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Week #5 — Lecture #4

Software Testing, 
Verification and Validation



Last week, we revisited equivalence class partition / 
category-partition and introduced boundary values 
analysis as part of our set of black-box techniques.  We 
also introduced random testing.



Black-box testing

inputs

outputs

Techniques 
Equivalence class partitioning 
Category partition 
Boundary value analysis 
Random testing 
Model-Based Testing 
Cause effect graphing 
Error guessing 
…

✅  
✅  
✅  
✅  
👉



Model-based 
Software Testing



Model-based Software Testing

In model-based testing, we use a model of a software 
system, to help us systematically derive tests for that 
system. 

Models are widely used in engineering in general.  As 
an example, the car industry uses physical models of 
cars to test a car's areo-dynamic properties.  The car 
tested is a simplification of a real car.  It may not even 
have an engine, but it preserves the properties needed 
to analyze its areo-dynamics.  These characteristics hold 
for software models too.



Model

- a model is simpler than the original artifact, e.g., the 
entire car. 

- the model preserves, or approximates, key attributes 
of the artifact, its shape. 

- the model can subsequently be used to analyze 
properties that can be translated back to the original 
artifact, in this case the areo-dynamics.



Models

In software we use models too.  You may have, for example, 
used the UML, the Unified Modeling Language.  It allows you 
to create models of your software, for example by means of 
class or package diagrams, which model the static structure 
of the software system. 

For testing purposes, we are mostly interested in models of 
the behavior of software systems, that is, of the dynamic 
characteristics. 

In the UML, examples of such behavioral models include 
state machine diagrams and activity diagrams.



Models

- State machine diagrams can be used whenever a system maintains 
state, which, in fact, most systems do.  A typical example is a web or 
mobile application, which can be in various states.  The transitions 
between those states and the events, clicks, swipes, inputs, triggering 
those transitions, are easily modeled using a state machine. 

- Decision tables can be used whenever combinations of multiple 
inputs determine a system's behavior.  A typical example here are 
payment plans for mobile phones, in which a number of user choices 
determine the monthly subscription fee and the features the user can 
enjoy. 

Both types of models can typically be obtained from the system 
requirements or user stories.



Models for testing

- Models obtained from requirements, e.g., user stories 
- Meaninfull to domain experts.  The developers can then 
use them to identify test cases for behavior that “must be 
there”, specified in the requirements. 

- Models “reverse engineered” from the code 
- In this case, the model reflects what is in the current code 
base.  Such models are typically most meaningful to 
developers for their testing purposes.  In this case, 
developers will use the model to derive tests that 
systematically exercise certain aspects, reflected in the 
model, of the code base.



State Machines

State machines are used to model behavior of software 
systems. In this course, we will learn how to design state machines, and 
how to use them to derive test cases in a systematic manner. 

State machines model, as the name suggests, the state 
of a software system, and what actions can lead to a 
change in that state. 

Most systems around us have some notion of “state” 
inside them.  For example, your phone can be 
switched off, in stand-by mode, or in use. 
Let’s model that behavior using a state machine.



State Machines, on/off example

- Here is a state, in the box, 
labeled “Off”.  It represents a 
phone switched off. Off



- If we switch it on using the 
“home” button, we enter a state 
labeled “On”.  We see a new 
state, as well as a transition from 
the “Off” to the “On” state, shown 
as an arrow.  This transition is 
triggered by an event: in this case 
pressing the “home” button.  In 
the diagram, this is represented as 
the “home” label on the transition.

Off

On

home

State Machines, on/off example



- Once the phone is on, we can 
also switch it off.  This leads to 
another transition, this time 
triggered pressing the “power-
off” button for a few seconds.

Off

On

home power-off

State Machines, on/off example



- With two states, we should decide 
which is the “initial” state.  For the 
phone we will assume that the phone 
initially is switched off.  In the 
diagram we indicate this with the 
little arrow into the “Off” state shown 
at the top left. 

This very simple model represents one aspect of the 
phone's behavior: namely how it can be switched on 
and off using the home and power-off buttons.

Off

On

home power-off

State Machines, on/off example



State Machines, unlocking example

We can also model different behaviors, for 
example unlocking the phone.



State Machines, unlocking example

- Here we see a “Locked” state, 
which we also mark as initial, since 
by default a phone is locked.  We 
can unlock the phone by entering 
a correct pin, as shown in the 
diagram.

Locked

Unlocked

correct 
pin



State Machines, unlocking example

- However, the entered pin code 
may also be wrong.  In that case, 
the phone stays in the “Locked” 
state.  This is shown using a “self-
transition”, which goes from the 
“Locked” state back to the 
“Locked” state itself.

Locked

Unlocked

correct 
pin

wrong pin



State Machines, unlocking example

- Once we are unlocked, we can 
press the “lock” button to lock the 
phone again to protect it against 
unintended use by others, 
modeled here as a transition from 
“Unlocked” to “Locked”.

