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Week #11— Lecture #8

Software Testing, 
Verification and Validation



Last week, we introduced dataflow testing in particular: 
All Defs, All Uses, All Def-Uses-Paths, All P-Uses/Some 
C-Uses, All C-Uses/Some P-Uses, All P-Uses, and All C-
Uses as part of our set of white-box techniques.  This 
week we will introduce Mutation Testing.



✅

✅

👉

Gordon Fraser and José Miguel Rojas; Software Testing, 2019. ISBN 978-3-030-00262-6

✅



Mutation Testing





Context

In the structural testing module, we discussed line coverage, 
branch coverage, …  In the logical coverage module we 
discusses MC/DC, …  In the model-based testing module, we 
discussed path coverage.  Etc.  All these adequacy criteria 
measure how much of the program is exercised by the tests we 
designed. 

However, these criteria alone might not be enough to determine 
the quality of the test cases.  In practice, we can exercise large 
parts of the system, while testing very little.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
} 



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
} 

While these tests give us 100% condition coverage, 100% decision coverage, 100% line coverage, …, 
these tests may never fail (i.e., may never reveal any fault).  Why?



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
} 

While these tests give us 100% condition coverage, 100% decision coverage, 100% line coverage, …, 
these tests may never fail (i.e., may never reveal any fault) as there are no assertions!



Fault Detection Capability

Fault detection capability indicates the test's capability to reveal faults in the system 
under test. The more faults a test can detect or, in other words, the more faults a test 
fails on, the higher its fault detection capability. Using this criterion, we can indicate 
the quality of our test suite in a better way than with just the coverage metrics we have 
so far. 

The fault detection capability does not just regard the amount of production code 
executed, but also the assertions made in the test cases. For a test to be adequate 
according to this criterion, it has to have a meaningful test oracle (i.e., meaningful 
assertions). 

The fault detection capability, as a test adequacy criterion, is the fundamental idea 
behind mutation testing. In mutation testing, we change small parts of the code, and 
check if the tests can find the introduced fault. 

In the previous example, we created a test suite that was not adequate in terms of its 
fault detection capability, because there were no assertions, and so the tests would 
never find any faults in the code. Tests with assertions (aka oracles) check if the result 
of the method is what we expect.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
} 



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
    assertNull(values); 
} 



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValues() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testZero() { 
    int[] values = Division.getValues(1, 0); 
    assertNull(values); 
} 

✅

✅



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

To see how the values in a test case influence the fault detection capability, let's create two tests, where the 
denominator (i.e., b) is not 0.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

To see how the values in a test case influence the fault detection capability, let's create two tests, where the 
denominator (i.e., b) is not 0.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

✅

✅



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

For the fault detection capability, we want to see if the tests detect any faults in the code. This means we have 
to go back to the source code and introduce an error.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; a * b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

For the fault detection capability, we want to see if the tests detect any faults in the code. This means we have 
to go back to the source code and introduce an error. We replace the division by a multiplication: a clear bug.



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; a * b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

If we run our tests with the buggy code, we see that the testGetValuesOnes still passes, but the other 
test, i.e., testGetValuesDifferent fails. This indicates that the second test has a higher fault detection 
capability.

✅

❌



public class Division { 

    public static int[] getValues(int a, int b) { 
1        if (b == 0) 
2            return null; 
3        int quotient = a / b; a * b; 
4        int remainder = a % b; 
5        return new int[] { quotient, remainder }; 
    } 
}

@Test 
public void testGetValuesOnes() { 
    int[] values = Division.getValues(1, 1); 
    assertEquals(1, values[0]); 
    assertEquals(0, values[1]); 
} 

@Test 
public void testGetValuesDifferent() { 
    int[] values = Division.getValues(3, 2); 
    assertEquals(1, values[0]); 
    assertEquals(1, values[1]); 
}

Even though both tests exercise the method in the same way and execute the same lines, we see a difference in the fault 
detection capability. This is because of the different input values for the method and the different test oracles (assertions) in 
the tests. In this case, the input values and test oracle of the testGetValues test can detect the bug better. 

✅

❌



Hypotheses for Mutation Testing

The idea of mutation testing is to assess the quality of the test suite. This is done by manipulating bits 
of the source code and running the tests with this manipulated source code. If we have a good test suite, 
at least one of the tests will fail on this changed (i.e., buggy) code. Following this procedure, we get a 
sense of the fault error capability of our test suite. 

