
October 26, 2022

Week #6 — Lecture #5

Software Testing,
Verification and Validation

Last week, we introduced model-based testing as part
of our set of black-box techniques. This week we are
moving to white-box techniques and therefore we will
use the source code itself as a source of information to
create tests.

White-box testing

inputs

outputs

Knowledge sources
Source code
Control flow graphs
Data flow graphs
Cyclomatic complexity
…

White-box testing

inputs

outputs

Techniques
Control flow analysis
 Statement coverage
 Branch coverage
 Condition coverage
 Modified Condition/Decision coverage
 Path coverage
Data flow testing/coverage
 All def
 All p-uses
 All c-uses
Mutation testing
…

White-box testing

inputs

outputs

Techniques
Control flow analysis
 Statement coverage
 Branch coverage
 Condition coverage
 Modified Condition/Decision coverage
 Path coverage
Data flow testing/coverage
 All def
 All p-uses
 All c-uses
Mutation testing
…

👉
👉
👉

White-box Testing

Adequacy

Since we cannot exhaustively test a software system, the two central questions
in software testing are

(a) what does constitute an adequate set of test cases?

(b) how do we generate a finite set of test cases that satisfies these adequacy
criteria?

Goodenough and Gerhard defined a set of tests as adequate if its correct
execution implies no errors in the program, more pragmatic solutions are based
on a basic insight: If some unit of code is not executed, i.e., covered, then by
definition, testing cannot reveal any faults contained in it. The adequacy of a
set of tests can therefore be measured by how much of a program is covered by
the set. While ideally one would like to know how much of the possible
behavior of the program is covered, there is no easy way to quantify coverage of
behavior, and therefore the majority of adequacy criteria revolve around proxy
measurements related to program code or specifications.

 Measurement of Adequacy

Many coverage criteria have been proposed over time. A coverage
criterion in software testing serves three main purposes.

1. It answers the question of adequacy: Have we tested enough? If so,
we can stop adding more tests, and the coverage criterion thus serves
as a stopping criterion.

2. It provides a way to quantify adequacy: We can measure not only
whether we have tested enough based on our adequacy criterion, but
also how much of the underlying proxy measurement we have covered.
Even if we have not fully covered a program, does a given set of tests
represent a decent effort, or has the program not been tested at all?

3. Coverage criteria can serve as generation criteria that help a tester
decide what test to add next.

Gordon Fraser and José Miguel Rojas; Software Testing, 2019. ISBN 978-3-030-00262-6

👉

👉

👉

👉

Gordon Fraser and José Miguel Rojas; Software Testing, 2019. ISBN 978-3-030-00262-6

Structural Testing

Structural Testing

The idea of code coverage is intuitive and simple: If no
test executes a faulty statement, then the defect
cannot be found; hence every statement should be
covered by some test.

Why do we need structural testing?

1) To systematically derive tests from source code.

2) To know when to stop testing.

As a tester, when performing specification-based testing, your goal was clear: to
derive classes out of the requirement specifications, and then to derive test cases
for each of the classes. You were satisfied once all the classes and boundaries were
systematically exercised.

The same idea applies to structural testing. First, it gives us a systematic way to
devise tests. As we will see, a tester might focus on testing all the lines of a
program; or focus on the branches and conditions of the program. Different
criteria produce different test cases.

Second, to know when to stop. It is easy to imagine that the number of possible
paths in a mildly complex piece of code is just too large, and exhaustive testing is
impossible. Therefore, having clear criteria on when to stop helps testers in
understanding the costs of their testing.

Line Coverage

Line Coverage

Line coverage is the most basic criterion; a set of test
cases is considered to be adequate according to line
coverage if all lines of code have been executed.

Let’s assume a program that receives the number of points of two blackjack
players. The program must return the number of points of the winner. In
blackjack, whoever gets closer to 21 points wins. If a player goes over 21
points, the player loses. If both players lose, the program must return 0.

public class BlackJack {

 public int play(int left, int right) {
 int ln = left;
 int rn = right;
 if (ln > 21)
 ln = 0;
 if (rn > 21)
 rn = 0;
 if (ln > rn)
 return rn;
 else
 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

What would
you test?
(now, only looking to the
source code)

public class BlackJack {

 public int play(int left, int right) {
 int ln = left;
 int rn = right;
 if (ln > 21)
 ln = 0;
 if (rn > 21)
 rn = 0;
 if (ln > rn)
 return rn;
 else
 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

First idea: “going
through all the lines”.

