
October 19, 2022

Week #5 — Lecture #4

Software Testing,
Verification and Validation

Last week, we revisited equivalence class partition /
category-partition and introduced boundary values
analysis as part of our set of black-box techniques. We
also introduced random testing.

Black-box testing

inputs

outputs

Techniques
Equivalence class partitioning
Category partition
Boundary value analysis
Random testing
Model-Based Testing
Cause effect graphing
Error guessing
…

✅
✅
✅
✅
👉

Model-based
Software Testing

Model-based Software Testing

In model-based testing, we use a model of a software
system, to help us systematically derive tests for that
system.

Models are widely used in engineering in general. As
an example, the car industry uses physical models of
cars to test a car's areo-dynamic properties. The car
tested is a simplification of a real car. It may not even
have an engine, but it preserves the properties needed
to analyze its areo-dynamics. These characteristics hold
for software models too.

Model

- a model is simpler than the original artifact, e.g., the
entire car.

- the model preserves, or approximates, key attributes
of the artifact, its shape.

- the model can subsequently be used to analyze
properties that can be translated back to the original
artifact, in this case the areo-dynamics.

Models

In software we use models too. You may have, for example,
used the UML, the Unified Modeling Language. It allows you
to create models of your software, for example by means of
class or package diagrams, which model the static structure
of the software system.

For testing purposes, we are mostly interested in models of
the behavior of software systems, that is, of the dynamic
characteristics.

In the UML, examples of such behavioral models include
state machine diagrams and activity diagrams.

Models

- State machine diagrams can be used whenever a system maintains
state, which, in fact, most systems do. A typical example is a web or
mobile application, which can be in various states. The transitions
between those states and the events, clicks, swipes, inputs, triggering
those transitions, are easily modeled using a state machine.

- Decision tables can be used whenever combinations of multiple
inputs determine a system's behavior. A typical example here are
payment plans for mobile phones, in which a number of user choices
determine the monthly subscription fee and the features the user can
enjoy.

Both types of models can typically be obtained from the system
requirements or user stories.

Models for testing

- Models obtained from requirements, e.g., user stories
- Meaninfull to domain experts. The developers can then
use them to identify test cases for behavior that “must be
there”, specified in the requirements.

- Models “reverse engineered” from the code
- In this case, the model reflects what is in the current code
base. Such models are typically most meaningful to
developers for their testing purposes. In this case,
developers will use the model to derive tests that
systematically exercise certain aspects, reflected in the
model, of the code base.

State Machines

State machines are used to model behavior of software
systems. In this course, we will learn how to design state machines, and
how to use them to derive test cases in a systematic manner.

State machines model, as the name suggests, the state
of a software system, and what actions can lead to a
change in that state.

Most systems around us have some notion of “state”
inside them. For example, your phone can be
switched off, in stand-by mode, or in use.
Let’s model that behavior using a state machine.

State Machines, on/off example

- Here is a state, in the box,
labeled “Off”. It represents a
phone switched off. Off

- If we switch it on using the
“home” button, we enter a state
labeled “On”. We see a new
state, as well as a transition from
the “Off” to the “On” state, shown
as an arrow. This transition is
triggered by an event: in this case
pressing the “home” button. In
the diagram, this is represented as
the “home” label on the transition.

Off

On

home

State Machines, on/off example

- Once the phone is on, we can
also switch it off. This leads to
another transition, this time
triggered pressing the “power-
off” button for a few seconds.

Off

On

home power-off

State Machines, on/off example

- With two states, we should decide
which is the “initial” state. For the
phone we will assume that the phone
initially is switched off. In the
diagram we indicate this with the
little arrow into the “Off” state shown
at the top left.

This very simple model represents one aspect of the
phone's behavior: namely how it can be switched on
and off using the home and power-off buttons.

Off

On

home power-off

State Machines, on/off example

State Machines, unlocking example

We can also model different behaviors, for
example unlocking the phone.

State Machines, unlocking example

- Here we see a “Locked” state,
which we also mark as initial, since
by default a phone is locked. We
can unlock the phone by entering
a correct pin, as shown in the
diagram.

Locked

Unlocked

correct
pin

State Machines, unlocking example

- However, the entered pin code
may also be wrong. In that case,
the phone stays in the “Locked”
state. This is shown using a “self-
transition”, which goes from the
“Locked” state back to the
“Locked” state itself.

Locked

Unlocked

correct
pin

wrong pin

State Machines, unlocking example

- Once we are unlocked, we can
press the “lock” button to lock the
phone again to protect it against
unintended use by others,
modeled here as a transition from
“Unlocked” to “Locked”.

Locked

Unlocked

correct
pin

lock

wrong pin

State Machines, on/off + unlocking

Now we have modeled two
aspects of the behavior of
using your phone: switching
it on and unlocking it. We
can combine these into a
larger diagram.

