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ABSTRACT 

The article presents a method of assessing the readiness of technical objects. The analysis 
focused on Mi-8 helicopters belonging to the Air Base. The Markov processes with discrete 
and continuous time were used to determine the readiness index. Based on the analysis of the 
operational process, nine operational states were distinguished, for which limit probabilities in 
discrete and continuous time were calculated. In addition, the dynamics of system changes in 
terms of striving for a stationary state were studied. 
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INTRODUCTION 

Modern helicopters, thanks to their features, such as: the possibility of vertical take-off and 
landing, hovering, high manoeuvrability, mobility, range, velocity, resistance to ground fire, 
efficient own protection measures, as well as firepower and task execution accuracy, are the 
essential equipment of armed forces of many countries. From the point of view of operational 
features, the set of their advantages includes: ease of use and operation, and low encumbrance 
of crews with flight handling, which results facilitates the likelihood of an efficient task 
performance. Currently, helicopters are commonly used in national economy, for civilian, as 
well as military purposes. Their status in armed conflicts is of the basic combat asset in a 
modern battlefield (Tomaszek, 2013, 2016; Zieja, 2016; Żurek, 2009, 2014).  

The helicopters operated in Poland are of obsolete design in terms of technical concept and 
manufacturing technology, and in many cases, they are multi-purpose objects of Soviet or 
Polish production. This article developed a method of assessing the readiness of Mi-8 
helicopters with the application of the Markov processes. For this purpose, documentation 
data based on the Routine Maintenance Sheets were gathered, which are the basis for the 
register of Mi-8 helicopters over a period of two years (2014-2015). Next, the operational 
process was analysed, and an individual and cumulative database was developed. As a result, 
Markov models in discrete and continuous time were constructed (Jacyna-Gołda, 2017; Pham, 
2006). 

 

FORMULATION AND ANALYSIS OF HELICOPTER REGISTER STATES 

The essence of mathematical modelling is the description of the studied phenomenon 
(process, system, set) using a mathematical language. The modelling process utilizes variables 
representing certain (and, therefore, significant from the point of view of the purpose) 
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properties of the studied phenomenon (Brandimarte, 2014; Narayan, 2012; Tchórzewska-
Cieślak, 2016). Studying an operational system requires the determination of all important 
factors, which define it. Secondary components, the ones, which unnecessarily complicate the 
model without significantly improving its quality should be ignored or omitted, and the ones 
similar in terms of the results should be grouped (Kierzkowski, 2017; Piegdoń 2018). 
Thorough examination of the process enables individualization of mutually disjoint 
operational states. It also imposes requirements for empirical data, used to construct the 
model. A minimum amount of its distinctive states, which enables calculating the basic 
operational indices, is enough to generally analyze an operational system. For a studied 
helicopter operational system, a set of the following states was distinguished: 

S1 - preparation for operation; 

S2 - test execution; 

S3 - refueling; 

S4 - readiness with a pilot; 

S5 - readiness without a pilot; 

S6 - protection; 

S7 - work on the ground; 

S8 - task performance; 

S9 - unfitness (maintenance and repair). 

In order to ensure quality of an operation model, it is necessary to correctly select the 
permitted transitions of the object from the previous state to the next one (Knopik, 2016, 
2018; Retsel, 2015). It was determined on the basis of the technical documentation and the 
current operational knowledge regarding the discussed operation process. The mathematical 
description of allowed transitions is a matrix of allowed transitions Si→Sj from the previous 
state Si(rows) to the next one Sj (column). The analyzed nine-state system has probable and 
prohibited transitions, according to Table 1 and the correlated graph shown in Figure 1, 
where: 

0 - means a prohibited transition; 
1 - means an allowed transition. 

Table 1 - The matrix of allowed transitions of the Mi-8 helicopters operational process 
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As seen in Table 1, there are 72 theoretically possible interstate transitions, however, in the 
case of studying real operational processes, some transitions are prohibited. The studied 
sample narrowed this set to 30 allowed state changes, which is a natural consequence of the 
adopted process sequence. From the point of view of the process organization, narrowing the 
possible interstate transitions is understandable and is a consequence of the adopted (and not 
random) operational process organization. 

