PAPER REF: 7117

W-W-W CONNECTIONS IN DOUBLE-SHEAR AT AMBIENT TEMPERATURE: EFFECT OF THE APPLIED TENSILE LOAD AND DOWELS DIAMETER

Abderrahim Aissa¹, Elza M.M. Fonseca^{2(*)}, Alvear P.M. Daniel³

¹PhD Student, E.T.S.I. Industrial and Telecommunications, University of Cantabria, Santander, Spain ²LAETA, INEGI, Department of Applied Mechanical, Polytechnic Institute of Bragança, Bragança, Portugal ³Department of Transport and Technology of Projects and Processes, University of Cantabria, Santander, Spain ^(*)*Email:* elzfon@gmail.com

ABSTRACT

This work aims to design wood-wood (W-W-W) connections in double-shear, joined by steel dowel pins. Joints with dowels are used in timber construction to transmit high loads. Dowels are economical and easy to produce. The parameters which influence the load-carrying capacity of joints with dowels are: the bending capacity of the dowel (yield moment), the timber embedding strength and the withdrawal strength of the dowel. All calculations presented in this work will be conducted according European standards, namely using the Eurocode 5, part 1-1. This work proposes the determination of the cross-section, number of fasteners and the minimum spacing in edges per each situation in study, using homogeneous glued laminated (glulam) in birch timber materials. The comparison between the multiple outcomes intends to promote the best solution for a particular application.

Keywords: W-W-W connection, wood, steel, dowel, double-shear.

INTRODUCTION

Wood connections have been investigated due their significance in construction and industrial engineering in terms of strength, ductility and all capacity to improve the structural performance in service. In heavy timber structures, double-shear connections, including wood-wood (W-W-W) connections with steel fasteners, are widely used to assembly structural members and transfer loads (Peng, 2011).

The concept of the W-W-W connection is four wood plates joined by steel dowel, with different diameters in each setting. The model will be designed depending on external tensile load in direction parallel to grain (Aissa, 2017), (Abderrahim, 2017).

In this work, a developed spreadsheet illustrates the design of W-W-W connections according standards (CEN, EN1995-1-1) (DIN 6325, EN ISO 8734), considering a homogeneous glued laminated in birch timber, and steel dowels as fasteners. Therefore, the database is elaborated with different variables and parameters, to improve design solutions, and to intent a comparison between all chosen variables. In the developed spreadsheet, different applied loads and dowel diameters will be used, which demonstrate the correlated results for design a safety double-shear W-W connection at ambient temperature.

The motivation of this work is to design a connection with resistance to double-shear with safety and appropriate dimensions to transfer the imposed loads in the structural member.

Using different glulam strength classes, the mechanical resistance effect in the W-W-W connection will be discussed. Recently many numerical approaches using the finite element method have been carried out to analyse the behaviour of wooden connections, due the possibility to assess different parameters in conjunction (Aissa, 2017). Few 3D numerical models have been published, the majority publications are based on 2D approach (Eckart Resch, 2012).

W-W-W CONNECTION AT AMBIENT TEMPERATURE IN ACCORDANCE WITH EUROCODE 5

Figure 1 represents a typical W-W-W connection under double-shear with the main dimensions (width, height and thickness of the wood plates, minimum spacing and edge/end distances between the dowels and the wood plate).

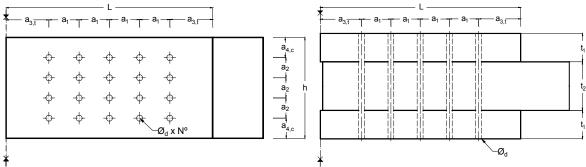


Fig. 1 - Typical W-W-W dimensions.

In order to calculate the shape of the connection, the load was considered as parallel to the grain direction, as well as, the rows of fasteners.

