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Abstract

The INteger-valued AutoRegressive (INAR) processes were introduced in the lite-
rature by Al-Osh and Alzaid (1987) and McKenzie (1988) for modelling correlated
series of counts. These processes have been considered as the discrete counter part
of AR processes, but their highly nonlinear characteristics lead to some statistically
challenging problems, namely in parameter estimation. Several estimation proce-
dures have been proposed in the literature, mainly for processes of first order. For
some of these estimators the asymptotic properties as well as finite sample proper-
ties have been obtained and studied. This paper considers Yule-Walker parameter
estimation for the pth-order integer-valued autoregressive, INAR(p), process. In par-
ticular, the asymptotic distribution of the Yule-Walker estimator is obtained and it
is shown that this estimator is asymptotically normally distributed, unbiased and
consistent.

Key words: INAR Process, Autocovariance distribution, Yule-Walker Estimation,
Delta Method.

1 Introduction

Recently, there has been a growing interest in modelling non-negative integer-
valued time series and, specially, time series of counts. Several models have
been proposed and, in particular, the INteger-valued AutoRegressive, INAR,
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model has been the subject of study in several papers. The pth-order integer-
valued autoregressive, INAR(p), process is defined as follows (Latour, 1998).
A discrete time non-negative integer-valued stochastic process, {Xt} , is said
to be an INAR(p) process if it satisfies the following equation

Xt = α1 ∗ Xt−1 + α2 ∗ Xt−2 + · · · + αp ∗ Xt−p + et, (1)

where

(1) {et} , designated the innovation process, is a sequence of independent and
identically distributed (i.i.d) non-negative integer-valued random vari-
ables with E[et] = µe, Var[et] = σ2

e , E[e3
t ] = γe and E[e4

t ] = κe;
(2) the symbol ∗ represents the thinning operation (Steutel and Van Harn,

1979; Gauthier and Latour, 1994), defined by

αi ∗ Xt−i =
∑Xt−i

j=1
Yi,j, i = 1, . . . , p,

where {Yi,j}, designated the counting series, is a set of i.i.d. non-negative
integer-valued random variables such that E[Yi,j] = αi, Var[Yi,j] = σ2

i ,
E[Y 3

i,j] = γi and E[Y 4
i,j] = κi. All the counting series are assumed inde-

pendent of {et};
(3) 0 ≤ αi < 1, i = 1, . . . , p − 1, and 0 < αp < 1.

Alternatively, an INAR(p) process can be represented as a p-dimensional
INAR(1) process (Franke and Subba Rao, 1995). Accordingly, by using the
vector thinning operation, defined as a random vector whose ith component
is given by (Franke and Subba Rao, 1995)

[A ∗ X]i =
∑p

j=1
aij ∗ Xj, i = 1, . . . , p,

where X = [ X1 · · · Xp ]T is a random vector, A is a p× p matrix with entries

aij satisfying 0 ≤ aij ≤ 1, for i, j = 1, . . . , p, and the counting series of all
aij ∗Xj, i, j = 1, . . . , p, are assumed independent, the INAR(p) process defined
in (1) can be written as

Xt = A ∗ Xt−1 + Wt, (2a)

Xt = HXt, (2b)

where H = [ 1 0 · · · 0 ], Xt = [ Xt Xt−1 · · · Xt−p+1 ]T , Wt = [ et 0 · · · 0 ]T ,

for {et} a sequence of i.i.d. random variables, with E[et] = µe, Var[et] =
σ2

e , E[et
3] = γe, and E[e4

t ] = κe < ∞, and
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α1 α2 · · · αp−1 αp

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





























.

Furthermore, the model (2a) can be expressed as

Xt
d
= A

k ∗ Xt−k +
∑k−1

j=0
A

j ∗ Wt−j, (3)

where
d
= stands for equality in distribution. Then, equations (2) can be written

as

Xt
d
=
∑∞

j=0
A

j ∗ Wt−j, (4a)

Xt
d
= HXt, (4b)

where H = [ 1 0 · · · 0 ], provided the spectral radius of the matrix A is less

than one, that is, ρ(A) < 1.