 
Fig. 1 - The nine-state operational model for Mi-8 helicopters 

A graph showing the helicopter operation process including nine states. As can be seen, most 
of them are mutually communicating states (A� → A(, A� → A2, A� → AC, A( → A:, A9 → A:, A9 → AD, A9 → AE, A: → AE, AE → AF). Operation is understood as a movement of the object 
over distinguished states, which form the phase space. 

 

MARKOV PROCESS IN DISCRETE TIME 

The first stage in constructing a Markov process in discrete time (Knopik, 2016; Werbińska-
Wojciechowska, 2007, 2013) is the estimation of transition probabilities, as the values of 
estimators ĜIJ of elements GIJand matrices P of probable transitions. The values of these 
estimators in a studied sample are frequencies wij of transitions from state AI to state AJ, 
calculated according to the relationship (1): 

 KLMN � OMN � PMN/	PM;     (1) 

where: �IJ - the number of transitions from state AIto state AJ; �I- the number of all transitions (exits) 
from state Si; SIJ - frequencies SIJ of transitions from state AIto state AJ; ni - number of observations of 
states AI in the sample. 

In the case of a nine-state operational process, the matrix of interstate transitions P adopts the 
following form: 
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Table 2 lists empirical likelihoods of interstate transitions for the tested group of Mi-8 
helicopters. 

Table 2 Probabilities of interstate transitions for Mi-8 helicopters 

 

In relation to Markov processes with discrete time, it was proven (Pham, 2006) that if ergodic 
probabilities exist, then they can be calculated from the border of the transition matrix P in n 
steps, by solving a set of linear solutions or a simultaneous matrix equation, i.e., by passing 
from continuous t time to discrete time n, which is a number of the next experiment involving 
observation of a vehicle in time ∆t, as per the relationship (3): 
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where: 
TP - transposed transition matrix P whereas @ � \GJ; �, ] ∈ A_; TGJU - vector of limit 

probabilities; GIJ- probabilities of transition from state i to state j. 

The forms of a system of linear equations for ergodic probabilities GJ5�6 are shown by 
equations (4). 0,012121G( + 0,353535G9 + 0,057142GD + 0,954545G2 + 0,058823GC − G� � 0 0,447204G� + 0,538922G: + 0,011299GE − 0,058823GC − G( � 0 0,103030G( + 0,005988G: + 0,357142GD + 0,045454G2 + 0,282485GE − G9 � 0        (4) 0,721212G( + 0,242424G9 + 0,135593GE − G: � 0  0,151515G( + 0,393939G9 + 0,033898GE − GD � 0	0,434782G� + 0,585714GD + 0,882352GC − G2 � 0 0,018633G� + 0,012121G( + 0,010101G9 + 0,455089G: + 1GF − GE � 0 0,536723GE − GF � 0 0,099378G� − GC � 0 
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With simultaneous satisfaction of a requirement of system normalization (5). ∑ GJ � 1CId�       (5) 

The solution of a system of equations (4) with a normalization requirement (5) was completed 
using the Mathematica, v.11 software. The solutions are abstruse functions in a set of 
complex numbers, which were not cited in this paper due to their complexity. Value of limit 
probabilities GJ5�6 are illustrated in Figure 2. 

 
Fig. 2 - Limit probability GJ5�6 of the Markov process in discrete time for Mi-8 helicopters 

Limit probabilities (Figure 2) relative to discrete time do not exceed values of 0.2. It proves 
the fact that there are no considerable disproportions regarding the priority for each of the 
nine operational states of a studied process. The biggest probability of entering is present for 
the states AE (work on the ground), A: (readiness with a pilot), A( (test execution) and A� 
(preparation for operation). The lowest probabilities were observed for the states AC 
(unfitness), AD (readiness without a pilot), AF (task performance) and A9 (refuelling). 
However, we need to remember that the probabilities for the Markov chain are interpreted as 
a number of entries to a given state compared to all transitions from a distinguished set of 
states forming a phase space of the process. Therefore, they are interpreted in the quantitative 
and not qualitative sense (relative to the state duration). 

