multiple
regression model, produces errors with a smaller mean and smaller variance,
models SP7, SP10, PC8, PC10, PC12, WF6, WF7. However, this parame-
ter is not suitable for practical implementation since in some cases the bolus

response may not reach a sufficiently low level. Investigating the relationship
between P and the Walsh-Fourier periods, it is found that P is correlated with
r(14.0): correlation coefficients of 0.82 and 0.71 for data without added noise
and with added noise, respectively (p-values < 0.001).

Since r(14.0) is easily observed, it is investigated the effect of replacing P by
r(14.0) in the multiple linear regression models. Analysing table 5, models
M1, M2, M3, M4, it is found that the fit of the models, measured by MSE

and R2, does not decrease much.

To assess the performance of the models in predicting L and R−1, boxplots
for errorL and errorR−1 are presented in figure 6. The inclusion of r(14.0) as
explanatory variable decreases the variability of the errors, leading to more
accurate predictions.

In a clinical environment a high level noise often contaminates the measure-
ment of the muscle relaxation response, as illustrated in Figure 1. The robust-
ness of the controller parameters prediction, in the presence of noise in the
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Fig. 6. Boxplots of the errors (100 models with noise).

bolus response measurement, has been investigated in detail. All the predictors
have been found to be very insensitive to the presence of noise, the periods of
the WFA achieving the best results. Therefore, it can be concluded that the
on-line prediction of the controller parameters from the patient bolus response
is a robust technique suitable for use in a clinical environment.

4 Final remarks

Here, the problem of inferring patients individualized information from the
response induced by an initial bolus dose given in the beginning of anaesthesia
is considered. This individualized information is very important for the design
of improved on-line autocalibrated automatic controllers of muscle relaxation.
Two different statistical techniques are used to analyse and characterize the
bolus response data: principal components analysis and Walsh-Fourier spectral
analysis. Parameters deduced from the analysis are then used as predictors for
the controller parameters, allowing the on-line autotuning of a PID controller.
Results are illustrated using realistic dynamic models that mimic not only the
large variability of patients responses to the administration of atracurium, but
also the large level of measurement noise which occurs in a clinical environ-
ment. The robustness of the PCA and WFA for characterizing the patients
individual responses to the bolus has been firmly established.
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