The existence and stationarity condition for the INAR(p) processes is that the
roots of zp−α1z

p−1−· · ·−αp−1z−αp = 0 lie inside the unit circle (Du and Li,
1991) or, equivalently, that

∑p
j=1 αj < 1, (Latour, 1997, 1998). Probabilistic

characteristics of the INAR models, in terms of second and third-order mo-
ments and cumulants, have been obtained by Silva and Oliveira (2004, 2005).
In particular, it is found that the autocovariance function, R(·), satisfies a set
of Yule-Walker type difference equations, which can be written in scalar and
vectorial form as











R(0) = Vp +
∑p

i=1
αiR(i),

R(k) =
∑p

i=1
αiR(i − k),

⇐⇒ Rp α =
[

−Vp 0 · · · 0

]T

,

respectively, where

Rp =





















R(0) R(1) . . . R(p)

R(1) R(0) . . . R(p − 1)
...

...
. . .

...

R(p) R(p − 1) . . . R(0)





















, α =





















−1

α1

...

αp





















,

and Vp is defined by
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Vp = σe
2 + µX

∑p

i=1
σi

2,

where σe
2 = Var[et], µX = E[Xt] = µe/(1 −∑p

i=1 αi), and σi
2 is the variance

of the counting series, Yj,i (j = 1, . . . , Xt−i; i = 1, . . . , p), of the ith thinning
operation, αi ∗ Xt−i.

Several estimation methods for the INAR(p) model have been proposed in
the literature both in the time domain, namely, Yule-Walker and Conditional
Least Squares (Du and Li, 1991; Latour, 1998), Generalized Method of Mo-
ments (Brännäs, 1994, 1995), Conditional Maximum Likelihood (Franke and
Seligmann, 1993; Franke and Subba Rao, 1995) and in the frequency domain,
the Whittle Criterion (Silva and Oliveira, 2004, 2005). Methods based on
higher-order statistics (moments and cumulants) have also been considered (I.
Silva, 2005). The small sample properties of these estimators have been stu-
died empirically by Monte Carlo methods (I. Silva, 2005) but little is known
about the asymptotic properties. It must be said that these depend on higher
order moments and cumulants which are very difficult to obtain.

Here the asymptotic distribution of the sample autocovariance for INAR(p)
processes is obtained and it is shown that the Yule-Walker estimator is asymp-
totically normally distributed, unbiased and consistent. This result generalizes
the work of Park and Oh (1997), who derived the asymptotic distribution of
the Yule-Walker estimator for an alternative parametrization of the Poisson
INAR(1) process with binomial thinning operation.

In Section 2.1 the asymptotic properties of the sample mean and sample auto-
covariance matrix are obtained and in Section 2.2 expressions for the asymp-
totic covariance matrix of the Yule-Walker estimator are provided.

2 Yule-Walker Estimation of the INAR(p) model

Given a realization {X1, . . . , XN} from an INAR(p) process, the Yule-Walker
estimator α̂ of α is obtained by solving the following system of linear equa-
tions,

R̂p−1α̂ = r̂p ⇔























R̂(0) R̂(1) R̂(2) · · · R̂(p − 1)

R̂(1) R̂(0) R̂(1) · · · R̂(p − 2)

R̂(2) R̂(1) R̂(0) · · · R̂(p − 3)
...

...
...

. . .
...

R̂(p − 1) R̂(p − 2) R̂(p − 3) · · · R̂(0)















































α̂1

...

...

...

α̂p

























=























R̂(1)

R̂(2)

R̂(3)
...

R̂(p)























,

with R̂(k) = 1
N

∑N−k
t=1 (Xt − X)(Xt+k − X), k ∈ Z, and X = 1

N

∑N
t=1 Xt.
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The estimators for µe and σe
2 are, respectively,

µ̂e = X
(

1 −
∑p

i=1
α̂i

)

, σ̂2
e = V̂p − X

∑p

i=1
σ̂2

i ,

where
V̂p = R̂(0) −

∑p

i=1
α̂iR̂(i)

and σ̂2
i is an estimator of the variance of the counting series for the i -th

thinning operation, αi ∗ Xt−i, i = 1, . . . , p. The estimation of σ̂2
i depends on

the distribution of the counting series. For instance, in the case of the binomial
thinning operation (when the counting series are Bernoulli distributed), σ̂2

i =
α̂i(1 − α̂i), for i = 1, . . . , p.