If our test suite
exercises all the lines,
we should be happy,
right? 🤔

public class BlackJack {

 public int play(int left, int right) {
 int ln = left;
 int rn = right;
 if (ln > 21)
 ln = 0;
 if (rn > 21)
 rn = 0;
 if (ln > rn)
 return rn;
 else
 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

First idea: “going
through all the lines”.

If our test suite
exercises all the lines,
we should be happy,
right? 🤔

t1 = (30, 30)

public class BlackJack {

 public int play(int left, int right) {
 int ln = left;
 int rn = right;
 if (ln > 21)
 ln = 0;
 if (rn > 21)
 rn = 0;
 if (ln > rn)
 return rn;
 else
 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

First idea: “going
through all the lines”.

If our test suite
exercises all the lines,
we should be happy,
right? 🤔

t1 = (30, 30)
9/10 = 90% line
coverage

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

 # lines covered
line coverage = ————————— x 100%
 # lines

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

First criteria: “going
through all the lines”.

If our test suite
exercises all the lines,
we are happy.

t1 = (30, 30)
t2 = (?, ?)

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

First criteria: “going
through all the lines”.

If our test suite
exercises all the lines,
we are happy.

t1 = (30, 30)
t2 = (10, 9)

10/10 = 100%

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

First criteria: “going
through all the lines”.

If our test suite
exercises all the lines,
we are happy.

t1 = (30, 30)
t2 = (10, 9)

10/10 = 100%

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}
An interesting aspect of line coverage is that it is quite easy to visualize the achieved coverage, in order to
help developers improve the code coverage of their tests.

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

Is this useful?

Yes. We actually
just found a defect!

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

The program receives the number of points of two blackjack players. The
program must return the number of points of the winner. In blackjack,
whoever gets closer to 21 points wins. If a player goes over 21 points, the
player loses. If both players lose, the program must return 0.

Is this useful?

Yes. We actually
just found a defect!

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

ln

rn

Using lines of code as a way to determine line coverage is a simple and
straightforward idea. However, counting the covered lines is not always a
good way of calculating the coverage. The number of lines in a piece of
code depends on the decisions taken by the programmer who writes the
code.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) ln = 0;
4 if (rn > 21) rn = 0;
5 if (ln > rn) return rn;
6 else return ln;
 }

}

Using lines of code as a way to determine line coverage is a simple and
straightforward idea. However, counting the covered lines is not always a
good way of calculating the coverage. The number of lines in a piece of
code depends on the decisions taken by the programmer who writes the
code.

t2 = (10, 9)
6/10 = 60% line
coverage, previously

5/6 = 83% line
coverage, now

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) ln = 0;
4 if (rn > 21) rn = 0;
5 if (ln > rn) return rn;
6 else return ln;
 }

}

Using lines of code as a way to determine line coverage is a simple and
straightforward idea. However, counting the covered lines is not always a
good way of calculating the coverage. The number of lines in a piece of
code depends on the decisions taken by the programmer who writes the
code.

Some coverage tools measure coverage at statement level. Statements are the unique
instructions that your JVM, for example, executes. This is a bit better, as splitting one line of
code in two would not make a difference.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) ln = 0;
4 if (rn > 21) rn = 0;
5 if (ln > rn) return rn;
6 else return ln;
 }

}

t2 = (10, 9)
6/10 = 60% line
coverage, previously

5/6 = 83% line
coverage, now

Decision (or branch)
Coverage

Statement/Line coverage is generally seen as a weak criterion, although in
practice it is one of the most common criteria used. One reason for this is
that it is very intuitive and easy to understand. Stronger criteria are often
based on the control flow graph of the program under test. For example,
consider the following snippet:

if (e < 0)
 e = 0;
if (b == 0)
 b = 1;

Statement/Line coverage is generally seen as a weak criterion, although in
practice it is one of the most common criteria used. One reason for this is
that it is very intuitive and easy to understand. Stronger criteria are often
based on the control flow graph of the program under test. For example,
consider the following snippet:

if (e < 0)
 e = 0;
if (b == 0)
 b = 1;

It is possible to achieve 100% statement coverage of this snippet with a single test
where e is less than 0 and b equals 0. This test case would make both if conditions
evaluate to true, but there would be no test case where either of the conditions
evaluates to false. Branch coverage captures the notion of coverage of all edges
in the control flow graph, which means that each if condition requires at least one
test where it evaluates to true, and at least one test where it evaluates to false.
In the case of above snippet, we would need at least two test cases to achieve 100%
branch coverage, i.e., t1: e<0 and b==0; t2: e>=0 and b!=0.