In mutation testing, we use mutants. Mutants are modified programs which contain the defects, or faults 
that we introduce in the source code to be then used for determining the quality of the test suite. 

A big question regarding the mutants is what their size should be. We can change single operations, 
whole lines or even multiple lines of code. What would work best? 

Mutation testing and the answer to this question are based on the following two hypotheses: 

•The Competent Programmer Hypothesis (CPH): Here, we assume that the program is written by a 
competent programmer. More importantly, this means that given a certain specification, the 
programmer creates a program that is either correct, or it differs from a correct program by a 
combination of simple errors. 

•The Coupling Effect: The coupling effect hypothesis states that simple faults are coupled with more 
complex faults. In other words, test cases that detect simple faults, will also detect complex faults. 

Based on these two hypotheses, we can determine the size that the mutants should have. Realistically, 
following the competent programmer hypothesis, the faults in the actual code will be small. This 
indicates that the mutants’ size should be small as well. Considering the coupling effect, test cases that 
detect small errors will also be able to detect larger, more complex errors.



Terminology

Before we talk about mutation testing in an in-depth way, we 
define some terms: 

- Mutant: Given a program P, a mutant called P′ is obtained 
by introducing a syntactic change to P. A mutant is killed if a 
test fails when executed with the mutant. 

- Syntactic Change: A small change in the code. Such a small 
change should make the code still valid, i.e., the code can still 
compile and run. 

- Change: A change in the code that mimics typical human 
mistakes. We will see some examples of these mistakes later 
in the following slides.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

The test suite contains two tests for corner cases that throw an exception (i.e., testInvertZero and 
testInvertMinValue, and two “happy path” tests (i.e., testInvert and testInvertNegative).



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

✅

✅

✅

✅

The test suite contains two tests for corner cases that throw an exception (i.e., testInvertZero and 
testInvertMinValue, and two “happy path” tests (i.e., testInvert and testInvertNegative).



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

The test suite contains two tests for corner cases that throw an exception (i.e., testInvertZero and 
testInvertMinValue, and two “happy path” tests (i.e., testInvert and testInvertNegative). 
We will now determine the quality of our test suite using mutation testing.

✅

✅

✅

✅



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

First, we have to create a mutant by applying a syntactic change to the original method. Keep in mind 
that, because of the two hypotheses, we want the syntactic change to be small: one operation/variable 
should be enough. Moreover, the syntactic change is a change, hence it should mimic mistakes that 
could be made by a programmer.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

First, we have to create a mutant by applying a syntactic change to the original method. Keep in mind 
that, because of the two hypotheses, we want the syntactic change to be small: one operation/variable 
should be enough. Moreover, the syntactic change is a change, hence it should mimic mistakes that 
could be made by a programmer.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator,  numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

First, we have to create a mutant by applying a syntactic change to the original method. Keep in mind 
that, because of the two hypotheses, we want the syntactic change to be small: one operation/variable 
should be enough. Moreover, the syntactic change is a change, hence it should mimic mistakes that 
could be made by a programmer.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator,  numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

If we execute the test suite on this mutant, the testInvertNegative test will fail, as 
result.getFloat()would be positive instead of negative.

❌

✅

✅

✅



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 0) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

Another mistake could be made in line 1. When we studied boundary analysis, we saw that it is 
important to test the boundaries due to off-by-one errors. We can make a syntactic change by 
introducing such an off-by-one error. Instead of numerator == 0, in our new mutant we make 
it numerator == 1.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 1) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

Another mistake could be made in line 1. When we studied boundary analysis, we saw that it is 
important to test the boundaries due to off-by-one errors. We can make a syntactic change by 
introducing such an off-by-one error. Instead of numerator == 0, in our new mutant we make 
it numerator == 1.



public class Fraction { 

  private int numerator; 
  private int denominator; 

  // ... 

  public Fraction invert() { 
1   if (numerator == 1) { 
2     throw new ArithmeticException("..."); 
    } 

3   if (numerator == Integer.MIN_VALUE) { 
4     throw new ArithmeticException("..."); 
    } 

5   if (numerator < 0) { 
6     return new Fraction(-denominator, -numerator); 
    } 