Now, in order to obtain the asymptotic distribution of the Yule-Walker esti-
mator, the asymptotic properties of the sample covariance matrix are needed.
These properties are obtained in 2.1 and the asymptotic distribution of the
Yule-Walker estimator follows in 2.2.

2.1 Asymptotic distribution of the autocovariance function

In the following theorem the asymptotic multivariate normality of the sample
mean, X, and of the sample autocovariance function, R̂(k), is established.

The details of the proof are omitted since it follows closely Brockwell and
Davis (1991, Chap. 7) by considering an auxiliary function

R∗(k) =
1

N

∑N

t=1
(Xt − µX)(Xt+k − µX), k ∈ N 0,

obtaining its asymptotic properties and proving that R̂(·) has the same asymp-
totic properties as the auxiliary function, R∗(·).

Theorem 1 If {Xt} is an INAR(p) process with representation (4), where
∑∞

j=0 |Aj| < ∞, and if R(·) is the autocovariance function of {Xt}, then for

any non-negative integer h,





















X

R̂(0)
...

R̂(h)





















is AN









































µX

R(0)
...

R(h)





















, N−1
VR





















where

VR =







[V11]1×1 [V12]1×(h+1)

[V12]
T
1×(h+1) [V22](h+1)×(h+1)
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is an (h + 2) × (h + 2) matrix for any non-negative integer h, such that

V11 = lim
N→∞

NVar(X)

=
∑∞

h=−∞
R(h), (5a)

[V12]k+1 = lim
N→∞

NCov(X,R∗(k)), k = 0, 1, . . . , h,

=
∑∞

h=−∞
CX(h, k + h), (5b)

[V22]k+1,j+1 = lim
N→∞

NCov(R∗(k), R∗(j)), k, j = 0, 1, . . . , h,

=
∑∞

h=−∞
R(h)R(h + j − k) + R(h + j)R(h − k)

+ CY (h, k, j + h), (5c)

where CX(·, ·) is the third-order cumulant of Xt and CY (·, ·, ·) is the fourth-

order cumulant of the process Yt = Xt − µX (I. Silva, 2005).

PROOF. Note that for 0 ≤ k ≤ h,

√
N(R∗(k) − R̂(k)) =

1√
N

∑N

t=N−k+1
(Xt − µX)(Xt+k − µX)

+
1√
N

(

−µX

∑N−k

t=1
Xt − µX

∑N−k

t=1
Xt+k − (N − k)µ2

X

+ X
∑N−k

t=1
Xt + X

∑N−k

t=1
Xt+k − (N − k)X

2
)

=
1√
N

∑N

t=N−k+1
(Xt − µX)(Xt+k − µX)

+
N√
N

(X − µX)
(

1

N

∑N−k

t=1
Xt +

1

N

∑N−k

t=1
Xt+k

−
(

1 − k

N

)

(X + µX)

)

.

The first term, 1√
N

∑N
t=N−k+1 (Xt − µX)(Xt+k − µX), is op(1), since

1√
N

E
[∣

∣

∣

∣

∑N

t=N−k+1
(Xt − µX)(Xt+k − µX)

∣

∣

∣

∣

]

≤ 1√
N

kR(0)
N→∞−−−→ 0.

The last term is also op(1), since

√
N(X − µX) is Op(1),

as N → ∞, because
√

N(X − µX)
d⇒ Y, where Y ∼ N (0, V11), and

d⇒ stands
for convergence in distribution. Note that by the weak law of large numbers
(Brockwell and Davis, 1991, p. 208),

(

1

N

∑N−k

t=1
Xt +

1

N

∑N−k

t=1
Xt+k −

(

1 − k

N

)

(X + µX)

)

P−→ 0.
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This remark leads to the following result
√

N(R∗(k) − R̂(k)) is op(1),

as N → ∞. Then the proposition follows from the fact that





















X

R∗(0)
...

R∗(h)





















is AN









































µX

R(0)
...

R(h)





















, N−1
VR





















and Proposition 6.3.3 of Brockwell and Davis (1991, p. 205). 2

Note that this result is in agreement with the asymptotic distribution obtained
by Park and Oh (1997) for the case of Poisson INAR(1) models with binomial
thinning operation.