Locked

Unlocked

correct 
pin

lock

wrong pin



State Machines, on/off + unlocking

Now we have modeled two 
aspects of the behavior of 
using your phone: switching 
it on and unlocking it.  We 
can combine these into a 
larger diagram. 

Here we start with the 
unlocking state diagram.

Locked

Unlocked

correct 
pin

lock

wrong pin



State Machines, on/off + unlocking

- We can add the 
“Off” state to this, 
together with the 
transition from “Off” 
to the “Unlocked” 
state, which is the 
initial state of the 
unlocking diagram.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home



State Machines, on/off + unlocking

- Furthermore, we need 
to indicate how to switch 
off the phone.  Pressing 
the power-off button in 
any state switches off the 
phone.  Therefore, we 
add two transitions that 
go back to the “Off” 
state: one starting in the 
“Locked” state at the 
top, and one in the 
“Unlocked” state at the 
bottom.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off



State Machines, on/off + unlocking

The diagram has 
now become a little 
more complex, with 
- three states 
- six transitions 
- five event types

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off



State Machines, conditional transitions

State diagrams also support 
conditional transitions.

Locked

Unlocked

lock

wrong pin

correct pin



State Machines, conditional transitions

- An example is shown here for 
the self transition with the 
wrong pin code.  The 
condition, written with square 
brackets, states that the 
number of attempts, denoted 
by n, should be less than 3.

Locked

Unlocked

lock

wrong pin 
[ n < 3 ]

correct pin



State Machines, conditional transitions

- After entering a wrong pin 
three times, the phone gets 
blocked, as indicated here.  
Thus, the “Locked” state has 
two outgoing edges both 
triggered by the “wrong pin” 
event, and the condition 
determines what the resulting 
state is.

Locked

Unlocked

lock

wrong pin 
[ n < 3 ]

Blocked

wrong pin 
[ n = 3 ]

correct pin



State Machines, actions

Yet another convention of the UML 
is that transitions can have 
“actions”.  These are denoted by a 
forward slash “/“, followed by the 
action. 

In our example, we have added two 
actions, both manipulating the 
attempt counter “n”: 
- If we enter a wrong pin, we 
increment the counter. 
- If we enter a correct pin, we reset it 
to zero.

Locked

Unlocked

correct pin 
/ n = 0

lock

wrong pin 
[ n < 3 ] 

/ n = n + 1

Blocked

wrong pin 
[ n = 3 ]



UML State Diagram, recap

- States 

- Transitions 

- Events 

- Initial state 

- [ Conditions ] 

- / Actions

State

event



State-based Testing

Abstract 
Test Suite

Implemented 
Test Suite

System 
Under Test

State Model
derives

exercises

describesdescribes

The model describes 
the system under test. 

From that model we can 
derive an abstract test 
suite, expressed in 
terms of paths through 
the diagram. 

Once we have abstract 
test cases, we can 
implement them and 
actually exercise the 
system under test.



State Machine Test Adequacy

To test a state machine, various forms of state machine specific test 
adequacy criteria can be used. 

- State coverage. The simplest, which just ensures that every state 
is reached once. 

- Transition coverage. A bit stronger than state coverage, which 
insists that every transition is covered.  Note that if this is the case, 
then automatically all states are covered as well. 

- Path coverage, i.e., exercise sequences of transitions, which are 
paths through the state machine.  Note that state machines very often have 
loops with an infinit number of possible paths.  As it is impossible to take the loop 
as often as we want leading to more and more, and longer and longer paths, we 
cannot have full path coverage.  We can, however, insist that each loop is 
exercised at least once.



Testing one transition, recipe

To test one transition between states S1 to S2, we do 
the following: 

1. Bring the system into the state S1, and ensure/verify 
that it is indeed in state S1. 

2. Then trigger the event, e.g., event1, that should 
lead to state S2. 

3. Assess that any action that should come with the 
event actually takes place. 

4. Assess that the system has indeed reached state S2.



Testing a sequence of transitions

A full test case will typically cover a sequence of 
transitions, that is, it will exercise a path through the 
state machine. 

As there are potentially infinitely many paths we will 
need some approach to decide which paths to 
exercise. 

Our way to do that is by creating a transition tree, 
which spans the diagram.



Transition tree

Let us do this for our 
previous example, 
on/off + unlocking. Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off



Transition tree

Off_0- We start with the initial 
state, named “Off”.  Since 
our tree will duplicate some 
states, we add a number to 
the state to give it a unique 
name.



Transition tree

- From “Off”, we have one 
outgoing transition: we can 
go to the “Locked” state.

Off_0

Locked_0



Transition tree

- From the “Locked” state, we 
have three outgoing edges, to 
“Off”, “Locked”, and 
“Unlocked”.  Note that the 
“Off” and “Locked” states are 
somewhat special, as we have 
been there before, i.e., the off-
zero and locked-zero nodes in 
the tree.  As the zero nodes in 
the tree already describe their 
behavior we do not repeat it 
for the one-nodes.