According Eurocode 5 (CEN EN1995-1-1, 2004), the design tensile strength along the grain, $f_{t,0,d}$, must be equal or higher than the design tensile stress along the grain. The tensile strength represents a reduced value of the characteristic tensile strength along the wood grain, due to the application of two safety factors: the modification factor for load duration and moisture content (for short-term equal to 0,9), k_{mod} , and the partial factor for material, γ_M , according equation 1.

$$f_{t,0,d} = \frac{k_{mod} x f_{t,0,k}}{\gamma_M} \tag{1}$$

Considering E_d as the applied load and A_s the cross-section area of the member, the design tensile stress along the grain, $\sigma_{t,0,d}$, is calculated using the equation 2, Eurocode 5 (CEN EN1995-1-1, 2004).

$$\sigma_{t,0,d} = \frac{E_d}{A_s} \tag{2}$$

Using all proposed simplified equations from Eurocode 5 (CEN EN1995-1-1, 2004) for fasteners in double-shear, the characteristic load-carrying capacity per shear plane and per fastener must be calculated using the equation 3.

$$F_{v,Rk} = min \begin{cases} f_{h,1,k} t_1 d \\ 0,5f_{h,2,k} t_2 d \end{cases}$$

$$F_{v,Rk} = min \begin{cases} f_{h,1,k} t_1 d \\ 1,05 \frac{f_{h,1,k} t_1 d}{2+\beta} \left[\sqrt{2\beta(1+\beta) + \frac{4\beta(2+\beta)M_{y,Rk}}{f_{h,1,k} d t_1^2}} - \beta \right] + \frac{F_{\alpha x,Rk}}{4} \\ 1,15 \sqrt{\frac{2\beta}{1+\beta}} \sqrt{2M_{y,Rk} f_{h,1,k} d} + \frac{F_{\alpha x,Rk}}{4} \end{cases}$$
(3)

where:

 t_1 represents the thickness of the wood members;

 $f_{h,i,k}$ is the characteristic embedment strength in timber member;

d is the dowel diameter;

 $M_{y,Rk}$ is the characteristic yield moment of the fastener;

 β the ratio between strength of the members;

 $F_{\alpha x,Rk}$ represents the characteristic axial withdrawal capacity of the fastener.

The value of $M_{y,Rk}$ is calculated according the dowel diameter and the bolt material strength $f_{u,k} = 400MPa$, steel S275.

$$M_{\nu,Rk} = 0.3 f_{u,k} d^{2.6} \tag{4}$$

The value of the characteristic embedment strength in timber member, is obtain due to the value of the dowel diameter and the characteristic wood density, ρ_k .

$$f_{h,1,k} = 0,082(1 - 0,01d)\rho_k \tag{5}$$

With the calculation from $F_{v,Rk}$, it is possible to obtain the number N of the bolts, according the design load-carrying fastener capacity calculated $F_{v,Rd}$, equations 6 and 7.

$$F_{\nu,Rd} = \frac{k_{mod} F_{\nu,Rk}}{\gamma_M} \tag{6}$$

$$N = \frac{E_d}{F_{\nu,Rd}} \tag{7}$$

The space parallel to grain of fastener and within one row, a_1 , perpendicular to grain and between rows, a_2 , the distance between fasteners and loaded end, $a_{3,t}$, and unloaded edge, a_4 , c, vary in order of the dowel diameter.

W-W-W DESIGNED CONNECTIONS: A DEVELOPED SPREADSHEET

In this work different variables were considered, the dowel diameter (8, 10, 12, 14 and 16mm), the thickness of the wood elements, the material properties and the applied load. The W-W-W designed connection at ambient temperature guarantees the applied load design at 300kN, 200kN, 100kN, 75kN and 30kN.

Different glued laminated timber (glulam) materials were considered for the W-W-W designed connections.

Glulam is manufactured by bonding together individual laminations of solid timber, in rectangular cross-sections and very adaptable in design. (CEN, BS EN 1194, 1999) lists eight glulam strength classes, Table 1.

