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ABSTRACT: The aim of this paper is to illustrate how statistical techniques based on Walsh-Fourier spectral analysis
(WFA) contributes to the design of an on-line adaptive control system for neuromuscular blockade that could be used
successfully in a wide range of populations. It is found thatneuromuscular blockade levels at the average periods indicated
by WFA have a high predictive power for the parameters of the controller, providing additional information about the
model. A classification algorithm, based on the observed values of neuromuscular blockade level at significant WFA
periods, enables the on-line individual tuning of a time varying adaptive reference profile, hence decreasing the overshoot.
The system provides strong robustness to inter and intra-individual variability of the patient’s responses and adaptation to
the individual requirements.

KEYWORDS: Control Systems in Medicine, Adaptive Control, On-Line Autocalibration, Regression Models, Walsh-
Fourier Analysis.

INTRODUCTION

Muscle relaxant drugs are currently given during surgical operations. The non-depolarising types of muscle relaxant act
by blocking the neuromuscular transmission, thereby producing muscle paralysis. For clinical reasons the patient must
undergo an initialbolus dose in order to induce total muscle relaxation in a very short period of time (usually shorter
than 5 minutes). A variety of different approaches to the design of controllers for the automatic control of neuromuscular
blockade has been proposed ([1], [2], [3]). The design of these controllers is usually based on a prototype for the nonlinear
dynamical relationship between the muscle relaxant dose and the induced muscle paralysis. Such a prototype, which can
be deduced from the available pharmacokinetic and pharmacodynamic data, merely describes the average characteristics
of the response to the drug. However, in practice, a large variability of the individual responses to the infusion of the
muscle relaxant is observed. This variability suggests theneed for an individual tuning of the controller according tothe
characteristics of the patient.
Methods for the on-line autocalibration of digital PID controller parameters for the administration of a muscle relaxant
have been already proposed ([4], [5], [6]). The parameters of the PID controller (namely the proportional gain (gc),
the derivative gain constant (cd) and the integral time constant (ci)) have been obtained from the L and R parameters
deduced from the Ziegler-Nichols step response method [7],applied to an empirical model for the muscle relaxant [4].
The subsequent tuning of the controller to the dynamics of a patient undergoing surgery is performed by adjusting the R
and the L values using multiple linear regression techniques with predictor variables extracted from the observed initial
bolus response.
The predictor variables used in this study are a set of shape parameters (SP) and a set of neuromuscular blockade levels at
the average periods indicated by the Walsh-Fourier spectral analysis (WFA). It was found that WFA provides a character-
ization of the neuromuscular blockade response induced by an initial bolus at the beginning of anaesthesia, [8], leading to
controller parameter prediction with high power. This findings are still apply for closed loop systems. The performance
of the control systems calibrated by the R and L parameters estimated using SP and WFA is assessed. Furthermore, the
WFA periods may be used to classify a bank of simulated models of neuromuscular blockade and subsequently to improve
initial reference tracking.



BOLUS RESPONSE DATA ANALYSIS

EMPIRICAL MODEL

The dynamic response of the neuromuscular blockade may be modelled by a second order linear pharmacokinetic model
relating the drug infusion rate,u(t), to the plasma concentration,cp(t), and a nonlinear dynamic model relatingcp(t) to
the induced pharmacodynamic response,r(t). The variabler(t), normalized between 0 and 100, measures the level of
the neuromuscular blockade, 0 corresponding to full paralysis and 100 to full muscular activity. In this study the muscle
relaxation drug used is theatracurium ([9], [10]). The pharmacodynamic effect foratracurium may be modelled by the
Hill equation,
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where the effect concentration,ce(t), is related tocp(t) by

ċe(t) = ke0cp(t) − ke0ce(t) (2)

whereke0, C50 andβ are also patient-dependent parameters. In order to accommodate the clinical data, the model for
atracurium has been modified including on the linear part of the system a first order block, [4],

g(s) =
1/τ
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in a series connection. The time constantτ is assumed to be a random variable independent of the remaining pharmacoki-
netic/pharmacodynamic parameters. Therefore, the linearpart of the resulting empirical model may be represented by the
following transfer function fromu to ce,
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This empirical model replicates well the characteristics of the patients responses, [4]. A set of 500 models, hereinafter
referred as bank of models, are generated assuming a multidimensional log-normal distribution for the eight pharma-
cokinetic/pharmacodynamic parameters and used throughout this study. Also, for a better replication of the clinical
environment, simulated measurement noise is added to each of the generated models. For this bank of models an auto-
matic control system is designed, such that the value of the reference is initially fixed at a low level during the first 30
minutes, being gradually raised to the set-point (ref ).

