
October 12, 2022

Week #4 — Lecture #3

Software Testing, 
Verification and Validation



Last lecture, we discussed the main Levels/Phases of 
testing (unit, integration, system) and we also 
introduced two testing strategies (black-box and white-
box).  We further discussed in detail two black-box 
techniques: equivalence and category partition.
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by Martin Fowler, https://martinfowler.com/bliki/TestPyramid.html
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Cyclomatic complexity 
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inputs

outputs
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…
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Consider an application that requires two integer inputs x 
and y.  Each of these inputs is expected to lie in the 
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

How many categories are there for y? 
Please describe them.

Partition example (recap)
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following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

How many categories are there for 
x and y? Please describe them.
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Boundary testing is the process of testing between extreme 
ends or boundaries between partitions of the input values. 

Off-by-one mistakes are a common cause for bugs in 
software systems.  As developers, we have all made 
mistakes such as using a "greater than" operator (>) where 
it had to be a "greater than or equal to" operator (>=). 
Interestingly, programs with such a bug tend to work well 
for most of the provided inputs.  They fail, however, when 
the input is "near the boundary of condition".

Boundary Value Analysis





When we devise classes, these have "close boundaries" with 
the other classes.  In other words, if we keep performing 
small changes to an input that belongs to some partition 
(e.g., by adding +1 to it), at some point this input will belong 
to another class.  The precise point where the input changes 
from one class to another is what we call a boundary.  And 
this is precisely what boundary testing is about: to make the 
program behave correctly when inputs are near a boundary. 
More formally, we can find such boundaries by finding a pair 
of consecutive input values [p_1,p_2], where p1 belongs to 
partition A, and p2 belongs to partition B.

Boundary Value Analysis
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Consider an application that requires two integer inputs x 
and y.  Each of these inputs is expected to lie in the 
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.
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Consider an application that requires two integer inputs x 
and y.  Each of these inputs is expected to lie in the 
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.
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However, a tester who is aware of boundaries also devises test cases that 
explore the boundaries of the domain. 

Before we see how to analyze boundaries, let us define some 
terminology: 

•On-point: The value that is exactly on the boundary. This is the value 
we see in the condition itself. 

•Off-point: The value that is closest to the boundary and that flips the 
condition’s result.  If the on-point makes the condition evaluate to true, 
the off point makes it evaluate to false and vice versa.  Note that when 
dealing with equalities or inequalities (e.g. x == 6 or x != 6), there are 
two off-points; one in each direction. 

• In-points: All values that make the condition evaluate to true. 

•Out-points: All values that make the condition evaluate to false.

Boundary Value Analysis
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2 test cases 

test 6: x = 7 (category E2),   test 7: x = 8 (category E3)
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Boundary Value Analysis
3 test cases, one per partition 

  test 1: x = 1 (E1)  test 2: x = 5 (E2)  test 3: x = 9 (E3) 

2 test cases (boundary I) 

  test 4: x = 3 (category E1)  test 5: x = 4 (category E2) 

2 test cases (boundary II) 

  test 6: x = 7 (category E2)  test 7: x = 8 (category E3)
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In practice, testers combine equivalent class analysis and boundary testing, 
which is called domain testing.  The following strategy is commonly 
suggested when applying domain testing: 

1. Read the requirements. 
2. Identify the input and output variables in play, together with their types, 
and their ranges. 
3. Identify the dependencies (or independence) among input variables, and 
how input variables influence the output variable. 
4. Perform equivalent class analysis (valid and invalid classes). 
5. Explore the boundaries of these classes. 
6. Think of a strategy to derive test cases, focusing on minimizing the costs 
while maximizing diversity and perhaps fault detection capability. 
7. Generate a set of test cases that should be executed against the system 
under test.

Partitions + Boundaries



Input values / Actions are randomly generated. 

Advantages: 
- Good for finding system crashes. 

- No effort in generating test cases. 

- Independent of updates. 

- Increase confidence on the software when running several hours without finding errors. 

- “Easy” to implement. 

Disadvantages: 
- Not good for finding other kinds of errors besides system crashes. 

- Difficult to reproduce the errors (repeat test cases / sequence of inputs). 

- Unpredictable. 

- May not cover special cases that are discovered by more advance techniques.

Random testing



- Monkey testing: a technique where the user tests 
a computer program or a system by providing 
random inputs/actions and checking the behavior, 
or seeing whether the program or system will crash. 
Note: monkey testing is included in Android Studio. 

- Fuzz testing: an automated software testing 
technique that involves providing invalid, 
unexpected, or random data as inputs to a 
computer program.

Random testing
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