Decision (or Branch) Coverage

Complex programs often rely on lots of complex conditions
(e.g., if statements composed of many conditions). When
testing these programs, aiming at 100% line coverage might
not be enough to cover all the cases we want. We need a
stronger criterion.

Branch coverage (or decision coverage) works similar to line
and statement coverage, except with branch coverage we
count (or aim at covering) all the possible decision outcomes.

A set of test cases will achieve 100% branch (or decision)
coverage when tests exercise all the possible outcomes of
decision blocks.

Decision (or Branch) Coverage

Decisions (or branches) are easy to identify in a
Control-Flow Graph (CFG). A control-flow graph is a
representation of all paths that might be traversed
during the execution of a piece of code. It consists of
basic blocks, decision blocks, and arrows/edges that
connect these blocks.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

A basic block is composed of "the maximum number of statements that
are executed together no matter what happens". In the code below, lines
1-2 are always executed together. Basic blocks are often represented by a
square:

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

A basic block is composed of "the maximum number of statements that
are executed together no matter what happens". In the code below, lines
1-2 are always executed together. Basic blocks are often represented by a
square:

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

1 int ln = left;
2 int rn = right;

entry

A decision block, on the other hand, represents all the statements in the source code that
can create different branches, e.g., line 3. This if statement creates a decision moment in
the application: based on the condition, it is decided which code block will be executed
next. Decision blocks are often represented by diamonds. This decision block happens
right after the basic block we created above, and thus, they are connected by means of an
edge.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

1 int ln = left;
2 int rn = right;

entry

3 if (ln > 21)
false

true

A basic block has always a single outgoing edge. A decision block, on the other hand,
always has two outgoing edges (indicating where you go in case of the decision being
evaluated to true, and where you go in case the decision is evaluated to false). In case
of the decision block being evaluated to true, line 4 is executed, and the program
continues to line 5. Otherwise, it proceeds straight to line 5, which is another decision
block.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

1 int ln = left;
2 int rn = right;

entry

3 if (ln > 21)
false

true

 # decision outcomes covered
branch coverage = —————————————— x 100%
 # decision outcomes

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) // True ? False ?
4 ln = 0;
5 if (rn > 21) // True ? False ?
6 rn = 0;
7 if (ln > rn) // True ? False ?
8 return rn;
9 else
10 return ln;
 }

}

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) // True ✅ False ❌
4 ln = 0;
5 if (rn > 21) // True ? False ?
6 rn = 0;
7 if (ln > rn) // True ? False ?
8 return rn;
9 else
10 return ln;
 }

}

t1 = (30, 30)

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) // True ✅ False ❌
4 ln = 0;
5 if (rn > 21) // True ✅ False ❌
6 rn = 0;
7 if (ln > rn) // True ? False ?
8 return rn;
9 else
10 return ln;
 }

}

t1 = (30, 30)

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) // True ✅ False ❌
4 ln = 0;
5 if (rn > 21) // True ✅ False ❌
6 rn = 0;
7 if (ln > rn) // True ❌ False ✅
8 return rn;
9 else
10 return ln;
 }

}

t1 = (30, 30)

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21) // True ✅ False ❌
4 ln = 0;
5 if (rn > 21) // True ✅ False ❌
6 rn = 0;
7 if (ln > rn) // True ❌ False ✅
8 return rn;
9 else
10 return ln;
 }

}

t1 = (30, 30)

3/6 = 50%
branch
coverage

McCabe’s Cyclomatic
Complexity

McCabe’s Cyclomatic Complexity

Cyclomatic Complexity (CC) is a metric used for
measuring the complexity of a software program.
This metric was developed by Thomas J. McCabe in
1976 and it is based on a control-flow representation of
the program. In other words, it is a quantitative
measure of linearly independent paths in the source
code of a softwara program. A linearly independent
path is defined as a path that has at least one edge
which has not been traversed by any other path.

