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ABSTRACT: The aim of this paper is to illustrate how statatitechniques based on Walsh-Fourier spectral analysis
(WFA) contributes to the design of an on-line adaptive cdrdystem for neuromuscular blockade that could be used
successfully in a wide range of populations. Itis found treatromuscular blockade levels at the average periodsatatic

by WFA have a high predictive power for the parameters of therotler, providing additional information about the
model. A classification algorithm, based on the observedesmbf neuromuscular blockade level at significant WFA
periods, enables the on-line individual tuning of a timeyirag adaptive reference profile, hence decreasing the lovets
The system provides strong robustness to inter and intligittual variability of the patient’s responses and adiamteto

the individual requirements.

KEYWORDS: Control Systems in Medicine, Adaptive Controh-Oine Autocalibration, Regression Models, Walsh-
Fourier Analysis.

INTRODUCTION

Muscle relaxant drugs are currently given during surgigedrations. The non-depolarising types of muscle relaxeint a
by blocking the neuromuscular transmission, thereby primdumuscle paralysis. For clinical reasons the patienttmus
undergo an initiabolus dose in order to induce total muscle relaxation in a verytsperiod of time (usually shorter
than 5 minutes). A variety of different approaches to thegtesf controllers for the automatic control of neuromuseul
blockade has been proposed ([1], [2], [3]). The design afetemntrollers is usually based on a prototype for the neatin
dynamical relationship between the muscle relaxant dodehaninduced muscle paralysis. Such a prototype, which can
be deduced from the available pharmacokinetic and phamyaemic data, merely describes the average characteristic
of the response to the drug. However, in practice, a largalbiity of the individual responses to the infusion of the
muscle relaxant is observed. This variability suggestswe for an individual tuning of the controller accordingtie
characteristics of the patient.

Methods for the on-line autocalibration of digital PID caiter parameters for the administration of a muscle rataixa
have been already proposed ([4], [5], [6]). The parametéthe PID controller (namely the proportional gaiq.);

the derivative gain constant) and the integral time constant;)) have been obtained from the L and R parameters
deduced from the Ziegler-Nichols step response methodapfilied to an empirical model for the muscle relaxant [4].
The subsequent tuning of the controller to the dynamics @teept undergoing surgery is performed by adjusting the R
and the L values using multiple linear regression techrsqui¢h predictor variables extracted from the observedainit
bolus response.

The predictor variables used in this study are a set of shafeneters (SP) and a set of neuromuscular blockade levels at
the average periods indicated by the Walsh-Fourier sgeatedysis (WFA). It was found that WFA provides a character-
ization of the neuromuscular blockade response induced Ilnyitéal bolus at the beginning of anaesthesia, [8], leading to
controller parameter prediction with high power. This fimgs are still apply for closed loop systems. The performance
of the control systems calibrated by the R and L paramet¢ireaed using SP and WFA is assessed. Furthermore, the
WFA periods may be used to classify a bank of simulated modelewomuscular blockade and subsequently to improve
initial reference tracking.



BOLUSRESPONSE DATA ANALYSIS
EMPIRICAL MODEL

The dynamic response of the neuromuscular blockade may Hellked by a second order linear pharmacokinetic model
relating the drug infusion ratey(t), to the plasma concentratiog,(¢), and a nonlinear dynamic model relating(t) to

the induced pharmacodynamic responge). The variabler(t), normalized between 0 and 100, measures the level of
the neuromuscular blockade, 0 corresponding to full paralgnd 100 to full muscular activity. In this study the mescl
relaxation drug used is tharacurium ([9], [10]). The pharmacodynamic effect fatracurium may be modelled by the
Hill equation,

100C%,
r(t) = 8 050 (1)
Cro + ce ()
where the effect concentratiof,(¢), is related tac, (¢) by
Ce(t) = keOCp(t) - kGOCe (t) (2)

wherek.q, C5o and 3 are also patient-dependent parameters. In order to accdaimthe clinical data, the model for
atracurium has been modified including on the linear part of the systems&dider block, [4],
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in a series connection. The time constai assumed to be a random variable independent of the ramggiharmacoki-
netic/pharmacodynamic parameters. Therefore, the lpeaof the resulting empirical model may be representedhby t
following transfer function from to ¢,