	Homogeneous Glued Laminated GL24h					
	Homogeneous Glued Laminated GL28h					
	Homogeneous Glued Laminated GL32h					
Timber types , (CEN, BS EN 1194, 1999)	Homogeneous Glue Laminated GL36h					
http://imowood.pt/madeira-lamelada/caracteristicas	Combined Glue Laminated GL24c					
	Combined Glue Laminated GL28c					
	Combined Glue Laminated GL32c					
	Combined Glue Laminated GL36c					

Table 1 - Grades glulam.

To distinguish them from the solid timber categories, they are designated by GLxh as homogeneous lay-up, meaning that all of the laminations are of the same strength class, or GLxc as combined, where the outer laminations are of a higher strength class.

Table 2 presents all different mechanical properties for each wood glulam grade (all strength and stiffness values).

A spreadsheet was developed, with all applied loads and dowel diameters for the eight glulam strength classes. The results are presented in different tables, according to the parameters combination. Table 3 represents a part of the study and demonstrate some of the correlated results for design a safety double-shear W-W-W connection with GL24h wood glulam.

The results permit to verify the number N of fasteners, the obtained characteristic loadcarrying capacity per shear plane and per fastener Fv,R,k, and the design load-carrying fastener capacity Fv,R,d.

Material Properties http://imowood.pt/madeira- lamelada/caracteristicas			Wood Glulam, Grade								
Parameter	Designation	GL24h	GL28h	GL32h	GL36h	GL24c	GL28c	GL32c	GL36c		
Bending strength, MPa	fm,k	24	28	32	36	24	28	32	36		
Tension parallel to the fibers, MPa	ft,0,k	16,5	19,5	22,5	26	14	16,5	19,5	22,5		
Tension perpendicular to the fibers, MPa	ft,90,k	0,4	0,45	0,5	0,6	0,35	0,4	0,45	0,5		
Compression parallel to the fibers, MPa	fc,0,k	24	26,5	29	31	21	24	26,5	29		
Compression perpendicular to the fibers, MPa	fc,90,k	2,7	3,0	3,3	3,6	2,4	2,7	3,0	3,3		
Modulus of elasticity parallel to the fibers, MPa	E0,mean	11600	12600	13700	14700	11600	12600	13700	14700		
Modulus of elasticity perpendicular to the fibers, MPa	E90,mean	390	420	460	490	320	390	420	460		
Shear modulus perpendicular to the fibers, MPa	Gmean	720	780	850	910	590	720	780	850		
Density, kg/m^3	ρt	380	410	430	450	350	380	410	430		

Table 2 - Wood material properties, strength classes.

Table 3 - Designed double-shear W-W-W connections, different dowels	diameters and applied loads, GL24h.
---	-------------------------------------

Applied Load	Diameter	Strengt h	Minimum Cross- section		Choose	se dimensions		Yield moment	Embedment strength	Characteristic load-carrying capacity		N dowel s
Ed	d	ft,0,d	As	t2	t1	h	Cross- section	My,Rk	fh,0,k	Fv,R,k	Fv,R,d	N°
kN	mm	MPa	mm ²	mm		mm ²	kN.m	MPa	Ν	Ν		
300	8	11,9	25253	16 0	80	29 5	94400	26743,3	28,67	4028	2900	103
200	8	11,9	16835	14 0	70	26 0	72800	26743,3	28,67	4028	2900	69
100	8	11,9	8418	10 0	50	19 0	38000	26743,3	28,67	4028	2900	34
75	8	11,9	6313	80	40	15 5	24800	26743,3	28,67	3878	2792	27
30	8	11,9	2525	50	25	12 0	12000	26743,3	28,67	3006	2164	14
300	12	11,9	25253	18 0	90	33 0	118800	76745,4	27,42	8172,78	5884	51
200	12	11,9	16835	15 0	75	28 0	84000	76745,4	27,42	8172,78	5884	34
100	12	11,9	8418	10 0	50	23 0	46000	76745,4	27,42	7270,72	5235	19
75	12	11,9	6313	10 0	50	18 0	36000	76745,4	27,42	7270,72	5235	14
30	12	11,9	2525	80	40	13 0	20800	76745,4	27,42	6439,05	4636	6
300	16	11,9	25253	20 0	100	36 0	144000	162141,1	26,17	13401,6	9649,2	31
200	16	11,9	16835	17 0	85	29 5	100300	162141,1	26,17	13401,6	9649,2	21
100	16	11,9	8418	14 0	70	23 0	64400	162141,1	26,17	12563,3	9045,6	11
75	16	11,9	6313	11 0	55	23 0	50600	162141,1	26,17	10906,2	7852,5	10
30	16	11,9	2525	80	40	16 5	26400	162141,1	26,17	9542,1	6870,3	4

