
September 21, 2022

Week #2 — Lecture #1

Software Testing,
Verification and Validation

Name: José Campos
E-mail: jcmc@fe.up.pt
Webpage: https://jose.github.io

Speciality: software testing

TVVS 2022/2023
Official website:
https://sigarra.up.pt/feup/en/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=501971
Alternative: https://paginas.fe.up.pt/~jcmc/tvvs/2022-2023/index.html

- Verification vs Validation
- Static and Dynamic Testing
- Black-box Testing

- Equivalence Class Partitioning
- Boundary Value Analysis
- Model-based Testing

- White-box Testing
- Structural Testing (Line and Decision coverage, Path coverage)
- Logical Coverage (Condition coverage, Modified Condition/Decision Coverage (MC/DC))
- Dataflow Testing
- Mutation Testing

- Regression Testing
- Integration Testing, System Testing, Acceptance Testing
- Advanced Testing techniques, e.g., Search-based Software Testing
- Tests Planning and Documentation, Defect Management

https://sigarra.up.pt/feup/en/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=501971
https://paginas.fe.up.pt/~jcmc/tvvs/2022-2023/index.html

TVVS 2022/2023
- 1 x Lecture class (MESW and M.EIC)

- Wednesday 11:30am — 1:00pm
- Room: B006

- 1 x Recitation class (MESW)
- Friday 9:30am — 11:00am
- Room: B109

- 1 x Office hour (MESW and M.EIC)
- Wednesday 2:30pm — 3:30pm
- Room: D107

- 1 x Recitation class (M.EIC)
- Friday 11:30am — 1:00pm
- Room: B107

- Grading system/formula: 50% project + 50% final exam
To successfully complete this course

- project >= 47.5% and exam >= 47.5%

- 1 project composed by ~9 mini assignments (~1 per week)

TVVS 2022/2023

At the end of this course, you
would be able to
- Plan a Verification and Validation strategy that includes a selection of
different techniques and tools.

- Design and develop tests at different levels (i.e., unit, integration,
system) using standard and well-adopted tools that could effectively test
complex software systems.

- Derive tests that deal with exceptional and corner cases by
performing several different techniques (e.g., boundary analysis) as well
as able to reflect on their limitations, when and when not to apply them in
a given context.

- Measure the efficiency of the developed tests by means of different test
adequacy metrics (e.g., line, decision, condition, MC/DC coverage).

- Write maintainable test code by avoiding well-known test's issues (e.g.,
flakiness, unreadable, slow, dependent, fat tests, etc.)

TVVS 2022/2023
- Slides based on the following sources:

- CSE1110, Software Quality and Testing @ TUDelft by Arie
van Deursen, Maurício Aniche, Frank Mulder

- Software Verification and Validation @ FCUL < 2020/2021
by Eduardo Marques, Vasco Vasconcelos, Francisco
Martins, and João Neto

- Software Testing, Verification and Validation @ FEUP by
Ana Paiva

(disclaimer)

Why do we need to
verify and validate
our software?
Because software bugs are everywhere!
Literally!

https://www.i-programmer.info/history/people/342-aiken-and-the-mark-i.html

https://www.pinterest.pt/pin/575616396109152294

https://www.pinterest.pt/pin/575616396109152294

https://en.wikipedia.org/wiki/Software_bug

Software bugs cost millions

Software bugs “kill” people

killed 346 people

https://www.theverge.com/2020/2/6/21126364/boeing-737-max-software-glitch-flaw-problem
https://www.youtube.com/watch?v=H2tuKiiznsY

https://www.youtube.com/watch?v=H2tuKiiznsY

Software bugs expose people’s data

https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/

https://www.wired.com/story/google-plus-bug-52-million-users-data-exposed/

The term “bug” is ambiguous … are
we referring to the source code or to
outcome of a failed execution?

Failure, Fault, and Error
(falha, falta, erro)

It is common to hear different terms to indicate that
a software system is not behaving as expected. Just
to name a few: error, mistake, defect, bug, fault,
and failure. To describe the events that led to a
software crash more precisely, we need to agree on
a certain vocabulary. For now, this comes down to
three terms: failure, fault, and error.