BOLUS RESPONSE SHAPE PARAMETERS

The shape parameters (SP) represented in Figure 1 have been used to characterize the response induced by abolus of
muscle relaxant administered at t=0 minutes ([4], [6]). T80, T50 and T10 are elapsed times between thebolus adminis-
tration and the time the response becomes less than 80%, 50% and 10%, respectively. S is a slope parameter and P is a
persistence parameter, since it describes the duration of thebolus effect on the patient.

Figure 1: Shape parameters.

For each of the simulated models, with and without added noise, the parameters T80, T50, T10, S and P are obtained and
used as predictors for the controller parameters L, R andgc. The results are summarized in Table I, in terms of the % of
variation explained by the multivariate regression model.A higher predictive power is obtained only when P is added to



the multivariate regression model. However, in a clinical situation thebolus response may not reach a sufficiently low
level to allow the estimation of parameter P. Thus, althoughthe parameter P is used in this study with simulated data, it
cannot be directly used in a real situation.

Without noise Without noise

Predictors L 1/R gc L 1/R gc

T50 87 42 7 87 42 7
T50 + P 94 70 69 93 69 65
T50 + S 87 49 22 87 45 15
T50 + S + P 95 70 69 94 69 65
T80 + T50 + T10 + S 90 61 59 89 57 52
T80 + T50 + T10 + S + P 95 73 74 94 69 70

Table I: % of variation explained for linear regression models.

BOLUS RESPONSE WALSH-FOURIER SPECTRAL ANALYSIS

Walsh-Fourier spectral analysis is a procedure used to analyse and characterize time series, especially when sharp dis-
continuities and changes of level occur in the data. The procedure is similar to the well known Fourier analysis, used to
characterize periodic variation in a continuous signal.
The Walsh-Fourier analysis is based in the Walsh functions ([11],[12],[13]) which form a complete, ordered and or-
thonormed set of rectangular wave taking the values -1 and 1.The sequency-ordered Walsh functions are denoted by
W (n, t), with t ∈ [0, 1[ andn = 1, 2, . . . . The argumentn is denoted bysequency and represents the number of switches
signs (zero-crossings) in the unit interval. [12] defines the term sequency (hereinafter represented by H-sequency) asone
half the average number of zero crossings or sign changes that a function makes per unit time and defines theaverage
period of oscillation (multiplicative inverse ofH-sequency) as twice average separation, in time, between sign switches.
Let x(0), . . . , x(N − 1) beN observations of a stochastic process{X(n)}. An estimator of the spectral density function
(spectrum) of Walsh-Fourier is theWalsh periodogram ([14], [15], [16], [17]), which is the square of the Walsh-Fourier
transform of the data

IW (λj) =

[
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N
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]2

, (5)

whereλj is a sequency of the formλj = j/N, 1 ≤ j ≤ N − 1. One can plotIW (λj) versus λj to inspect forpeaks. In
the sequency domain, a peak indicates aswitch eachλj time points. The Walsh periodogram given in (5) is modified to
obtain theWalsh-Harmuth periodogram, by setting

IH(λj) = IW ((2j − 1)/N) + IW (2j/N),

with j = 1, 2, . . . , (N − 2)/2, N = 2p, p ∈ N, whereλj is the H-sequency.
Considering that during a surgical intervention a patient attains different levels of neuromuscular blockade, it is investi-
gated how the Walsh-Fourier analysis can contribute to improve the controller. It has been found, [8], that the average
periods are correlated with SP for both the available real cases and the bank of simulated models (open loop).
Applying WFA to the bank of models in closed loop, it is found that the average periods are 1.0, 1.6, 2.6, 6.0, 12.0, 14.0,
17.0, 28.0, 34.0 and 42.0 minutes, approximately. Some of these periods coincide with the periods found for the open
loop bank of models. Table II summarizes the predictive power of WFA results, in terms of the % of variation of L, R and
gc for the closed loop simulations.

