
October 12, 2022

Week #4 — Lecture #3

Software Testing,
Verification and Validation

Last lecture, we discussed the main Levels/Phases of
testing (unit, integration, system) and we also
introduced two testing strategies (black-box and white-
box). We further discussed in detail two black-box
techniques: equivalence and category partition.

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box

👉

Testing Pyramid

Manual

System

Integration

Unit

More
reality

More
complexity

by Martin Fowler, https://martinfowler.com/bliki/TestPyramid.html

Level / Phase

 Strategy /
Technique

unit

integration

system

Test types

White-box Black-box 👉

White-box testing

inputs

outputs

Knowledge sources
Control flow graphs
Data flow graphs
Cyclomatic complexity
…

White-box testing

inputs

outputs

Techniques
Control flow testing/coverage
Data flow testing/coverage
Class testing/coverage
Mutation testing
…

Black-box testing

inputs

outputs

Knowledge sources
Requirements document
Specifications
User manual
Models
Domain knowledge
Intuition
Experience
…

Black-box testing

inputs

outputs

Techniques
Equivalence class partitioning
Category partition
Boundary value analysis
Cause effect graphing
Error guessing
Random testing
State-transition testing
Scenario-based testing
…

✅
✅

Black-box testing

inputs

outputs

Techniques
Equivalence class partitioning
Category partition
Boundary value analysis
Cause effect graphing
Error guessing
Random testing
State-transition testing
Scenario-based testing
…

✅
✅
👉

👉

Consider an application that requires two integer
inputs x and y.

Partition example (recap)

Consider an application that requires two integer
inputs x and y.

x

y

Partition example (recap)

Consider an application that requires two integer
inputs x and y.

x

y

Partition example (recap)

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Partition example (recap)

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

x
73

Partition example (recap)

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

x
73

How many categories are there for x?
Please describe them.

Partition example (recap)

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

x
73

E1 E2 E3

Partition example (recap)

x

y

73

5

9

E1 E2 E3

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

How many categories are there for y?
Please describe them.

Partition example (recap)

x

y

73

5

9
E6

E5

E4

E1 E2 E3

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Partition example (recap)

x

y

73

5

9
E6

E5

E4

E1 E2 E3

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

How many categories are there for
x and y? Please describe them.

Partition example (recap)

x

y

73

5

9
E7

E8

E9

E6

E5

E4

E1 E2 E3

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Partition example (recap)

x

y

73

5

9
E7

E8

E9

E6

E5

E4

E1 E2 E3

E10

E11

E12

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Partition example (recap)

x

y

73

5

9
E7

E8

E9

E6

E5

E4

E1 E2 E3

E10

E11

E12

E13

E14

E15

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Partition example (recap)

Partition example (recap)

x

y

73

5

9
E7

E8

E9

E6

E5

E4

E1 E2 E3

E10

E11

E12

E13

E14

E15

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Boundary testing is the process of testing between extreme
ends or boundaries between partitions of the input values.

Off-by-one mistakes are a common cause for bugs in
software systems. As developers, we have all made
mistakes such as using a "greater than" operator (>) where
it had to be a "greater than or equal to" operator (>=).
Interestingly, programs with such a bug tend to work well
for most of the provided inputs. They fail, however, when
the input is "near the boundary of condition".

Boundary Value Analysis

When we devise classes, these have "close boundaries" with
the other classes. In other words, if we keep performing
small changes to an input that belongs to some partition
(e.g., by adding +1 to it), at some point this input will belong
to another class. The precise point where the input changes
from one class to another is what we call a boundary. And
this is precisely what boundary testing is about: to make the
program behave correctly when inputs are near a boundary.
More formally, we can find such boundaries by finding a pair
of consecutive input values [p_1,p_2], where p1 belongs to
partition A, and p2 belongs to partition B.

Boundary Value Analysis

Boundary Value Analysis,
(but partitions first)

x
73

E1 E2 E3

21 4 5 6 8 9 10

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

3 test cases, one per partition

test 1: x = 1 (E1), test 2: x = 5 (E2), test 3: x = 9 (E3)

x
73

E1 E2 E3

21 4 5 6 8 9 10

Consider an application that requires two integer inputs x
and y. Each of these inputs is expected to lie in the
following ranges: x > 3 and x <= 7 and y >= 5 and y <= 9.

Boundary Value Analysis,
(but partitions first)

However, a tester who is aware of boundaries also devises test cases that
explore the boundaries of the domain.

Before we see how to analyze boundaries, let us define some
terminology:

•On-point: The value that is exactly on the boundary. This is the value
we see in the condition itself.

•Off-point: The value that is closest to the boundary and that flips the
condition’s result. If the on-point makes the condition evaluate to true,
the off point makes it evaluate to false and vice versa. Note that when
dealing with equalities or inequalities (e.g. x == 6 or x != 6), there are
two off-points; one in each direction.