2.2 Asymptotic distribution of the Yule-Walker estimator

In this section, the asymptotic properties of the sample covariance matrix
is used to obtain the asymptotic distribution of the Yule-Walker estimator.
Hence, consider the p × p Toeplitz sample autocovariance matrix, R̂p−1, and
the vector of sample autocovariance function with p elements, r̂p. Let

V̂Rr =







vec(R̂p−1)

r̂p





 (6)

be a vector with p(p + 1) elements, where the vec operator is the column-
stacking operator of a matrix (Neudecker, 1969), that is,

vec(A) =





















A·1

A·2

...

A·q





















is a pq × 1 vector where A·i is the i-th column of the p × q matrix A.

Note that for p = 1,

V̂Rr =
[

R̂(0) R̂(1)

]T
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and for p > 1, the i-th element of V̂Rr can be written as

V̂Rr(i) =











R̂(|(i − 1) mod p − [(i − 1)/p]|), if i ≤ p2,

R̂(|i mod p|), if i > p2,

where [a] represent the integer part of a ∈ R.

Then, using the previous results it is found that

V̂Rr =







vec(R̂p−1)

r̂p





 is AN













vec(Rp−1)

rp





 ,
1

N
ΣRr





 ,

where ΣRr is the p(p + 1) × p(p + 1) covariance matrix of V̂Rr,

ΣRr(i, j) = Cov(V̂Rr(i), V̂Rr(j)), (7)

defined as in (5c), for i, j = 1, . . . , p(p + 1).

Now, let

D
T = −

[

R(1)Ip · · · R(p)Ip

]

(

(Rp−1
−1)T ⊗ Rp−1

−1
)

[

Ip2 0p2×p

]

+
[

0p×p2 Rp−1
−1

]

, (8)

where In is the n × n identity matrix, 0n×m the n × m matrix of zeros and
⊗ the Kronecker product (Graham, 1981) defined as follows. Let A and B be
p× q and m×n matrices, respectively. Then A⊗B is a pm× qn matrix given
by

A ⊗ B =





















a11B a12B · · · a1qB

a21B a22B · · · a2qB

...
...

. . .
...

ap1B ap2B · · · apqB





















.

The asymptotic distribution of the Yule-Walker estimator of an INAR(p)
process is given in the following theorem.

Theorem 2 Let {Xt} be an INAR(p) process, satisfying (1), and α̂ the Yule-

Walker estimator of α. Then

N1/2 (α̂ − α) is AN(0p,D
T
ΣRrD),

where 0n is a vector of n zeros, ΣRr is given in (7) and D
T is defined by (8).
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PROOF. The Delta method (van der Vaart, 1998) is used to demonstrate
the result. Thus, let ϕ be the function from Dϕ ⊂ R

p(p+1) into R
p defined by

ϕ(X) = (unvecp×p+1(X)C1)
−1(unvecp×p+1(X)C2),

where X is a vector with p(p + 1) elements,

C1 =







Ip

0
T
p





 , C2 =







0p

1





 ,

are a (p + 1) × p matrix and a vector with p + 1 elements, respectively, 0p is
a vector of p zeros and unvecn×m is the inverse of the vec operator, that is,
unvecp×q(X), for a vector X of pq × 1 elements is defined as a p × q matrix,
such that unvecp×q(vec(A)) = A (Swami and Giannakis, 1994).

Note that for V̂Rr defined in (6)

ϕ(V̂Rr) = R̂
−1
p−1r̂p = α̂.

Then, by the Delta method,

α̂ is AN
(

α,
1

N
D

T
ΣRrD

)

,

where

D =

(

∂ ϕ

∂ X

)

∣

∣

∣X=V̂Rr

=

(

∂ ϕ

∂ XT

)T

∣

∣

∣X=V̂Rr

is the p(p + 1)× p derivative matrix of the function ϕ, defined as follows. Let
f : R

n → R
m be a vector valued function with vector variable. The n × m

matrix derivative of f is defined as (Rao and Rao, 1998, p. 225)

∂ f

∂ X
,

(

∂ f

∂ XT

)T

,















∂ f1

∂ X1

· · · ∂ f1

∂ Xn

...
. . .

...