Failure, Fault, and Error
(falha, falta, erro)

A failure is a component of the (software) system
that is not behaving as expected. Failures are often
visible to the end user. An example of a failure is a
mobile app that stops working, or a news website
that starts to show yesterday's news on its front
page. The software system did something it was not
supposed to do.

Failure, Fault, and Error
(falha, falta, erro)

Failures are generally caused by faults. Faults are
also called defects or bugs. A fault is the flaw in the
component of the system that caused the system to
behave incorrectly. A fault is technical and, in our
world, usually refers to source code, such as a
comparison in an if statement that uses a "less
than" operator instead of a "greater than" operator.

Failures are generally caused by faults. Faults are
also called defects or bugs. A fault is the flaw in the
component of the system that caused the system to
behave incorrectly. A fault is technical and, in our
world, usually refers to source code, such as a
comparison in an if statement that uses a "less
than" operator instead of a "greater than" operator.

Note that the existence of a fault in the source code does not necessarily
lead to a failure. If the source code containing the fault is never
executed, it will never cause a failure. Failures only occur when the
system is being used and someone notices it not behaving as expected.

Failure, Fault, and Error
(falha, falta, erro)

Failure, Fault, and Error
(falha, falta, erro)

Finally, we have an error, also called mistake. An error is the
human action that caused the system to run not as
expected. For example, a developer didn't cover an
obscure condition because they misunderstood the
requirement. Plugging a cable into the wrong socket is an
example of a hardware mistake.

In other words: an error by a developer can lead to a fault in
the source code that will eventually result in a failure.
In the code example above: the failure was the program returning a large number, the
fault was a bad if/else if condition, and the error was not dealing properly with that case.

Verification &
Validation

Verification & Validation

Verification and validation are both about
assessing the quality of a system. However, they do
have a subtle difference, which can be quickly
described by a single question:

Verification: “Have we built the software right?”
 “Desenvolvemos o software corretamente?”

Validation: “Have we built the right software?”
 “Desenvolvemos o software correto?”

Note how both verification and validation are fundamental for ensuring the
delivery of high-quality software systems.

Verification & Validation

Verification: Have we built the software right?
(i.e., does it implement the requirements)
Verification, is about the system behaving as it is
supposed to, according to the specification.

In simple words, this mostly means that the system behaves
without any bugs. Note that this does not guarantee that the
system is useful: a system might work beautifully, bug-free, but
not deliver the features that customers really need.

Verification & Validation

Validation: Have we built the right software? (i.e., do
the deliverables satisfy the customer)
Validation concerns the features that our software
system offers, and the customer (i.e., for whom the
system is made):

• is the system under development what the users
really want and/or need?
• is the system actually useful?

Validation techniques, thus, focus on understanding whether the
software system is delivering the business value it should deliver.

Verification & Validation

Verification is often assessed through static
analysis, aka static testing, (e.g., code review,
editors’ check source code, compilers check syntax,
etc.)

Validation typically involves dynamic analysis, aka
dynamic testing, i.e., when the software itself is
executed.

What are the benefits of VV?

- Cost-Effective: It is one of the important advantages of software
testing. Testing any IT project on time helps you to save your money
for the long term. In case if the bugs caught in the earlier stage of
software testing, it costs less to fix.

- Security: It is the most vulnerable and sensitive benefit of software
testing. People are looking for trusted products. It helps in removing
risks and problems earlier.

- Product quality: It is an essential requirement of any software
product. Testing ensures a quality product is delivered to customers.

- Customer Satisfaction: The main aim of any product is to give
satisfaction to their customers. UI/UX Testing ensures the best user
experience.

So, why do not we just test
more and more?

So, why do not we just test
more and more?

TL;DR: developing tests is a very time-consuming task
which is subject to incompleteness and further errors.

Why is software testing so hard?

- Bugs are not uniformly distributed, some components in some software systems present
more bugs than other components.

- How many tests are enough? Creating too many tests, without proper consideration,
might lead to ineffective tests (besides costing too much time and money). Creating too
many tests, without proper consideration, might lead to ineffective tests (besides costing
too much time and money).