7   return new Fraction(denominator, numerator); 
  } 
} 

@Test 
public void testInvert(){ 
  Fraction f = new Fraction(1, 2); 
  Fraction result = f.invert(); 
  assertEquals(2, result.getFloat(), 0.001); 
} 

@Test 
public void testInvertNegative(){ 
  Fraction f = new Fraction(-1, 2); 
  Fraction result = f.invert(); 
  assertEquals(-2, result.getFloat(), 0.001); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertZero(){ 
  Fraction f = new Fraction(0, 2); 
  f.invert(); 
} 

@Test(expected = ArithmeticException.class) 
public void testInvertMinValue(){ 
  int n = Integer.MIN_VALUE; 
  Fraction f = new Fraction(n, 2); 
  f.invert(); 
} 

We see that, again, the test suite catches this error. The test testInvertZero will fail, as it expects an 
exception but none is thrown in the mutant. The test testInvert will also fail since it has a 1 in the 
numerator which wrongly triggers an exception.

❌

✅

❌

✅



Automation

Writing the mutations of our programs manually might take a lot 
of time. Moreover, we probably would only think of the cases that 
are already tested. Like with test execution, we want to automate 
the mutation process. There are various tools that automatically 
generate mutants, but they all use the same methodology. 

First we need mutation operators. A mutation operator is a 
grammatical rule that can be used to introduce a syntactic 
change. This means that, if the generator sees a statement in the 
code that corresponds to the grammatical rule of the operator 
(e.g., a + b), then the mutation operator specifies how to 
change this statement with a syntactic change (e.g., turning it 
into a - b).



Mutation Operators

We can identify two categories of mutation operators: 

- Real fault based operators: Operators that are very 
similar to defects seen in the past for the same kind of 
code. Such operators look like common mistakes 
made by programmers in similar code. 

- Language-specific operators: Mutations that are 
made specifically for a certain programming language. 
For example, changes related to the inheritance 
feature we have in Java, or changes regarding pointer 
manipulations in C.



Mutation Operators

Most mutation testing tools include various basic mutation operators for real 
fault based operators. Here are brief descriptions of some common mutation 
operators: 

- AOR - Arithmetic Operator Replacement: Replaces an arithmetic operator 
by another arithmetic operator. Arithmetic operators are +, -, *, /, %. 

- ROR - Relational Operator Replacement: Replaces a relational operator by 
another relational operator. Relational operators are <=, >=, !=, ==, >, <. 

- COR - Conditional Operator Replacement: Replaces a conditional operator 
by another conditional operator. Conditional operators are &&, ||, &, |, !, ^. 

- AOR - Assignment Operator Replacement: Replaces an assignment 
operator by another assignment operator. Assignment operators 
include =, +=, -=, /=. 

- SVR - Scalar Variable Replacement: Replaces each variable reference by 
another variable reference that has been declared in the code.



int c = a + b;

???

Original

Mutant example

AOR - Arithmetic Operator Replacement 
 Replaces an arithmetic operator by another arithmetic operator. Arithmetic operators are +, -, *, /, %.



int c = a + b;

int c = a - b;

Original

Mutant example

AOR - Arithmetic Operator Replacement 
 Replaces an arithmetic operator by another arithmetic operator. Arithmetic operators are +, -, *, /, %.



if (c == 0) { 
    return -1; 
}

??? 

Original

Mutant example

ROR - Relational Operator Replacement 
  Replaces a relational operator by another relational operator. Relational operators are <=, >=, !=, ==, >, <.



if (c == 0) { 
    return -1; 
}

if (c > 0) { 
    return -1; 
}

Original

Mutant example

ROR - Relational Operator Replacement 
  Replaces a relational operator by another relational operator. Relational operators are <=, >=, !=, ==, >, <.



https://github.com/openssl/openssl/commit/3b421ebc64c7b52f1b9feb3812bdc7781c784332 — November 1, 2022



https://github.com/advisories/GHSA-8rwr-x37p-mx23



if (a == null || a.length == 0) { 
  return new int[0]; 
} 

??? 

Original

Mutant example

COR - Conditional Operator Replacement 
 Replaces a conditional operator by another conditional operator. Conditional operators are &&, ||, &, |, !, ^.



if (a == null || a.length == 0) { 
  return new int[0]; 
} 

if (a == null && a.length == 0) { 
  return new int[0]; 
} 

Original

Mutant example

COR - Conditional Operator Replacement 
 Replaces a conditional operator by another conditional operator. Conditional operators are &&, ||, &, |, !, ^.



c = a + b;

???