All different mechanical properties for the other wood glulam grades were obtained using different spreadsheets. W-W-W designed connection with higher wood material strength (GL36h and GL36c) permits to decrease the cross-section dimension for the same applied load.

Figure 2 represents the behavior between the chosen material strength class and the dimensions for the W-W-W connection. There is a linear correlation between the applied load and the necessary W-W-W dimensions, with a higher increase for lesser strength material.

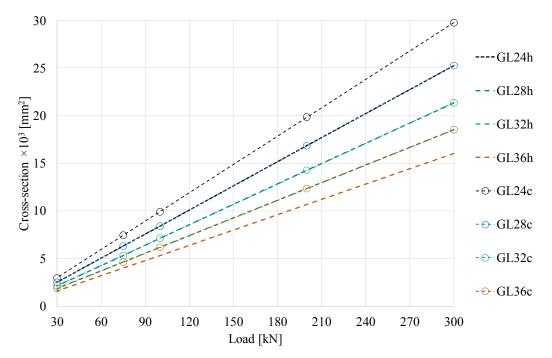


Fig. 2 - Results of the applied load and the obtained cross-section for different wood glulam grades.

Figure 3 and Figure 4 represent the results of the applied load, function of the obtained number of fasteners, for different glulam grades (GLxh and GLxc) according different dowels diameters.

The number of fasteners increase linearly, and with high number for dowels for small diameters. For the minimum spacing and edge/end distances, the variation depends on the loading direction and the dowels diameter obtained during the W-W-W calculations.

For different material strength class there is, in general, a linear correlation between the applied load and the necessary number of fasteners, with a higher increase for lesser strength material.

A little difference is verified between the use of the glulam grades (GLxh or GLxc). Higher material strength reduces lightly the number of the dowels. The most pronounced observation is the relation with the dowel diameter and the number of fasteners. For a diameter equal to 8 mm the number of dowels increases widely when compared with dowels diameter equal 16 mm. The relation also increases when the applied load is higher. Table 4 resumes all the observations relatively to the number of fasteners in W-W-W connections according, dowels diameters, applied load and the used glulam grade.

	NUMBER OF FASTENERS, N											
d, mm	TIMBER	GL24h	GL28h	GL32h	GL36h	GL24c	GL28c	GL32c	GL36c			
	<i>Ed</i> , kN	GL24II	GL2011		GL30II	GL240	GL200	GL320	GL30C			
	300	103	100	97	95	108	103	100	97			
	200	69	66	65	63	72	69	66	65			
8	100	34	33	32	32	36	34	33	32			
	75	27	25	24	24	29	27	25	24			
	30	14	13	13	12	15	14	13	13			
300 70 67 66 64 73 70 67 66												
					-							
10	200	47	45	44	43	49	47	45	44			
10	100	23	22	22	22	24	23	22	22			
	75	17	17	17	17	20	17	18	16			
	30	9	8	8	8	9	9	8	8			
	300	51	49	48	47	53	51	49	48			
	200	34	33	32	31	35	34	33	32			
12	100	19	16	17	17	18	19	18	17			
	75	14	13	13	12	15	14	13	13			
	30	6	6	7	6	7	7	7	7			
	300	39	38	37	36	41	39	38	37			
	200	26	25	24	24	27	26	25	24			
14	100	14	13	13	12	15	14	13	13			
	75	12	10	11	11	11	12	12	11			
	30	6	5	5	5	6	6	5	5			
	300	31	30	29	29	32	31	30	29			
	200	21	20	20	19	22	21	20	20			
16	100	11	12	12	11	12	11	12	12			
	75	10	9	9	8	10	10	9	9			
	30	4	4	4	4	5	4	4	4			

Table 4 - Number of fasteners, function of dowel diameter, applied load and glulam grade.