∂ fm

∂ X1

· · · ∂ fm

∂ Xn















T

,

in order to meet the needs of the Jacobian matrix.

Note that ϕ(X) can be written as the product of two matrices, ϕ(X) =
M1

−1(X)M2(X). Then, by using the product rule (Rao and Rao, 1998, p.
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234), it is found that

(

∂ ϕ

∂ XT

)T

=

(

∂ (M1
−1

M2)

∂ XT

)T

=

(

(M2
T ⊗ Ip)

∂ vec(M1
−1)

∂ XT
+ (I1 ⊗ M1

−1)
∂ vec(M2)

∂ XT

)T

.

Now, using the matrix derivative of an inverse matrix,

∂ vec(M1
−1)

∂ XT
= −

(

(M1
−1)T ⊗ M1

−1
) ∂ vec(M1)

∂ XT
,

and then, replacing M1 by unvecp×p+1(X)C1, and using the properties of the
vec and unvecn×m operators (Neudecker, 1969) and the derivative matrix rule
of f : R

k → R such that f = AX, where A is a n × k constant matrix (Rao
and Rao, 1998, p. 233), it is found that

∂ vec(M1
−1)

∂ XT
= −

(

((unvecp×p+1(X)C1)
−1)T ⊗ (unvecp×p+1(X)C1)

−1
)

∂ vec(unvecp×p+1(X)C1)

∂ XT

= −
(

((unvecp×p+1(X)C1)
−1)T ⊗ (unvecp×p+1(X)C1)

−1
)

∂ (C1
T ⊗ Ip)X

∂ XT

= −
(

((unvecp×p+1(X)C1)
−1)T ⊗ (unvecp×p+1(X)C1)

−1
)

(C1
T ⊗ Ip).

In a similar manner

∂ vec(M2)

∂ XT
=

∂ vec(unvecp×p+1(X)C2)

∂ XT
=

∂ (C2
T ⊗ Ip)X

∂ XT
= (C2

T ⊗ Ip).

Then,

(

∂ ϕ

∂ XT

)T

=
(

−((unvecp×p+1(X)C2)
T ⊗ Ip)

(

((unvecp×p+1(X)C1)
−1)T ⊗ (unvecp×p+1(X)C1)

−1
)

(C1
T ⊗ Ip)

+ (I1 ⊗ (unvecp×p+1(X)C1)
−1)(C2

T ⊗ Ip)
)T

.

Therefore,

D
T = −(rp

T ⊗ Ip)((Rp−1
−1)T ⊗ Rp−1

−1)(C1
T ⊗ Ip)

+ (I1 ⊗ Rp−1
−1)(C2

T ⊗ Ip)
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= −
[

R(1)Ip · · · R(p)Ip

] (

(Rp−1
−1)T ⊗ Rp−1

−1
) [

Ip2 0p2×p

]

+
[

0p×p2 Rp−1
−1

]

,

and the theorem follows. 2

For the particular case of INAR(1) processes with Poisson, P(λ), innovations

and binomial thinning operation, it is found that R0 =
[

R(0)

]

=
[

λ
(1−α)

]

,

ΣRr =







Var(R̂(0)) Cov(R̂(0), R̂(1))

Cov(R̂(0), R̂(1)) Var(R̂(1))







=







λ(2λ(1+α2)+(1−α)(1+α)2)
(1−α)2(1−α2)

2λα(1+2λ−α2)
(1−α)2(1−α2)

2λα(1+2λ−α2)
(1−α)2(1−α2)

λ(λ(1+4∗α2−α4)+α(1−α)(1+α)2)
(1−α)2(1−α2)







and

D
T = −

[

R(1)

] ([

1/R(0)

]

⊗
[

1/R(0)

]) [

1 0

]

+
[

0 1/R(0)

]

=
[

− R(1)
R(0)2

1
R(0)

]

=
[

−α(1−α)
λ

1−α
λ

]

.

Hence, D
T
ΣRrD = (1 − α2) +

α(1 − α)2

λ
. Therefore, Theorem 2 states that

N1/2 (α̂ − α) is AN

(

0, (1 − α2) +
α(1 − α)2

λ

)

,

which is in agreement with the asymptotic distribution obtained by Park and
Oh (1997) for the α parameter.
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