
September 28, 2022

Week #3 — Lecture #2

Software Testing,
Verification and Validation

Last week, we discussed Static Testing, a software
testing technique which is used to check faults in a
software application without executing its source code.
It is concerned with the analysis of the static system
representation (source code, documents, models,
prototypes, etc.) to discover faults. This week, we will
introduce Dynamic Testing.

Testing

Static Dynamic

Review Walkthrough

Dynamic Testing

Dynamic Testing

Dynamic Testing is a software testing technique which is
used to check for functional behavior of software system,
memory / cpu usage and overall performance of the
system. Hence the name “Dynamic”. The main objective
of this testing is to confirm that the software product
works in conformance with the business requirements.

Dynamic testing executes the software and validates the
output with the expected outcome. Dynamic testing is
performed at all levels of testing and it can be either
black or white box testing.

Static vs. Dynamic
Static Dynamic

Testing was done without executing the program Testing is done by executing the program

This testing does the verification process Dynamic testing does the validation process

Static testing is about prevention of defects Dynamic testing is about finding and fixing the defects

Static testing gives an assessment of code and
documentation

Dynamic testing gives bugs/bottlenecks in the software
system

Static testing involves a checklist and process to be
followed

Dynamic testing involves test cases for execution

This testing can be performed before compilation Dynamic testing is performed after compilation

Static testing covers the structural and statement
coverage testing

Dynamic testing techniques are Boundary Value Analysis
& Equivalence Partitioning.

Cost of finding defects and fixing is low Cost of finding and fixing defects is high

Return on investment will be high as this process
involved at an early stage

Return on investment will be low as this process involves
after the development phase

More reviews comments are highly recommended for
good quality

More defects are highly recommended for good quality.

May requires a large number of formal and/or informal
meetings

Comparatively requires lesser meetings

https://www.guru99.com/static-dynamic-testing.html

Level / Phase

 Strategy /
Technique

Test types

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

In some situations, the goal of the tester is to test a single
feature of the software, purposefully ignoring the other units of
the systems. When we test units in isolation, we are doing what is
called unit testing.

Defining a ‘unit’ is challenging and highly dependent on the
context. A unit can be just one method or can consist of multiple
classes. Here is a definition for unit testing by Roy Osherove

“A unit test is an automated piece of code that invokes a unit of
work in the system. And a unit of work can span a single method,
a whole class or multiple classes working together to achieve
one single logical purpose that can be verified.”

Roy Osherove, “The Art of Unit Testing”, 2nd edition, 2013

Unit testing

The anatomy of a unit test
(Arrange, Act, Assert — AAA)

Vladimir Khorikov, “Unit Testing Principles, Practices, and Patterns” (Chapter 3), 2020

public class CalculatorTests {

 public void test_sum_of_two_numbers() {
 // Arrange
 double first = 10;
 double second = 20;
 var calculator = new Calculator();

 // Act
 double result = calculator.sum(first, second);

 // Assert
 org.junit.Assert.assertEquals(30, result);
 }
}

Arrange: This is is where you
prepare and initialize all variables
and objects that are needed by your
system under test to work.

The anatomy of a unit test
(Arrange, Act, Assert — AAA)

Vladimir Khorikov, “Unit Testing Principles, Practices, and Patterns” (Chapter 3), 2020

public class CalculatorTests {

 public void test_sum_of_two_numbers() {
 // Arrange
 double first = 10;
 double second = 20;
 var calculator = new Calculator();

 // Act
 double result = calculator.sum(first, second);

 // Assert
 org.junit.Assert.assertEquals(30, result);
 }
}

The anatomy of a unit test
(Arrange, Act, Assert — AAA)

Vladimir Khorikov, “Unit Testing Principles, Practices, and Patterns” (Chapter 3), 2020

public class CalculatorTests {

 public void test_sum_of_two_numbers() {
 // Arrange
 double first = 10;
 double second = 20;
 var calculator = new Calculator();

 // Act
 double result = calculator.sum(first, second);

 // Assert
 org.junit.Assert.assertEquals(30, result);
 }
}

Act: In this section you
will actually invoke the
method that you are
testing.

Arrange: This is is where you
prepare and initialize all variables
and objects that are needed by your
system under test to work.