- When should I stop testing? Exhaustive testing is impossible. Imagine a software system
that has “just” 300 different flags (or configuration settings). Those flags can be set to
either true or false and they can be set independently from the others. The software
system behaves differently according to the configured combination of flags. This implies
that we need to test all the possible combinations. A simple calculation shows us that 2
possible values for each of the 300 different flags gives 2^300 combinations
(203703597633448608626844568840937816105146839366593625063614044935438129
9763336706183397376) that need to be tested. As a matter of comparison, this number is
higher than the estimated number of atoms in the universe. In other words, this software
system has more possible combinations to be tested than the universe has atoms!

Why is software testing so hard?

- As Dijkstra used to say, program testing can be used to show the
presence of bugs, but never to show their absence. In other words,
while we might find more bugs by simply testing more, they will never
ensure that the software system is 100% bug-free. They will only
ensure that the cases we test for behave as expected.

- To test a piece of software, we need a lot of variation in our tests.
For example, we want variety in the inputs when testing a method,
like we saw in the example above. To test the software well, however,
we also need variation in the testing strategies that we apply.

- The context also plays an important role in how one devises tests.
For example, devising tests for a mobile app is very different from
devising tests for a web application, or video game. In other words:
testing is context-dependent.

Static Verification

Static Verification

Static Testing is a software testing technique which is used to
check faults in a software application without executing its
source code. It is concerned with the analysis of the static
system representation (source code, documents, models,
prototypes, etc.) to discover faults.

- Early detection of faults prior to test execution.

- Early warning about suspicious aspects of the code or design.

- Detecting dependencies and inconsistencies in software
models, such as links.

- Improved maintainability of code and design.

- Prevention of faults, if lessons are learned in development.

Static Verification

The two main types of static testing techniques are:

- Manual examinations: Manual examinations include
analysis of code done manually, also known
as Reviews.

- Automated analysis using tools: Automated
analysis are basically static analysis which is done
using tools.

Reviews

A review in static testing is a process or meeting
conducted to find causes of failures, i.e., faults in the
program, rather than the failures themselves. By
reviewing the program all team members get to know
about the progress of the project and sometimes the
diversity of thoughts may result in excellent
suggestions.

Cost of Reviews

- 5% to 15% of development effort. Note: testing and
debugging represents 50% of development effort.

But it is worth it:

- Reduce faults by a factor of 10. [Yourdon, Structured
Walkthroughs]

- 10 times reduction in fault reaching test, testing cost
reduced by 50% to 80%. [Freedman & Weinberg,
Handbook of Walkthroughs, Inspections & Technical
Reviews]

What can be reviewed?

Anything written down can be inspected:

- Policy, strategy, business plans, marketing or
advertising materials, contracts

- System requirements, feasibility studies, acceptance
test plans

- Test plans, test designs, test cases, test results

- System designs, logical & physical

- Source code

- User manuals, procedures, training material

Types of Reviews

A single artifact may be the subject to more than one
review. Reviews can be classified into four parts:

1. Walkthroughs (author in the lead)

2. Technical review (technical meeting to achieve
consensus)

3. Inspections (peer review of documents, relies on
‘visual inspection’, aka reading)

1. Walkthroughs

Author guide the participants through the document according to his or her thought
process to achieve a common understanding and to gather feedback.

- It is not a formal process.

- It is led by the authors.

- Useful for the people if they are not from the software discipline, who are not used to
or cannot easily understand software development process.

- Is especially useful for higher level documents like requirement specification, etc.

Main goals:

- To present the documents both within and outside the software discipline in order to
gather the information regarding the topic under documentation.

- To explain or do the knowledge transfer and evaluate the contents of the document.

- To achieve a common understanding and to gather feedback.

- To examine and discuss the validity of the proposed solutions.

2. Technical Review

Includes peer and technical experts, no management participation. Can be rather
subjective.

- It is less formal review.

- It is led by the trained moderator but can also be led by a technical expert.

- It is often performed as a peer review without management participation.

- Faults are found by the experts (such as architects, designers, key users) who focus on
the content of the document.