Off_0

Locked_0

Off_1 Locked_1 Unlocked



Transition tree

- From “Unlocked”, lastly, 
we can reach two different 
states, off and locked.  
Here again, the two-level 
states were described at 
the zero level, so we do not 
repeat their behavior.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2



Transition tree

- This then gives a tree that 
matches the original state 
diagram. 
- Each loop is unfolded 
once. 
- Furthermore, it can help 
us to find the shortest path 
in the graph to any state, 
simply by following the 
tree.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2



Tests from the transition tree

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2

Once we have the tree, we 
can use it to derive test 
cases. 
- Each test case is a path 
from the root of the tree 
to one of the leaves.  With 
four leaves for this tree, we 
then have four test cases.



Tests from the transition tree

Here we show the four test 
cases, with different colors. 
- For example, the blue path 
gives the simplest test case, 
corresponding to switching 
the phone on and off again, 
without unlocking it. 
- The test path that also 
does the unlocking is the 
drawn in green.

Off_0

Locked_0

Off_1 Locked_1 Unlocked

Off_2 Locked_2



These paths can also 
be displayed in the 
state machine. 
- For example, here 
is the blue path 
from “Off” to 
“Locked” and back.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree



Another example, 
the green path goes 
from “Off”, via 
“Locked” and 
“Unlocked” back to 
“Off”.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree



Another example, 
the light blue path 
goes from “Off” to 
“Locked” and 
remains there.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree



Another example, 
the yellow path 
goes from “Off” to 
“Unlocked” 
troughth the 
“Locked” state.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off

Tests from the transition tree



Tests from the transition tree

Locked

Unlocked

correct 
pin

lock

Off
home

wrong pin
power-off

power-off

The transition tree gives us 
guidance on which paths to 
take to ensure that each 
specified transition 
behaves as intended, and 
which loops to execute. 
 
With this, we test that the 
system under test 
implements all specified 
behavior.  In other words, 
we test that the 
implementation conforms 
to the model.



Sneak path testing

But what about unspecified 
behavior?  What if the system 
accidentally (or secretly) 
implements additional 
transitions? 
For example, what if the 
system would allow going from 
“Off” directly to “Unlocked”, 
circumventing the pincode 
mechanism?  That would be a 
security problem, which we, of 
course, want to avoid. 

To check for such “sneak 
paths”, we create a tabular 
representation of the state 
machine.

Locked

Unlocked

correct 
pin

lock

wrong pin

Off
home

power-off

power-off



Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off

Locked

Unlocked

In the rows we have states, and in the columns we have 
events.



Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked

Unlocked

If a state has a transition with the given event, we 
indicate the corresponding cell with the outgoing state. 
For example, in our state machine we can move from 
“Off” to “Locked” by clicking the home button.  No 
other events are possible from the “Off” state which is 
why the remaining cells in the “Off” row are empty.



Sneak path testing: transition table

If a state has a transition with the given event, we 
indicate the corresponding cell with the outgoing state. 
For example, in our state machine we can move from 
“Off” to “Locked” by clicking the home button.  No 
other events are possible from the “Off” state which is 
why the remaining cells in the “Off” row are empty.

States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked



Sneak path testing: transition table
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

A table like this contains all the information from the 
diagram.  Yet at the same time, the empty cells are 
directly visible.  These empty cells correspond to 
“sneaky” transitions, which we will test them now.



“Sneaky” transitions
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

Determine the intended behavior for empty cells.  A 
common option is to simply ignore the event.  An 
alternative possibility is to raise an exception.  Ultimately, 
these choices should be made by the domain experts, 
but in some cases developers can make an educated 
guess.



“Sneaky” transitions
States \ Events home power-off lock wrong pin correct pin

Off Locked

Locked Off Locked Unlocked

Unlocked Off Locked

We start by bringing the system in a particular state, for example the “Locked” 
state.  To bring the system in a particular state we can again make use of the transition tree.  That tree tells 

us exactly which path to take from the top to reach a given state.  From there we trigger the two 
unspecified events (corresponding to home and lock in the empty cells). 

We then assess that these events have no observable effect, and that the 
system stays in the “Locked” state. 

We repeat this for all empty cells.  For our example this then results in 9 
additional sneak path tests.



The resulting “sneak path test suite” helps us to verify 
that illegal transactions cannot occur. 

As always in software testing, whether it is necessary to 
apply sneak path testing to your system is a tradeoff 
between risk and cost. 

Sneak paths are particularly relevant when the system 
has high demands concerning security (when we want 
no backdoors) or safety (when we want no accidents).

Sneak path testing



Black-box testing: which one?

inputs

outputs

Techniques 
Equivalence class partitioning 
Category partition 
Boundary value analysis 
Random testing 
Model-Based Testing 
Cause effect graphing 
Error guessing 
…



Black-box testing: which one?

Always use a combination of techniques. 
- Identify valid and invalid input equivalence classes. 

- Identify output equivalence classes. 

- Apply boundary value analysis. 

- When a formal specification is available try to use it to 
further improve your tests. 

- Apply model-based testing. 

- Guess about possible errors. 

- …
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