The anatomy of a unit test
(Arrange, Act, Assert — AAA)

Vladimir Khorikov, “Unit Testing Principles, Practices, and Patterns” (Chapter 3), 2020

public class CalculatorTests {

 public void test_sum_of_two_numbers() {
 // Arrange
 double first = 10;
 double second = 20;
 var calculator = new Calculator();

 // Act
 double result = calculator.sum(first, second);

 // Assert
 org.junit.Assert.assertEquals(30, result);
 }
}

Arrange: This is is where you
prepare and initialize all variables
and objects that are needed by your
system under test to work.

Act: In this section you
will actually invoke the
method that you are
testing. Assert: This section is used to

validate the return value
received from the sum()
method. If the returned value is
what is expected, then the test
method will pass. If the returned
value is not what was expected,
then the test method will fail.

The anatomy of a unit test
(Given-When-Then)

Vladimir Khorikov, “Unit Testing Principles, Practices, and Patterns” (Chapter 3), 2020

public class CalculatorTests {

 public void test_sum_of_two_numbers() {
 // Given
 double first = 10;
 double second = 20;
 var calculator = new Calculator();

 // When
 double result = calculator.sum(first, second);

 // Then
 org.junit.Assert.assertEquals(30, result);
 }
}

Unit testing, 👍 and 👎

Advantages 👍

• Firstly, unit tests are fast. A unit test usually takes just a couple of
milliseconds to execute. Fast tests give us the ability to test huge portions
of the system in a small amount of time. Fast, automated test suites give
developers constant feedback; this fast safety net makes developers feel
more comfortable and confident in performing evolutionary changes to
the software system they are working on.

• Secondly, unit tests are easy to control. A unit test tests the software by
giving certain parameters to a method and then comparing the return
value of this method to the expected result. The input values and
expected result values are easy to adapt or modify in the test.

• Finally, unit tests are easy to write. Unit tests do not require complicated
setup or additional work. A single unit is also often cohesive and small,
making the job of the tester easier.

Unit testing, 👍 and 👎

Disadvantages 👎

• Unit tests lack “reality”. A software system is rarely
composed of a single class. The large number of classes in
a system and the interaction between these classes can
cause the system to behave differently in its real application
than in the unit tests. Therefore, unit tests do not perfectly
represent the real execution of a software system.

• Some types of bugs are not caught. Some types of bugs
cannot be caught at unit test level. They only happen in the
integration of the different components (which are not
exercised in a pure unit test).

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

Unit tests do not exercise the system in its entirety (but
this is not their goal). To get a more realistic view of the
software, and thus perform more realistic tests, we
should run the entire software system, with all its
databases, front-end apps, and any other components
it has.

When we test the system in its entirety, we are doing
what is called system testing. In practice, instead of
testing small parts of the system in isolation, system
tests exercise the system as a whole.

System testing

System testing, 👍 and 👎

Advantages 👍

• The obvious advantage of system testing is how
realistic the tests are. After all, the more realistic the
tests are, the greater the chance that the system
works when released.

• System tests also capture the user’s perspective
better than unit tests. In other words, system tests
are a better simulation of how the final user interacts
with the system.

System testing, 👍 and 👎

Disadvantages 👎

• System tests are often slow when compared to unit tests. Although we have
not written any system tests up until now, try to imagine what all a system test has
to do, including starting and running the whole system with all its components.
The test also has to interact with the real application and actions might take a few
seconds to happen. Imagine a test that starts a container with a web application
and another container with a database. It then submits an HTTP request to a
webservice that is exposed by this web app. This webservice then retrieves data
from the database and writes a JSON response to the test. This obviously takes
more time than running a simple unit test, which has virtually no dependencies.

• System tests are also harder to write. Some of the components (e.g., databases)
might require complex setup before they can be used in a testing scenario. Think
of not only connection and authentication, but also making sure that the database
has all the data that is required by that test case. This takes additional code that is
needed just for automating the tests.

System testing, 👍 and 👎

Disadvantages 👎

• Lastly, system tests tend to become flaky. A flaky test is a test that presents
an erratic behavior: if you run it, it might pass or it might fail for the same
configuration. Flaky tests are an important problem for software development
teams. After all, having a test that might pass when there is a fault or one that
might fail when there are none harms the productivity of the development
team. It is easy to imagine how a system test can become flaky. Think of a
system test that exercises a web app. After clicking a button, the HTTP POST
request to the web app took half a second more than usual (due to small
variations we often do not control in real-life scenarios; tomcat decided to do
a full garbage collection at that very second, for example). The test was not
expecting it to happen and thus, it failed. If the test is executed again, the
web app might now take its usual time to respond and the test will pass on
this try. There are just too many uncertainties in a system test that can lead to
unexpected behavior.

https://tomcat.apache.org

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

Unit and system testing are the two extremes of test
levels. As we saw, unit tests focus on the smallest parts
of the system while system tests focus on the whole
system at once. However, sometimes we need
something in between.