Without noise With noise

Predictors L 1/R gc L 1/R gc

r(1.0) + r(1.6) + r(2.6) + r(6.0) + r(12.0) 93 68 73 90 62 52
r(1.0) + r(1.6) + r(2.6) + r(6.0) + r(12.0) + r(14.0) 93 70 82 9166 62
r(1.6) + r(2.6) + r(6.0) + r(12.0) 92 67 72 90 62 50
r(1.6) + r(2.6) + r(6.0) + r(12.0) + r(14.0) 93 70 81 91 65 61

Table II: % of variation explained for linear regression models (closed loop).



The inclusion of the relaxation level at 14.0 minutes,r(14.0), in the set of predictors improves the quality of estimation
of the controller parameter, specially forgc. Further, it has been found, [8], that the persistence parameter P is highly
correlated withr(14.0). Therefore,r(14.0) is a suitable candidate for replacing P in the multivariate regression model
used for the on-line autocalibration of the controller parameters.

CALIBRATING THE AUTOMATIC CONTROL SYSTEM

The additional information provided by the relaxation levels in the average periods of WFA suggests that the reference
tracking may be improved if the control system, which is usually closed at 10 minutes, is recalibrated afterwards.
Thus, for the bank of models, a first calibration is done 10 minutes after the administration of the initialbolus using as
predictors for L and R the set of SP and WFA relaxation levels indicated in Table III. Also, for each model of the bank,
two calibrations, at 10 and 21 minutes, are performed with L and R estimated by using the set of predictors indicated in
Table IV.

10 minutes
A1: T50 + S
A2: T50 + S + P
A3: r(1.3) + r(1.6) + r(3.0) + r(7.0)

Table III: Predictors used in the calibration at 10 minutes.

10 minutes 21 minutes
B1: T50 + S → T10 + T50 + T80 + S
B2: T50 + S + P → T10 + T50 + T80 + S + P
B3: r(1.3) + r(1.6) + r(3.0) + r(7.0) → r(1.3) + r(1.6) + r(3.0) + r(7.0) + r(14.0)

Table IV: Predictors used in the calibrations at 10 and 21 minutes.

The performances of the resulting automatic control systems are compared through the reference tracking by evaluating
the mean square error (MSE), in the steady-state (after 75 minutes), defined by

MSE(M) =

180
∑

t=75

(ref − rM (t))2,

whereM = 1, . . . , 500 is a model in the bank,rM (t) is the relaxation level for the modelM at the timet andref is the
reference value. The MSEs thus obtained are represented in the boxplots of Figure 2.
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Figure 2: Boxplots of MSE for (a) one calibration at 10 minutes; (b) two calibrations, at 10 and 21 minutes.

Analysing Figure 2 it can be concluded that the use of the WFA relaxation levels as predictors for the controller parameters
and the recalibration of the control system at 21 minutes leads to a noticeable decrease in the mean value as well as the
variability of the MSE and, therefore, to a better referencetracking.

CLASSIFICATION

The bank of models is classified using a classification program, theK-Prototype, based on theK-Mean algorithm for
classification with the additional advantage of supplying the optimal number of existing classes in the data set evaluated
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Figure 3: Boxplots of overshoot for the two classes,C1 andC2.

([18], [19], [20], [21]).
This classification algorithm, using the observed values ofneuromuscular blockade level at significant Walsh-Fourier
periods{r(12.0), r(14.0), r(17.0), r(28.0)}, leads to an optimal classification of the model bank in two classes. This
classification may be used to define an adaptive reference profile as opposed to the fixed reference profile, providing a
substantial improvement of the control performance.
The adaptive reference profile for each class is obtained as the median of the duration of thebolus effect (relaxation level
under 10%). Thus, for classC1 the control action is set after 35 minutes whereas for classC2 it is set at 26 minutes.
The performance of the two control systems (fixed reference profile versus class dependent reference profile) is compared
calculating the overshoot (distance between the maximum value of the response and the reference value) for each model.
The values thus obtained, represented in the boxplots of Figure 3, show a marked improvement in the overshoot, specially
for C2.

FINAL REMARKS

Neuromuscular blockade levels at the average periods indicated by WFA have a high predictive power for the parameters
of the controller, both in open and closed loop situations and even in the presence of the high level noise that often
contaminates the measurement of the muscle relaxation response.
The use of the WFA allows the construction of a control system which incorporates a recalibration of the controller
parameters leading to an improved reference tracking. The results obtained so far indicate that WFA may be used to
detect a time varying model.
Moreover, the initial reference tracking may also be improved with a decrease of the overshoot using an adaptive reference
profile based on a classification of the models obtained from WFA.
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