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Abstract  

Multidimensional time series appear in many fields of application. Sometimes, it can be 

useful to use PCA to reach dimensionality reduction. However, formal inference procedures on 

PC rely on the independence of the variables. Therefore, several PC-like techniques, as Singular 

Spectrum Analysis, are used to attain this reduction by decomposing the original series into a 

sum of a small number of interpretable components. Here, SSA and its extension are described 

and applied to real datasets. 
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1. Introduction 

Multidimensional time series are common in many fields of application and are 

characterized by correlated data. In many situations the number of observations in each series 

outnumbers the number of series. Thus, it is of paramount importance to compress the series, 

extracting the most important information and discarding noise and redundant correlations. This 

is also useful for graphical representation and for future statistical analysis of the time series 

data. One very popular method for dimensionality reduction is Principal Component Analysis 

(PCA), which obtain a new set of variables, called Principal Components (PC), that are 

uncorrelated and that are ordered so that the first few retain most of the variation presented in 

the dataset (Jolliffe, 2002).  

Pinto da Costa et al (2009) introduced a method of Weighted Principal Component 

Analysis specific for time series data which give different weights to the observation times, 

according to a certain goal. They have seen that large differences can occur between the usual 

PCA and weighted PCA; in particular, they have found that weighted PCA is capable of higher 

levels of compression of the data. 

In some fields of application, PCA not only reduces the dimensionality of the dataset but 

also allows for reasonable interpretations of the retained PC. However, formal inference 

procedures based on PC rely on the independence (and multivariate normality) of the 

observations, a condition that is violated for time series data. Several techniques, like Singular 

Spectrum Analysis (SSA), that take in account the correlation in time (and space) have been 



 

developed. The main goal of SSA, and its extension to several time series called Multichannel 

SSA (MSSA), is to decompose the original series in a small number of independent and 

interpretable components that can be thought as trend, oscillatory components and a 

structureless noise. 

In this work, the SSA is described and compared with PCA. In addition, the results of the 

application of these techniques to real datasets are exhibited. 

 

2. Singular Spectrum Analysis 

The central idea in SSA is to carry out a PCA on a suitable chosen lagged version of the 

original time series. More specifically, basic SSA consists in four steps: embedding and 

Singular Value Decomposition (SVD), for the decomposition stage, and grouping and diagonal 

averaging, for the reconstruction stage (Golyandina et al, 2001).  

Given a time series of length N, Y={y1 ,  …yN}, the embedding step consists in choosing 

an integer L (1<L<N), designated window length, in order to construct the so called trajectory 

matrix, X, which is the following LxK  Hankel matrix (K=N-L+1): 
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 Next step is the SVD of X, which allow to represents X as a sum of rank-one bi-

orthogonal elementary matrices. Denote by λ1≥ λ2≥… ≥ λL the eigenvalues of the LxL matrix 

S=XX
T
 and by U1,…,UL the orthonormal system of the eigenvector of S corresponding to these 

eigenvalues. Let     L:imaxrankd i  0X . If ),..,1(/ diUV ii

T

i  X , then 

,1 dXXX    where
T

iiii VUX . The collection (λ i , Ui, Vi) is called i-th eigentriple 

of X. Comparing with the PCA terminology, the vector Ui represents i-th (principal) eigenvector 

and the vector iii VZ   corresponds to the i-th principal component of X. 

The reconstruction stage starts with the grouping step that consists of partitioning the set 

of indices {1,…,d} into m disjoint subsets mI,,I 1 (the proposed number of PC) where each of 

these subset is of the form I={ i1 ,…,i p} and constructing the corresponding resultant matrix XI 

which is defined as ipiI XXX  
1

. Therefore, at the end of this step, it is found that 

mII XXX  
1

. The contribution of the component IX  (for each  mI,,II 1 ) is 

given by  

d

i iIi i 1
 . 



 

The last step of SSA, diagonal averaging, is a formal procedure that transforms each 

matrix of the grouped decomposition into a Hankel matrix and therefore into a new series of 

length N (for a detailed description see Golyandina et al, 2001). In this way, the initial series 

can be decomposed in a sum of m series (that represents the m PC) 
mII

~~
Y XX  

1
, where 

kIX
~

is the result of  applying diagonal averaging to 
kIX , with mk ,...,1 . 

The application of SSA carries out some practical problems. The first practical issue is the 

choice of the dimension L of the embedding vector space: while larger values of L allow 

resolving longer-period oscillations, it also reduces the number of observations K from which to 

estimate the covariance matrix. In practice, L must be less than N/2 and it depends on the 

maximum period of harmonics that can be detected. The second decision that the analyst has to 

make is the choice of the m, the number of eigentriples for the reconstruction stage. Rodrigues 

and de Carvalho (2008) have concluded that it is necessary a carefully choice of these 

parameters, since they can compromise the analysis of the datasets, specially the forecasting 

accuracy. 

The extension to SSA to the analysis of several time series, called Multichannel SSA, is 

straightforward. The idea is to apply SSA to a large trajectory matrix constructed by 

concatenating the trajectory matrices corresponding to each of the p time series with length N 

that comprises the original dataset, given a certain window length L. 
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