Integration testing is the test level we use when we
need something more integrated (or less isolated) than
a unit test but without the need of exercising the entire
system.

Integration testing

“Software systems commonly rely on database systems. To communicate with the
database, developers often create a class whose only responsibility is to interact
with this external component (think of Data Access Objects - DAO - classes). These
DAOs might contain complicated SQL code. Thus, a tester feels the need to test
these SQL queries.

However, note that the tester does not want to test the entire system, only the
integration between the DAO class and the database. The tester also does not
want to test the DAO class in complete isolation; after all, the best way to know
whether a SQL query works is to actually submit it to the database and see what
the database returns back. This is an example of an integration test.”

The goal of integration testing is to test multiple components of a system
together, focusing on the interactions between them instead of testing the system
as a whole. Are they communicating correctly? What happens if component A
sends message X to component B? Do they still present correct behavior?

Integration testing

Integration testing, 👍 and 👎

Advantages 👍

• The advantage of integration tests is that, while not
fully isolated, deriving tests just for a specific
integration is easier than deriving tests for all the
components together. Therefore, the effort of writing
such tests is a little more than the effort required for
unit tests but less than the effort for system tests.

Integration testing, 👍 and 👎

Disadvantages 👎

Note that the more integrated our tests are, the more difficult they are to write. In
the example, setting up a database for the test requires effort. Tests that involve
databases usually need to:

•make use of an isolated instance of the database just for testing purposes (as
you probably do not want your tests to mess with production data),

• update the database schema (in fast companies, database schemas are
changing all the time, and the test database needs to keep up),

• put the database into a state expected by the test by adding or removing rows,

• and clean everything afterwards (so that the next tests do not fail because of the
data that was left behind by the previous test).

The same effort happens to any other type of integration test you can imagine
(e.g., web services, file reads and writes, etc.)

Testing

Static Dynamic

Unit
testing

Integration
testing

System
testing

Unit Testing: Under Unit Testing, individual units or modules are tested by the developers. It
involves testing of source code by developers.
Integration Testing: Individual modules are grouped together and tested by the developers.
The purpose is to determine what modules are working as expected once they are integrated.
System Testing: System Testing is performed on the whole system by checking whether the
system or application meets the requirement specification document.

Review Walkthrough

Testing Pyramid

Testing Pyramid

We discussed three different test levels: unit, system, and integration. A
question that pragmatic software developers might ask themselves is:

How much should I do of each?

Testers have to decide whether to invest more in unit testing or in system
testing as well as determine which components should be tested via unit
testing and which components should be tested via system testing. A
wrong decision might have a considerable impact on the quality of the
system: a wrong level might cost too much resources and might not find
sufficient faults.

While we still have no clear empirical answer to this question,
practitioners have been proposing different ways to make this decision.

One of the most famous diagrams that could help us in this discussion is
the so-called testing pyramid.

Testing Pyramid

Manual

System

Integration

Unit

More
reality

More
complexity

by Martin Fowler, https://martinfowler.com/bliki/TestPyramid.html

When should I write
unit tests?

When the component is a single piece of business logic of the software system.

If we think of enterprise / business systems, most of them are about
“transforming data”. Such business logics is often expressed by means of entity
classes (e.g., an Invoice class and an Order class) exchanging messages. Business
logic often does not depend on external services and so it can easily be tested
and fully exercised by means of unit tests. Unit tests give testers full control in
terms of the input data, as well as full observability in terms of asserting that the
behavior was as expected.

If you have a piece of code that deals with specific business logic but you are not
able to test it via unit tests (e.g., it is only possible to exercise that business logic
with the full system running), it is probably because of previous design or
architectural decisions that prevent you from writing unit tests. The way you
design your classes has a high impact on how easy it is to write unit tests for your
code. We will discuss more about design for testability in a future lecture class.

When should I write
integration tests?

Whenever the component under test interacts with an external
component (e.g., a database or a web service) integration tests
are appropriate.

Following our example in the integration testing section, a Data
Access Object class is better tested at the integration level.