(4)
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This empirical model replicates well the characteristitthe patients responses, [4]. A set of 500 models, her@naft
referred as bank of models, are generated assuming a meétidional log-normal distribution for the eight pharma-
cokinetic/pharmacodynamic parameters and used throadghisustudy. Also, for a better replication of the clinical
environment, simulated measurement noise is added to dédlbh generated models. For this bank of models an auto-
matic control system is designed, such that the value ofdfexence is initially fixed at a low level during the first 30
minutes, being gradually raised to the set-poiat)

BOLUSRESPONSE SHAPE PARAMETERS

The shape parameters (SP) represented in Figure 1 have Segnoucharacterize the response induced bglas of
muscle relaxant administered at t=0 minutes ([4], [6]). ;7880 and T10 are elapsed times betweentibies adminis-
tration and the time the response becomes less than 80%, B@%08&, respectively. S is a slope parameter and P is a
persistence parameter, since it describes the duratidrebbtus effect on the patient.
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Figure 1: Shape parameters.

For each of the simulated models, with and without addecenttie parameters T80, T50, T10, S and P are obtained and
used as predictors for the controller parameters L, Rggnidhe results are summarized in Table I, in terms of the % of
variation explained by the multivariate regression modehigher predictive power is obtained only when P is added to



the multivariate regression model. However, in a clinidalation thebolus response may not reach a sufficiently low

level to allow the estimation of parameter P. Thus, althotinghparameter P is used in this study with simulated data, it
cannot be directly used in a real situation.

Without noise Without noise
Predictors L R g L R g
T50 87 42 7 87 42 7
T50 + P 94 70 69 93 69 65
T50+S 87 49 22 87 45 15
T50+S+P 95 70 69 94 69 65
T80+ T50+T10+ S 90 61 59 89 57 52

T80+ T50+T10+S+P 95 73 74 94 69 70

Table I: % of variation explained for linear regression nlede

BOLUSRESPONSE WALSH-FOURIER SPECTRAL ANALYSIS

Walsh-Fourier spectral analysis is a procedure used tysmalnd characterize time series, especially when sharp dis
continuities and changes of level occur in the data. Thegquhoe is similar to the well known Fourier analysis, used to
characterize periodic variation in a continuous signal.

The Walsh-Fourier analysis is based in the Walsh functi¢hs],(12],[13]) which form a complete, ordered and or-
thonormed set of rectangular wave taking the values -1 anthk sequency-ordered Walsh functions are denoted by
W (n,t), with¢ € [0,1[andn = 1,2,.... The argument is denoted byeguency and represents the number of switches
signs (zero-crossings) in the unit interval. [12] definestdrm sequency (hereinafter represented by H-sequenoyeas
half the average number of zero crossings or sign changes fisaction makes per unit time and defines éverage
period of oscillation (multiplicative inverse dfi-sequency) as twice average separation, in time, between sign svétche
Letz(0),...,z(N — 1) be N observations of a stochastic proc¢3s(n)}. An estimator of the spectral density function

(spectrum) of Walsh-Fourier is thaalsh periodogram ([14], [15], [16], [17]), which is the square of the WalshFar
transform of the data )

Iy (A) = \}Nz_xm)vv(n, v (5)

where); is a sequency of the formy; = j/N, 1 < j < N — 1. One can plotly, (A;) versus \; to inspect forpeaks. In
the sequency domain, a peak indicatesviich each); time points. The Walsh periodogram given in (5) is modified to
obtain theWalsh-Harmuth periodogram, by setting

I (X)) = Tw((2) = 1)/N) + Iw (25/N),

withj =1,2,...,(N —2)/2, N =27 p € N, where); is the H-sequency.

Considering that during a surgical intervention a patigtaias different levels of neuromuscular blockade, it igeBti-
gated how the Walsh-Fourier analysis can contribute to awgthe controller. It has been found, [8], that the average
periods are correlated with SP for both the available resg¢gand the bank of simulated models (open loop).

Applying WFA to the bank of models in closed loop, it is founatlkhe average periods are 1.0, 1.6, 2.6, 6.0, 12.0, 14.0,
17.0, 28.0, 34.0 and 42.0 minutes, approximately. Someeasfetperiods coincide with the periods found for the open

loop bank of models. Table Il summarizes the predictive paf®VFA results, in terms of the % of variation of L, R and
g. for the closed loop simulations.