- In practice, technical reviews vary from quite informal to very formal.

Main goals:

- To ensure that an early stage the technical concepts are used correctly.

- To access the value of technical concepts and alternatives in the product.

- To have consistency in the use and representation of technical concepts.

- To inform participants about the technical content of the document.

3. Inspection

- It is the most formal review type.

- It is led by the trained moderators.

- The artifacts to be inspected and given out in advance.

- It involves peers to examine the product.

- The faults found are documented in a logging list or issue log.

- A formal follow-up is carried out by the moderator.

Main goals:

- It helps the author to improve the quality of the document under inspection.

- It removes faults efficiently and as early as possible.

- It improve product quality.

- It create common understanding by exchanging information.

- It learn from faults found and prevent the occurrence of similar faults.

Code Review at
Google

by Michaela Greiler https://www.michaelagreiler.com/code-reviews-at-google/

Code Review at Google

1. It all starts after Mark has made some changes to the code and wants
those code changes to be merged with the shared codebase.

2. Before sending the code out for review Mark needs to run the code
through a static analysis tool, i.e., Tricorder. Mark reviews the results of
the static analysis tool and when he is happy with his changes, he sends
the changes to at least one code reviewer.

3. The code reviewer carefully looks through the code and leaves
comments if she sees a problem or needs some clarification. Mark then
addresses each comment either by changing the code or replying to the
comment. If Mark made some changes to the code under review, he
uploads the new version for reviewers to check again. If a reviewer is
satisfied, she can approve the change by marking it as “LGTM” (looks
good to me). To be able to commit the code to the shared codebase, at
least one reviewer must approve the code.

https://research.google/pubs/pub43322/

Code Review at Google

- 75% of the code reviews have just one reviewer.

- 90% of the code reviews have fewer than 10 files
changed. Most of the changes also have only around
24 lines of code changed.

and everyone?

Summary

- Static testing is to find faults as early as possible.

- Static testing not a substitute for dynamic testing
(will talk about that in the coming weeks), both find a
different types of faults.

- Reviews are an effective technique for static testing.

- Reviews not only help to find faults but also
understand missing requirements, design faults, non-
maintainable code.

References

- Paul Ammann, Jeff Offutt; Introduction to Software Testing, 2nd Edition, 2016. ISBN:
978-1-107-17201-2

- Paul C. Jorgensen; Software Testing A Craftsman's Approach, 4th Edition, 2013. ISBN:
978-1-466-56069-7

- Dorothy Graham, Rex Black, Erik van Veenendaal; Foundations of Software Testing:
ISTQB Certification, 4th Edition, 2020. ISBN: 978-1-473-76479-8

- Ilene Burnstein; Practical Software Testing, 2003. ISBN: 978-0-387-95131-7

- Gordon Fraser and José Miguel Rojas; Software Testing, 2019. ISBN 978-3-030-00262-6

- Mark Utting; Practical Model-Based Testing, 2007. ISBN: 978-0-12-372501-1

- Tomek Kaczanowski; Bad Tests, Good Tests, 2013. ISBN: 978-8-393-84713-6

- Chak Shun Yu, Christoph Treude, Maurício Aniche; Comprehending Test Code: An
Empirical Study, 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). ISBN:978-1-7281-3095-8

- Michal Young and Mauro Pezzè; Software testing and analysis: process, principles, and
techniques, 2008. ISBN: 978-0-471-45593-6

References

- D. Graham, R. Black, and E. van Veenendaal.
“Foundations of Software Testing: ISTQB Certification”,
4th Edition, 2020.

- E. Bouwers, J. Visser, and A. van Deursen. “Getting
what you Measure”. CACM, May 2012

- A. Bacchelli and C. Bird. “Expectations, Outcomes, and
Challenges of Modern Code Review”. ICSE 2013.

- Alex Nederlof. “The truth about code reviews”. 2013.

- Michaela Greiler’s blog on Code Review, https://
www.michaelagreiler.com/code-review-blog-post-series

https://www.michaelagreiler.com/code-review-blog-post-series
https://www.michaelagreiler.com/code-review-blog-post-series