• In-points: All values that make the condition evaluate to true.

•Out-points: All values that make the condition evaluate to false.

Boundary Value Analysis

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

Boundary Value Analysis I

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

off point

on point

Boundary Value Analysis I

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

OUT-points IN-points

on point

off point

Boundary Value Analysis I

2 test cases

test 4: x = 3 (category E1), test 5: x = 4 (category E2)

x
73

E1 E2 E3

21 4 5 6 8 9 10

OUT-points IN-points

on point

off point

Boundary Value Analysis I

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

Boundary Value Analysis II

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

on point

off point

Boundary Value Analysis II

However, a tester who is aware of boundaries also
devises test cases that explore the boundaries of the
domain. Let us explore them: x > 3 and x <= 7.

x
73

E1 E2 E3

21 4 5 6 8 9 10

on point

off point

IN-points OUT-points

Boundary Value Analysis II

2 test cases

test 6: x = 7 (category E2), test 7: x = 8 (category E3)

x
73

E1 E2 E3

21 4 5 6 8 9 10

on point

off point

IN-points OUT-points

Boundary Value Analysis II

Boundary Value Analysis

x
7321 4 5 6 8 9 10

boundaries of the domain: x > 3 and x <= 7.

Boundary Value Analysis

x
73

E1 E2 E3

21 4 5 6 8 9 10

3 test cases, one per partition

 test 1: x = 1 (E1) test 2: x = 5 (E2) test 3: x = 9 (E3)

Boundary Value Analysis
3 test cases, one per partition

 test 1: x = 1 (E1) test 2: x = 5 (E2) test 3: x = 9 (E3)

2 test cases (boundary I)

 test 4: x = 3 (category E1) test 5: x = 4 (category E2)

x
73

E1 E2 E3

21 4 5 6 8 9 10

on point I

off point I

Boundary Value Analysis
3 test cases, one per partition

 test 1: x = 1 (E1) test 2: x = 5 (E2) test 3: x = 9 (E3)

2 test cases (boundary I)

 test 4: x = 3 (category E1) test 5: x = 4 (category E2)

2 test cases (boundary II)

 test 6: x = 7 (category E2) test 7: x = 8 (category E3)

x
73

E1 E2 E3

21 4 5 6 8 9 10

on point I

off point I

on point II

off point II

In practice, testers combine equivalent class analysis and boundary testing,
which is called domain testing. The following strategy is commonly
suggested when applying domain testing:

1. Read the requirements.
2. Identify the input and output variables in play, together with their types,
and their ranges.
3. Identify the dependencies (or independence) among input variables, and
how input variables influence the output variable.
4. Perform equivalent class analysis (valid and invalid classes).
5. Explore the boundaries of these classes.
6. Think of a strategy to derive test cases, focusing on minimizing the costs
while maximizing diversity and perhaps fault detection capability.
7. Generate a set of test cases that should be executed against the system
under test.

Partitions + Boundaries

Input values / Actions are randomly generated.

Advantages:
- Good for finding system crashes.

- No effort in generating test cases.

- Independent of updates.

- Increase confidence on the software when running several hours without finding errors.

- “Easy” to implement.

Disadvantages:
- Not good for finding other kinds of errors besides system crashes.

- Difficult to reproduce the errors (repeat test cases / sequence of inputs).

- Unpredictable.

- May not cover special cases that are discovered by more advance techniques.

Random testing

- Monkey testing: a technique where the user tests
a computer program or a system by providing
random inputs/actions and checking the behavior,
or seeing whether the program or system will crash.
Note: monkey testing is included in Android Studio.

- Fuzz testing: an automated software testing
technique that involves providing invalid,
unexpected, or random data as inputs to a
computer program.

Random testing

References

- Ilene Burnstein. “Practical software testing a process-oriented
approach” (chapter 4). 2003.
- Jorgensen, Paul C. “Software Testing: A Craftsman’s Approach” 4th
edition (chapter 5 and 6). 2014.
- T. J. Ostrand, M J Balcer. “The category-partition method for
specifying and generating fuctional tests”, 1988 (https://doi.org/
10.1145/62959.62964).
- Jeng, B., & Weyuker, E. J. (1994). A simplified domain-testing strategy.
ACM Transactions on Software Engineering and Methodology (TOSEM).
- Kaner, Cem, Sowmya Padmanabhan, and Douglas Hoffman. The
Domain Testing Workbook. Context Driven Press, 2013.
- Kaner, Cem. What Is a Good Test Case?, 2003. http://
testingeducation.org/BBST/testdesign/Kaner_GoodTestCase.pdf

https://doi.org/10.1145/62959.62964
https://doi.org/10.1145/62959.62964
http://testingeducation.org/BBST/testdesign/Kaner_GoodTestCase.pdf
http://testingeducation.org/BBST/testdesign/Kaner_GoodTestCase.pdf