 

MARKOV PROCESS IN CONTINUOUS TIME 

The transition from discrete time to continuous time is through the intensity matrix Λ.	Transition intensities gIJ 	h 0for �	 i 	] are defined as right-hand derivatives of transition 
probabilities relative to time, according to a relationship: 

 

 jMN	5kl6 � 	m5KMN6/mk|k � klo     (6) 

 
Intensities gII p 0 for �	 � 	] are defined as complementation of the sum of intensity of 
transitions from state AIfor �	 i 	] to 0 : 

 jMM 	+ 	ΣNjMN � l     (7) 

hence: 

 jMM �	−	ΣNjMN     (8) 
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Modules |gII| � −	gIIare called intensities of exits from state AI.They are not the intensities of 
returning from state AI to AI - as suggested by the notation. For the homogeneous Markov 
processes, the transition intensity is constant and equal to the inverse of average time av�IJ of 
an object staying in state AI prior to state AJ: 
 

 jqMN � r/avkMN     (9) 

while: 

 avkMN 	� 5ΣNkMN6/PM     (10) 

where: �IJ � ��o� −	�� only for lA� � AJ - the time of an object staying in state AI prior to state AJ, 
which is equal to the value of the discrete-continuous variable value for the observation 
number �. 
av�IJ �	 5ΣJ�IJ6/tr�I means an average time spent in state AIprior to state AJ . 
 

Tab. 3 lists the transition intensities of matrices Λ for a nine-state operational process of Mi-8 
helicopters. 
 

Table 3 - Uniaxial tension test results 

 
 

Transition intensities are expressed by the number of transitions per hour for a given object. 
After substituting the matrix Λ to the equation \GJ_s ∙ Λ � 0, the following equation in matrix 
form was obtained for the studied operational process: 

 

VW
WW
WW
WW
XG�G(G9G:GDG2GEGFGCYZ

ZZ
ZZ
ZZ
[s

∙

VW
WW
WW
WW
WX−g�� g�( 0 0 0 g�2 g�E 0 g�Cg(� −g(( g(9 g(: 0 0 0 0 0g9� 0 −g99 g9: g9D 0 g9E 0 00 g:( g:9 −g:: 0 g:2 g:E g:F g:CgD� 0 gD9 0 −gDD gD2 0 0 0g2� 0 g29 0 0 −g22 0 0 0gE� 0 gE9 gE: gED 0 −gEE gEF 00 0 gF9 gF: 0 0 gFE −gFF 0gC� gC( 0 0 0 gC2 0 0 −gCCYZ

ZZ
ZZ
ZZ
Z[
�
VW
WW
WW
WW
X000000000YZ
ZZ
ZZ
ZZ
[
        (11) 

 

or, in the form of linear equation systems, as a relationship: 
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 −0,096710G� + 0,0799G( + 0,3139G9 + 0,008681GD + 0,000319G2 + 	0,002816GC � 0 0,010142G� − 0,387914G( + 0,047199G: + 0,086956GE + 0,0025GC � 0 0,058620G( − 0,995498G9 + 0,013889G: + 0,012773GD + 0,000641G2 + 0,163934GE � 0 0,065348G( + 0,352768G9 − 0,078749G: + 0,172661GE � 0 0,050607G( + 0,288782G9 − 0,026391GD + 0,176471GE � 0         (12) 0,003961G� + 0,004936GD − 0,000961G2 + 0,00344GC � 0 0,016216G� + 0,133333G( + 0,04G9 + 0,017661G: − 0,761588GE + 0,015936GF � 0 0,161564GE − 0,015936GF � 0 0,06639G� − 0,008757GC � 0 

 
This is a homogeneous system, which has an infinite number of solutions, among which there 
may be solutions satisfying the condition of normalization: 

 ∑ GJ � 1CId�        (13) 
 

The solution to the above system (12) with a restriction (12) was obtained with the help of the 
Mathematica software (ver.11), and the result presented in Figure 3. 