Again, note that integration tests are more expensive and
harder to set up than a unit test. Therefore, making sure that
the component that performs the integration is solely
responsible for that integration and nothing else (i.e., no
business rules together with integration code), will reduce the
cost of the testing.

When should I write
system tests?

As we know, system tests are very costly. This makes it
impossible for testers to re-test their entire system at
system level. Therefore, the suggestion here is to use a
risk-based approach. What are the absolutely critical parts
of the software system under test? In other words, what
are the parts of the system on which a fault would have a
high impact? These are the ones where the tester should
focus on with system tests.

Of course, such critical parts must also be tested at other
levels. Remember: a single technique is usually not
enough to identify all faults.

When should I perform
manual tests?

Manual testing has lots of disadvantages, but is
sometimes impossible to avoid. Even in cases where
automation is fully possible, manual exploratory testing
can be useful.

On the other hand, those who apply the testing
pyramid try to avoid the so-called ice-cream cone anti-
pattern.

When should I perform
manual tests?

Manual

System

Integration

Unit

Imagine the testing pyramid upside down.
In this new version, manual testing has the
largest area, which means more effort on
manual testing (!!!).

When should I perform
manual tests?

Unfortunately, it is common to see development teams
relying mostly on manual tests in their quality
assurance processes. Often, these teams also have a
large number of system tests. This is not because they
believe system tests are more efficient, but because
the system was badly designed, so that it is impossible
to carry out unit and integration tests.

Testing pyramid at
Google
Winters, T., Manshreck, T., Wright, H.

“Software Engineering at Google: Lessons Learned from Programming Over Time”

O'Reilly, 2020, chapters 11 and 12.

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box

White-box testing

inputs

outputs

Knowledge sources
Control flow graphs
Data flow graphs
Cyclomatic complexity
…

White-box testing

inputs

outputs

Techniques
Control flow testing/coverage
Data flow testing/coverage
Class testing/coverage
Mutation testing
…

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box

Black-box testing

inputs

outputs

Knowledge sources
Requirements document
Specifications
User manual
Models
Domain knowledge
Intuition
Experience
…

Black-box testing

inputs

outputs

Techniques
Equivalence class partitioning
Category partition
Boundary value analysis
Cause effect graphing
Error guessing
Random testing
State-transition testing
Scenario-based testing
…

Equivalence Class Partitioning

Programs are usually too complex to be tested with just a single test.
There are different cases in which the program is executed and its
execution often depends on various factors, such as the input to the
program.

Equivalence Class Partitioning is type of black box testing technique
which can be applied to all levels of software testing like unit,
integration, system, etc. In this technique, input data units are divided
into equivalent partitions that can be used to derive test cases which
reduces time required for testing because of small number of test cases.

Let’s use a small program as an example. The specification below talks
about a program that decides whether a given year is a leap year or
not.

Given a specific year as an input, the program should return true if the provided
year is a leap year and false if it is not.

A year is a leap year if:

• the year is divisible by 4;

• and the year is not divisible by 100;

• except when the year is divisible by 400 (because then it is a leap year)

By looking at the requirements above, we can derive the following classes/
partitions:

• Year is divisible by 4, but not divisible by 100 (i.e., leap year, TRUE)

• Year is divisible by 4, divisible by 100, divisible by 400 (i.e., leap year, TRUE)

• Year is not divisible by 4 (i.e., not leap year, FALSE)

• Year is divisible by 4, divisible by 100, but not divisible by 400 (i.e., not leap
year, FALSE)

Equivalence Class Partitioning
example

Given a specific year as an input, the program should return true if the provided
year is a leap year and false if it is not.

A year is a leap year if:

• the year is divisible by 4;

• and the year is not divisible by 100;

• except when the year is divisible by 400 (because then it is a leap year)

By looking at the requirements above, we can derive the following classes/
partitions:

• Year is divisible by 4, but not divisible by 100 (i.e., leap year, TRUE)

• Year is divisible by 4, divisible by 100, divisible by 400 (i.e., leap year, TRUE)

• Year is not divisible by 4 (i.e., not leap year, FALSE)

• Year is divisible by 4, divisible by 100, but not divisible by 400 (i.e., not leap
year, FALSE)

Equivalence Class Partitioning
example

The partitions above are not tests that we can implement directly because
each partition might be instantiated by an infinite number of inputs. For
example, for the partition “year not divisible by 4”, there are infinitely
many numbers that are not divisible by 4 which we could use as concrete
inputs to the program. So how do we know which concrete input to
instantiate for each of the partitions?