How to compute CC?

1. Construct the control-flow graph with nodes and
edges from the source code.

CC, example
1. Construct the control-flow graph with nodes and edges from the source code.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

1 int ln = left;
2 int rn = right;

3
true

false

4

5
true

false

6

7
true

false

8

 9
10

entry

end

How to compute CC?

1. Construct the control-flow graph with nodes and edges from the source code.

2. Compute CC (lower CC == better code)

- of a structured function, e.g., a function with a single exit point, aka return
statement, as

E - N + 2P

- of a non-structured function, e.g., a function with more than on exit point,
in each exit point is connected back to the entry point, as

E - N + P

E = number of edges

N = number of nodes

P = number of connected components, aka graphs, P is always 1 for single functions

CC, example
2. Compute CC as, E - N + P

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}# Edges = 12
Nodes = 8 “normal” nodes + 1 entry node
CC = 12 - 9 + 1 = 4 independent paths, but which ones?

1 int ln = left;
2 int rn = right;

3
true

false

4

5
true

false

6

7
true

false

8

 9
10

entry

CC, example
3. Identify the independent paths. Recall that a linearly independent path is
defined as a path that has at least one edge which has not been traversed by
any other path.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

1 int ln = left;
2 int rn = right;

3
true

false

4

5
true

false

6

7
true

false

8

 9
10

path 1: 1, 2, 3, 5, 7, 9, 10
path 2: 1, 2, 3, 4, 5, 7, 9, 10
path 3: 1, 2, 5, 6, 7, 9, 10
path 4: 1, 2, 3, 5, 7, 8

How to compute CC?

1. Construct the control-flow graph with nodes and edges from the
source code.

2. Compute CC (lower CC == better code)

- of a structured function, e.g., a function with a single exit point,
aka return statement, as

E - N + 2P

- of a non-structured function, e.g., a function with more than on
exit point, in each exit point is connected back to the entry point, as

E - N + P

3. Identify the independent paths.

4. Derive the tests.

CC, example
4. Derive the tests. Tip: the number of tests is basically the cyclomatic
complexity value of the program.

public class BlackJack {

 public int play(int left, int right) {
1 int ln = left;
2 int rn = right;
3 if (ln > 21)
4 ln = 0;
5 if (rn > 21)
6 rn = 0;
7 if (ln > rn)
8 return rn;
9 else
10 return ln;
 }

}

Cyclomatic Complexity, 👍 and 👎

Advantages 👍

- It is easy to apply.

- It is able to guide the testing process, i.e., it helps developers and
testers to determine independent path executions.

- Developers can assure that all the paths have been tested at least
once.

- Helps developers and testers to focus more on the uncovered paths.

Disadvantages 👎

- It is the measure of the programs’ control complexity and not the
data complexity.

Tools

- EclEmma: Java Code Coverage for Eclipse
 https://www.eclemma.org
- JaCoCo
 https://www.jacoco.org/jacoco
- Cobertura: A code coverage utility for Java
 http://cobertura.github.io/cobertura/
- Code2flow: automatic generation of diagrams from source
code
 https://app.code2flow.com
- MetricsTree: an IntelliJ IDEA plugin to compute source code
metrics as cyclomatic complexity, for example
 https://github.com/b333vv/metricstree

https://www.eclemma.org
https://www.jacoco.org/jacoco
http://cobertura.github.io/cobertura/
https://app.code2flow.com
https://github.com/b333vv/metricstree

References

- Gordon Fraser and José Miguel Rojas; Software Testing,
2019. ISBN 978-3-030-00262-6.
- Chapter 5 of the Practical software testing a process-
oriented approach. Ilene Burnstein, 2002.
- Chapter 12 of the Software Testing and Analysis: Process,
Principles, and Techniques. Mauro Pezzè, Michal Young, 1st
edition, Wiley, 2007.
- Chapter 4 of the Foundations of software testing: ISTQB
certification. Graham, Dorothy, Erik Van Veenendaal, and
Isabel Evans, Cengage Learning EMEA, 2008.
- Zhu, H., Hall, P. A., & May, J. H. (1997). Software unit test
coverage and adequacy. ACM computing surveys.