Here we start with the
unlocking state diagram.

Locked

Unlocked

correct
pin

lock

wrong pin

State Machines, on/off + unlocking

- We can add the
“Off” state to this,
together with the
transition from “Off”
to the “Unlocked”
state, which is the
initial state of the
unlocking diagram.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

State Machines, on/off + unlocking

- Furthermore, we need
to indicate how to switch
off the phone. Pressing
the power-off button in
any state switches off the
phone. Therefore, we
add two transitions that
go back to the “Off”
state: one starting in the
“Locked” state at the
top, and one in the
“Unlocked” state at the
bottom.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

State Machines, on/off + unlocking

The diagram has
now become a little
more complex, with
- three states
- six transitions
- five event types

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

State Machines, conditional transitions

State diagrams also support
conditional transitions.

Locked

Unlocked

lock

wrong pin

correct pin

State Machines, conditional transitions

- An example is shown here for
the self transition with the
wrong pin code. The
condition, written with square
brackets, states that the
number of attempts, denoted
by n, should be less than 3.

Locked

Unlocked

lock

wrong pin
[n < 3]

correct pin

State Machines, conditional transitions

- After entering a wrong pin
three times, the phone gets
blocked, as indicated here.
Thus, the “Locked” state has
two outgoing edges both
triggered by the “wrong pin”
event, and the condition
determines what the resulting
state is.

Locked

Unlocked

lock

wrong pin
[n < 3]

Blocked

wrong pin
[n = 3]

correct pin

State Machines, actions

Yet another convention of the UML
is that transitions can have
“actions”. These are denoted by a
forward slash “/“, followed by the
action.

In our example, we have added two
actions, both manipulating the
attempt counter “n”:
- If we enter a wrong pin, we
increment the counter.
- If we enter a correct pin, we reset it
to zero.

Locked

Unlocked

correct pin
/ n = 0

lock

wrong pin
[n < 3]

/ n = n + 1

Blocked

wrong pin
[n = 3]

UML State Diagram, recap

- States

- Transitions

- Events

- Initial state

- [Conditions]

- / Actions

State

event

State-based Testing

Abstract
Test Suite

Implemented
Test Suite

System
Under Test

State Model
derives

exercises

describesdescribes

The model describes
the system under test.

From that model we can
derive an abstract test
suite, expressed in
terms of paths through
the diagram.

Once we have abstract
test cases, we can
implement them and
actually exercise the
system under test.

State Machine Test Adequacy

To test a state machine, various forms of state machine specific test
adequacy criteria can be used.

- State coverage. The simplest, which just ensures that every state
is reached once.

- Transition coverage. A bit stronger than state coverage, which
insists that every transition is covered. Note that if this is the case,
then automatically all states are covered as well.

- Path coverage, i.e., exercise sequences of transitions, which are
paths through the state machine. Note that state machines very often have
loops with an infinit number of possible paths. As it is impossible to take the loop
as often as we want leading to more and more, and longer and longer paths, we
cannot have full path coverage. We can, however, insist that each loop is
exercised at least once.

Testing one transition, recipe

To test one transition between states S1 to S2, we do
the following:

1. Bring the system into the state S1, and ensure/verify
that it is indeed in state S1.

2. Then trigger the event, e.g., event1, that should
lead to state S2.

3. Assess that any action that should come with the
event actually takes place.

4. Assess that the system has indeed reached state S2.

Testing a sequence of transitions

A full test case will typically cover a sequence of
transitions, that is, it will exercise a path through the
state machine.

As there are potentially infinitely many paths we will
need some approach to decide which paths to
exercise.

Our way to do that is by creating a transition tree,
which spans the diagram.

Transition tree

Let us do this for our
previous example,
on/off + unlocking. Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Transition tree

Off_0- We start with the initial
state, named “Off”. Since
our tree will duplicate some
states, we add a number to
the state to give it a unique
name.

Transition tree

- From “Off”, we have one
outgoing transition: we can
go to the “Locked” state.

Off_0

Locked_0

Transition tree

- From the “Locked” state, we
have three outgoing edges, to
“Off”, “Locked”, and
“Unlocked”. Note that the
“Off” and “Locked” states are
somewhat special, as we have
been there before, i.e., the off-
zero and locked-zero nodes in
the tree. As the zero nodes in
the tree already describe their
behavior we do not repeat it
for the one-nodes.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Transition tree

- From “Unlocked”, lastly,
we can reach two different
states, off and locked.
Here again, the two-level
states were described at
the zero level, so we do not
repeat their behavior.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2

Transition tree

- This then gives a tree that
matches the original state
diagram.
- Each loop is unfolded
once.
- Furthermore, it can help
us to find the shortest path
in the graph to any state,
simply by following the
tree.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2

Tests from the transition tree

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2

Once we have the tree, we
can use it to derive test
cases.
- Each test case is a path
from the root of the tree
to one of the leaves. With
four leaves for this tree, we
then have four test cases.