Each partition exercises the program in a certain way. In other words, all
input values from one specific partition will make the program behave in
the same way. Therefore, any input we select should give us the same
result. We assume that, if the program behaves correctly for one given
input, it will work correctly for all other inputs from that class. This idea of
inputs being equivalent to each other is called equivalence partitioning.
Thus, it does not matter which precise input we select and one test per
partition should be enough.

Equivalence Class Partitioning

• Year is divisible by 4, but not divisible by 100 (i.e., leap year, TRUE)

• Year is divisible by 4, divisible by 100, divisible by 400 (i.e., leap year,
TRUE)

• Year is not divisible by 4 (i.e., not leap year, FALSE)

• Year is divisible by 4, divisible by 100, but not divisible by 400 (i.e., not
leap year, FALSE)

With the classes we derived above, we could write 4 tests (i.e., one test for
each class/partition). As any input can be used for a given partition, the
following inputs can be used for the partitions:

• 2016, divisible by 4, not divisible by 100.

• 2000, divisible by 4, also divisible by 100 and by 400.

• 39, not divisible by 4.

• 1900, divisible by 4 and 100, not by 400.

Equivalence Class Partitioning

So far we have derived partitions by just looking at the
specification of the program. We basically used our
experience and knowledge to derive the tests. We will
now discuss a more systematic way of deriving these
partitions: the Category-Partition method.

This method provides us with a systematic way of
deriving tests, based on the characteristics of the input
parameters. It also reduces the number of tests to a
practical number.

Category-Partition

1. Identify the parameters, or the input for the program. For example, the parameters
your classes and methods receive.

2. Derive characteristics of each parameter. For example, an int year should be a
positive integer number between 0 and infinite.

 - Some of these characteristics can be found directly in the specification of the
program.

 - Others might not be found from specifications. For example, an input cannot
be null if the method does not handle that well.

3. Add constraints in order to minimize the set of tests.

 - Identify invalid combinations. For some characteristics it might not be possible to
combine them with other characteristics.

 - Exceptional behavior does not always have to be combined with all of the values
of the other inputs. For example, trying a single null input might be enough to test
that corner case.

4. Generate combinations of the input values. These are the tests.

Category-Partition
recipe

Requirement: Christmas discount

The system should give a 25% discount on the cart
when it is Christmas season. The method has two input
parameters: the total price of the products in the cart,
and the date. When it is not Christmas, it just returns
the original price; otherwise it applies the discount.

Category-Partition
example

1. We have two parameters:

 - The current date

 - The total price

2. For each parameter we define the characteristics as:

 - Based on the requirements, the only important characteristic is that the date can be either
Christmas or not.

 - The price can be a positive number, or in certain circumstances it may be 0.

3. The number of characteristics and parameters is not too large in this case. Constraint, negative
prices are not allowed.

4. We combine the other characteristics to get the following tests:

 - Positive price at Christmas

 - Positive price and not at Christmas

 - Empty cart (i.e., price 0) at Christmas

 - Empty cart (i.e., price 0) not at Christmas

 - Negative price at Christmas or not, does not really matter as negative prices are not allowed

Category-Partition
example

References

- Chapter 2 of the Foundations of software testing: ISTQB certification. Graham,
Dorothy, Erik Van Veenendaal, and Isabel Evans, Cengage Learning EMEA, 2008.
- Vocke, Ham. The Practical Test Pyramid (2018), https://martinfowler.com/articles/
practical-test-pyramid.html.
- Fowler, Martin. TestingPyramid (2012). https://martinfowler.com/bliki/
TestPyramid.html
- Wikipedia. Exploratory testing. https://en.wikipedia.org/wiki/Exploratory_testing.
Last access on March, 2020.
- Winters, T., Manshreck, T., Wright, H. Software Engineering at Google: Lessons
Learned from Programming Over Time. O'Reilly, 2020. Chapters 11 and 12.
- Graham, D., Van Veenendaal, E., & Evans, I. (2008). Foundations of software
testing: ISTQB certification. Cengage Learning EMEA. Chapter 4.
- Pezzè, M., & Young, M. (2008). Software testing and analysis: process, principles,
and techniques. John Wiley & Sons. Chapter 10.
- Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying
and generating functional tests. Communications of the ACM, 31(6), 676-686.

https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
https://en.wikipedia.org/wiki/Exploratory_testing