 

 
Fig. 3 - Limit probabilities GJ5�6 of the Markov process in continuous time for Mi-8 helicopters 

 
Figure 3 shows that a Mi-8 type helicopter spends the most time in the states of A2 
(protection) and AC (unfitness). In relation to the other distinguished operational states, on 
average, it spends very little time, i.e., in the range of 0.037 in the stateAD (readiness without a 
pilot) to just over 0.001 for the states of AE (work on the ground) A9 and (refuelling). 

 

THE ANALYSIS OF CHANGES OF THE MI-8 HELICOPTER OPERATIONAL 
PROCESS IN TERMS OF THE DYNAMICS OF STRIVING FOR A 
STATIONARY STATE 

The Smoluchowski - Chapman - Kolmogorov equation stems have the following matrix form: 

 

	5∏k, 	� 	m∏/mk	 � 	v	 ∗ 	∏6 ∧ 5ΣNKN � r6                                                           (14) 

 

For the studied Markov process, they have the matrix form (15): 
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or, it may be written in the form of a balanced differential equations system (16): 
 G�� 5�6 � −g�( ∙ G(5�6 −	g�2 ∙ G25�6 − g�E ∙ GE5�6 − g�C ∙ GC5�6 + g(� ∙ G(5�6 + g9� ∙ G95�6 + gD� ∙ GD5�6 + g2�∙ G25�6 + gE� ∙ GE5�6 + gC� ∙ GC5�6 G(� 5�6 � −g(� ∙ G�5�6 − g(9 ∙ G95�6 − g(: ∙ G:5�6 + g�( ∙ G�5�6 + g:( ∙ G:5�6 + gC( ∙ GC5�6 G9� 5�6 � −g9� ∙ G�5�6 − g9: ∙ G:5�6 − g9D ∙ GD5�6 − g9E ∙ GE5�6 + g(9 ∙ G95�6 + g:9 ∙ G:5�6 + gD9 ∙ GD5�6 + g29∙ G25�6 + gE9 ∙ GE5�6 + gF9 ∙ GF5�6 G:� 5�6 � −g:( ∙ G(5�6 − g:9 ∙ G95�6 − g:2 ∙ G25�6 − g:E ∙ GE5�6 − g:F ∙ GF5�6 − g:C ∙ GC5�6 + g(: ∙ G(5�6 + g9:∙ G95�6 + gE: ∙ GE5�6 + gF: ∙ GF5�6 GD� 5�6 � −gD� ∙ G�5�6 − gD9 ∙ G95�6 − gD2 ∙ G25�6 + g9D ∙ G95�6 + gED ∙ GE5�6       (16) G2� 5�6 � −g2� ∙ G�5�6 − g29 ∙ G95�6 + g�2 ∙ G�5�6 + g:2 ∙ G:5�6 + gD2 ∙ GD5�6 + gC2 ∙ GC5�6 GE� 5�6 � −gE� ∙ G�5�6 − gE9 ∙ G95�6 − gE: ∙ G:5�6 − gED ∙ GD5�6 − gEF ∙ GF5�6 + g�E ∙ G�5�6 + g9E ∙ G95�6 + g:E∙ G:5�6 + gFE ∙ GF5�6 GF� 5�6 � −gF9 ∙ G95�6 − gF: ∙ G:5�6 − gFE ∙ GE5�6 + g:F ∙ G:5�6 ∙ gEF GC� 5�6 � −gC� ∙ G�5�6 − gC( ∙ G(5�6 − gC2 ∙ G25�6 + g�C ∙ G�5�6 + g:C ∙ G:5�6 
 
An analytically correct solution to a set of Ch-K-S system restricted with the normalization 
condition was determined with the use of the Mathematica Markov Continuous module. It 
was assumed that at the initial moment � � 0 the process �5�6 was in state S1. The obtained 
observation probabilities of states A� − AC are, in practice, complex functions (these are not 
solutions according to the classic method). When analyzing the operational process dynamics 
of Mi-8 helicopters, it is essential to study characteristic times, after which the object reaches 
a state of equilibrium. Such tests are made available by the Mathematica ver.11 software. For 
the Mi-8 helicopters, the initial distribution vector of the following form GJ � \1,0,0,0,0,0,0,0,0, _ was adopted. During the initial period, the studied process was 
characterized by high change dynamics, which is shown in Figures 4 - 12. 