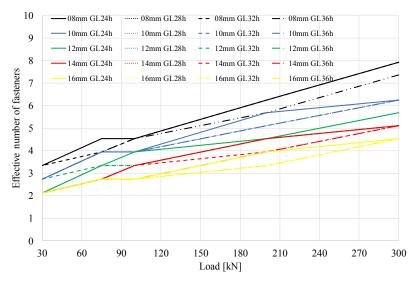


Fig. 3 - Results of the applied load and the obtained number of fasteners for different glulam grades GLxh and dowels diameters.

CONCLUSIONS

A procedure with all analytical and simplified equations was presented to assess a safety cross-section due an applied tensile load in W-W-W connections. The results presented were conducted according the Eurocode 5 (CEN EN1995-1-1, 2004). A worksheet considering all parameters was developed, which permits verify the load-carrying capacity of the connection, the cross-section, the number of fasteners, the minimum spacing in edges, per each situation in study. A developed spreadsheet could promote adequate dimensions for any W-W-W

connection to be used. The number of fasteners increases linearly, and with high number for dowels for small diameters. For the minimum spacing and edge/end distances, the variation depends on the loading direction and the dowels diameter. For different material strength classes there is, in general, a linear correlation between the applied load and the necessary number of fasteners, with a higher increase for lesser strength material.

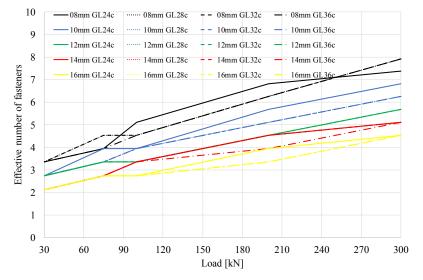


Fig. 4 - Results of the applied load and the obtained number of fasteners for different glulam grades GLxc and dowels diameters.

REFERENCES

[1] Aissa A., Fonseca E.M.M., Lamri, B. Protected and Unprotected W-W-W Connection at Elevated Temperatures. Research and Advanced Technology in Fire Safety, Daniel A. (ed.), Editorial Universidad Cantabria, D.L. SA 739-2017. ISBN 978-84-8102-832-4, 2017, p. 407.

[2] Abderrahim Aissa, Elza M M Fonseca, Belkacem Lamri. Computational model for W-W-W connections at ambient and high temperatures. Book of Abstracts of the 2nd Symposium on Mechanical Engineering, DCE17 | 2nd Doctoral Congress of Engineering, Editors: J César de Sá et al, FEUP, ISBN. 978-972-752-224-8, Portugal, 2017, pp. 45-46.

[3] CEN, BS EN 1194:1999, Timber Structures - Glued laminated timber - Strength classes and determination of characteristic values. British Standard, 1999.

[4] CEN, EN1995-1-1: Eurocode 5: Design of timber structures. Part 1-1: General Common rules and rules for buildings, Brussels, 2004.

[5] DIN 6325, EN ISO 8734: 1997, Parallel Pins, of Hardened Steel and Martensitic Stainless Steel (Dowel Pins) - Cylindrical Pins, December 1997. ICS: 21.060.50.

[6] Eckart Resch, Michael Kaliske. Numerical analysis and design of double-shear doweltype connections of wood. Engineering Structures, 2012, 41, pp. 234-241. doi.org/10.1016/j.engstruct.2012.03.047.

[7] L. Peng, G. Hadjisophocleous, J. Mehaffey, M. Mohammad. On the Fire Performance of Double-shear Timber Connections. January 2011. Fire Safety Science, 42, pp. 1207-1218. DOI: 10.3801/IAFFS.FSS.10-1207.