Without noise With noise
Predictors L R g L 1R g
r(1.0) + r(1.6) + r(2.6) + r(6.0) + r(12.0) 93 68 73 90 62 52
r(1.0) + r(1.6) + r(2.6) + r(6.0) + r(12.0) + r(14.0) 93 70 82 9166 62
r(1.6) + r(2.6) + r(6.0) + r(12.0) 92 67 72 90 62 50
r(1.6) + r(2.6) + r(6.0) + r(12.0) + r(14.0) 93 70 81 91 65 61

Table II: % of variation explained for linear regression ratzd(closed loop).



The inclusion of the relaxation level at 14.0 minuted,4.0), in the set of predictors improves the quality of estimation
of the controller parameter, specially fgr. Further, it has been found, [8], that the persistence paenieis highly
correlated withr(14.0). Therefore,r(14.0) is a suitable candidate for replacing P in the multivarigigression model
used for the on-line autocalibration of the controller paeters.

CALIBRATING THE AUTOMATIC CONTROL SYSTEM

The additional information provided by the relaxation lev@ the average periods of WFA suggests that the reference
tracking may be improved if the control system, which is ligudosed at 10 minutes, is recalibrated afterwards.

Thus, for the bank of models, a first calibration is done 10utgs after the administration of the initiablus using as
predictors for L and R the set of SP and WFA relaxation levadiceted in Table Ill. Also, for each model of the bank,
two calibrations, at 10 and 21 minutes, are performed witindl B estimated by using the set of predictors indicated in
Table IV.

10 minutes
Al: T50+ S
A2: T50+S+P

A3:  r(1.3) + r(1.6) + r(3.0) + 1(7.0)

Table Ill: Predictors used in the calibration at 10 minutes.

10 minutes 21 minutes
B1: T50+ S — T10+T50+ T80 + S
B2: T50+S+P — T10+T50+T80+S+P

B3: r(1.3) +r(1.6) +r(3.0) +r(7.0) — r(1.3) +r(1.6) +r(3.0) + r(7.0) + r(14.0)

Table IV: Predictors used in the calibrations at 10 and 2luteis

The performances of the resulting automatic control systara compared through the reference tracking by evaluating
the mean square error (MSE), in the steady-state (after @Gtas), defined by

180

MSE(M) = > (ref — rar(t))?,

t=T5
whereM = 1,...,500 is a model in the bank;,,(t) is the relaxation level for the modaVl at the timet andref is the
reference value. The MSEs thus obtained are representkd bokplots of Figure 2.
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Figure 2: Boxplots of MSE for (a) one calibration at 10 mirgjtéh) two calibrations, at 10 and 21 minutes.

Analysing Figure 2 it can be concluded that the use of the Wkixadion levels as predictors for the controller paranseter
and the recalibration of the control system at 21 minuteddea a noticeable decrease in the mean value as well as the
variability of the MSE and, therefore, to a better referemaeking.

CLASSIFICATION

The bank of models is classified using a classification pragthe K-Prototype, based on th&-Mean algorithm for
classification with the additional advantage of supplyimg optimal number of existing classes in the data set evaluat
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Figure 3: Boxplots of overshoot for the two classg$,andC2.

([18], [19], [20], [21]).

This classification algorithm, using the observed valuesefromuscular blockade level at significant Walsh-Fourier
periods{r(12.0),r(14.0),r(17.0),r(28.0)}, leads to an optimal classification of the model bank in twssds. This
classification may be used to define an adaptive referendidepas opposed to the fixed reference profile, providing a
substantial improvement of the control performance.

The adaptive reference profile for each class is obtaineldeasiedian of the duration of thmlus effect (relaxation level
under 10%). Thus, for clag3l the control action is set after 35 minutes whereas for st is set at 26 minutes.

The performance of the two control systems (fixed referenaf@versus class dependent reference profile) is compared
calculating the overshoot (distance between the maximuoea the response and the reference value) for each model.
The values thus obtained, represented in the boxplots of &g, show a marked improvement in the overshoot, specially
for C2.

FINAL REMARKS

Neuromuscular blockade levels at the average periodsatetidy WFA have a high predictive power for the parameters
of the controller, both in open and closed loop situationd even in the presence of the high level noise that often
contaminates the measurement of the muscle relaxationmesp

The use of the WFA allows the construction of a control systemickvincorporates a recalibration of the controller
parameters leading to an improved reference tracking. €helts obtained so far indicate that WFA may be used to
detect a time varying model.

Moreover, the initial reference tracking may also be impbwith a decrease of the overshoot using an adaptive referen
profile based on a classification of the models obtained frolAWF
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