 
Fig. 4 - The probability change dynamics of a Mi-8 helicopter staying in state S1 (preparation for 

operation) over a time of 60 minutes 
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Fig. 5 - The probability change dynamics of a Mi-8 helicopter staying in state S2 (test execution) 
over a time of 60 minutes 

 

 

Fig. 6 - The probability change dynamics of a Mi-8 helicopter staying in state S3 (refuelling) over a 
time of 60 minutes 

 

 
Fig. 7 - The probability change dynamics of a Mi-8 helicopter staying in state S4 (readiness with a 

pilot) over a time of 60 minutes 
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Fig. 8 - The probability change dynamics of a Mi-8 helicopter staying in state S5 (readiness 
without a pilot) over a time of 60 minutes 

 

 

Fig. 9 - The probability change dynamics of a Mi-8 helicopter staying in state S6 (protection) over 
a time of 60 minutes 

 

 

Fig. 10 - The probability change dynamics of a Mi-8 helicopter staying in state S7 (work on the 
ground) over a time of 60 minutes 
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Fig. 11 - The probability change dynamics of a Mi-8 helicopter staying in state S8 (task 
performance) over a time of 60 minutes 

 
 
 
 

 

 

Fig. 12 - The probability change dynamics of a Mi-8 helicopter staying in state S9 (unfitness) over 
a time of 60 minutes 

 

As the curves presented in Figures 4 - 12 show, the studied process is characterized by 
significant dynamics of the changes in the initial phase for the distribution vector GJ �\1,0,0,0,0,0,0,0,0_. In practice, reaching a state of equilibrium is diversified for individual 
values of probabilities over time. After 4320 hours from the moment of forcing, all 
probabilities reach their limit values. 
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CONCLUSIONS 

Table 4 lists the limit probability values for discrete pj(n) and continuous time pj(t) for Mi-8 
helicopters. 

 

Table 4 - Limit probabilities of a Mi-8 helicopter operational process in discrete GJ5�6 and 
continuous time GJ5�6 in a set of S1-S9 states 

 

 

The limit probabilities of a 9-state Mi-8 helicopter model in the discrete and continuous time 
domain differ significantly (Table 4). The reasons stem from a different interpretation of the 
frequency relationships (the variable space of state change in discrete time) and the intensity 
of process transitions (the distribution of state durations variable in physical time). In the 
course of analyzing the limit probabilities for Mi-8 helicopters relating to the Markov process 
in discrete GJ5�6 and continuous time GJ5�6, the following final conclusions may be 
formulated: 

a) for discrete time: 

-  the highest entry probabilities were observed for the states of:AE (work on the ground), 

-  almost identical for the states:A( (test execution) and A: (readiness with a pilot) due to 
the fact that these are concurrently positive correlated processes, since the readiness 
with a pilot is practically linked with test execution, 

-  slightly lower probabilities apply to the following states:A� (preparation for operation), A2 (protection), A9 (refuelling) and AF (task performance), 

-  the smallest entry probabilities apply to the states of:AC (unfitness) and AD (readiness 
without a pilot). 

b) for continuous time: 

-  the calculated functional readiness index for Mi-8 helicopter is 0.820103 (p� + p( +p: + p2 + pF � 0,8201036. Therefore, it is high, which proves a correctly executed 
operational process from the point of view of the supervision over technical objects in 
the inventory of Airlift Base, 

-  the highest probability of staying was observed for the states A2 (protection) and AC 
(unfitness). The probabilities of staying in the other states are short-lived and do not 
have a significant impact on the calculated functional readiness index. 
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