Tests from the transition tree

Here we show the four test
cases, with different colors.
- For example, the blue path
gives the simplest test case,
corresponding to switching
the phone on and off again,
without unlocking it.
- The test path that also
does the unlocking is the
drawn in green.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2

These paths can also
be displayed in the
state machine.
- For example, here
is the blue path
from “Off” to
“Locked” and back.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree

Another example,
the green path goes
from “Off”, via
“Locked” and
“Unlocked” back to
“Off”.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree

Another example,
the light blue path
goes from “Off” to
“Locked” and
remains there.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree

Another example,
the yellow path
goes from “Off” to
“Unlocked”
troughth the
“Locked” state.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree

Tests from the transition tree

Locked

Unlocked

correct
pin

lock

Off
home

wrong pin
power-off

power-off

The transition tree gives us
guidance on which paths to
take to ensure that each
specified transition
behaves as intended, and
which loops to execute.

With this, we test that the
system under test
implements all specified
behavior. In other words,
we test that the
implementation conforms
to the model.

Sneak path testing

But what about unspecified
behavior? What if the system
accidentally (or secretly)
implements additional
transitions?
For example, what if the
system would allow going from
“Off” directly to “Unlocked”,
circumventing the pincode
mechanism? That would be a
security problem, which we, of
course, want to avoid.

To check for such “sneak
paths”, we create a tabular
representation of the state
machine.

Locked

Unlocked

correct
pin

lock

wrong pin

Off
home

power-off

power-off

Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off

Locked

Unlocked

In the rows we have states, and in the columns we have
events.

Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked

Unlocked

If a state has a transition with the given event, we
indicate the corresponding cell with the outgoing state.
For example, in our state machine we can move from
“Off” to “Locked” by clicking the home button. No
other events are possible from the “Off” state which is
why the remaining cells in the “Off” row are empty.

Sneak path testing: transition table

If a state has a transition with the given event, we
indicate the corresponding cell with the outgoing state.
For example, in our state machine we can move from
“Off” to “Locked” by clicking the home button. No
other events are possible from the “Off” state which is
why the remaining cells in the “Off” row are empty.

States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

A table like this contains all the information from the
diagram. Yet at the same time, the empty cells are
directly visible. These empty cells correspond to
“sneaky” transitions, which we will test them now.

“Sneaky” transitions
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

Determine the intended behavior for empty cells. A
common option is to simply ignore the event. An
alternative possibility is to raise an exception. Ultimately,
these choices should be made by the domain experts,
but in some cases developers can make an educated
guess.

“Sneaky” transitions
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

We start by bringing the system in a particular state, for example the “Locked”
state. To bring the system in a particular state we can again make use of the transition tree. That tree tells

us exactly which path to take from the top to reach a given state. From there we trigger the two
unspecified events (corresponding to home and lock in the empty cells).

We then assess that these events have no observable effect, and that the
system stays in the “Locked” state.

We repeat this for all empty cells. For our example this then results in 9
additional sneak path tests.

The resulting “sneak path test suite” helps us to verify
that illegal transactions cannot occur.

As always in software testing, whether it is necessary to
apply sneak path testing to your system is a tradeoff
between risk and cost.

Sneak paths are particularly relevant when the system
has high demands concerning security (when we want
no backdoors) or safety (when we want no accidents).

Sneak path testing

Black-box testing: which one?

inputs

outputs

Techniques
Equivalence class partitioning
Category partition
Boundary value analysis
Random testing
Model-Based Testing
Cause effect graphing
Error guessing
…

Black-box testing: which one?

Always use a combination of techniques.
- Identify valid and invalid input equivalence classes.

- Identify output equivalence classes.

- Apply boundary value analysis.

- When a formal specification is available try to use it to
further improve your tests.

- Apply model-based testing.

- Guess about possible errors.

- …

References

- Gordon Fraser and José Miguel Rojas; Software Testing,
2019. ISBN 978-3-030-00262-6
- Chapter 4, Foundations of Software Testing: ISTQB
certification. Graham, Dorothy, Erik Van Veenendaal, and
Isabel Evans, Cengage Learning EMEA, 2008.
- Chapter 14, Software Testing and Analysis Process,
Principles and Techniques, 2008. Mauro Pezze, Michal Young.
- Chapter 12, Software Testing A Craftsman's Approach,
2014. Jorgensen, Paul C.
- Practical Model-Based Testing A Tools Approach, 2007.
Mark Utting, Bruno Legeard.