Original

Mutant example

AOR - Assignment Operator Replacement 
  Replaces an assignment operator by another assignment operator. Assignment operators include =, +=, -=, /=.



AOR - Assignment Operator Replacement 
  Replaces an assignment operator by another assignment operator. Assignment operators include =, +=, -=, /=.

c = a + b;

c -= a + b;

Original

Mutant example



SVR - Scalar Variable Replacement 
               Replaces each variable reference by another variable reference that has been declared in the code.

public class Division { 
  public static int[] getValues(int a, int b) { 
    if (b == 0 || b == Integer.MIN_VALUE){ 
      return null; 
    } 

    int quotient = a / b; 
    int remainder = a % b; 

    return new int[] {quotient, remainder}; 
  } 
} 

Original

Mutant example

??? 



SVR - Scalar Variable Replacement 
               Replaces each variable reference by another variable reference that has been declared in the code.

public class Division { 
  public static int[] getValues(int a, int b) { 
    if (b == 0 || b == Integer.MIN_VALUE){ 
      return null; 
    } 

    int quotient = a / b; 
    int remainder = a % b; 

    return new int[] {quotient, remainder}; 
  } 
} 

Original

Mutant example

public class Division { 
  public static int[] getValues(int a, int b) { 
    if (a == 0 || a == Integer.MIN_VALUE){ 
      return null; 
    } 

    int quotient = b / a; 
    int remainder = quotient % a; 

    return new int[] {remainder, a}; 
  } 
}



Mutation Operators

In Java, there are a lot of language-specific operators. We can, for example, change the 
inheritance of the class, remove an overriding method, or change some declaration types. 
Without going into detail about these language-specific mutant operators, here are some 
examples: 

- Access Modifier Change 

- Hiding Variable Deletion 

- Hiding Variable Insertion 

- Overriding Method Deletion 

- Parent Constructor Deletion 

- Declaration Type Change 

- … 

Of course, there are many more mutant operators that are used by mutant generators. For 
now, you should at least have an idea what mutation operators are, how they work and 
what we can use them for.



Mutation Analysis & Testing

Our goal is to use mutation testing to determine the 
quality of our test suite. As we saw before, we have 
to create the mutants first and it is best to do this in 
an automated way with the help of mutation 
operators. Then, we run the test suite against each of 
the mutants with an execution engine. If any test fails 
when executed against a mutant, we say that the test 
suite kills the mutant. This is good, because it shows 
that our test suite has some fault detection capability. 
If none of the tests fail, the mutant stays alive.



Mutation Analysis & Testing

When performing mutation testing, we count the number of mutants our test suite killed and 
the number of mutants that are still alive. By counting the number of each of these mutant 
groups, we can give a value to the quality of our test suite. 

We define the mutation score as: 

                      # killed mutants 
             ———————— x 100% 
                    # mutants 

Assessing the quality of a test suite by computing its mutation score is called mutation 
analysis. 

Mutation testing then means using this mutation analysis to improve the quality of the test 
suite by adding and/or changing test cases. 

These concepts are highly interconnected. Before mutation testing is carried out, you have to 
compute the mutation score. This then indicates whether the test suite should be changed. If 
the mutation score is low, there are a lot of mutants that are not killed by the test suite. You 
then have to improve the test suite.



Equivalent Mutants

Calculating the mutation score is challenging. The mutation score increases 
when less mutants are alive. This suggests that the best scenario is to have 
all the mutants killed by the test suite. While this is indeed the best scenario, 
it is often unrealistic because some of the mutants may be impossible to kill. 

Mutants that cannot be killed are called equivalent mutants. An equivalent 
mutant is a mutant that always behaves in the same way as the original 
program. If the mutant behaves like the normal code, it will always give the 
same output as the original program for any given input. Clearly, this makes 
this mutant (which is basically the same program as the one under test) 
impossible to be killed by the tests. 

Here, the equivalence is related to the definition of program equivalence. 
Program equivalence roughly means that two programs are functionally 
equivalent when they produce the same output for every possible input. This 
is also the equivalence between the normal code and an equivalent mutant.



public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index == 0) 
      break; 
  } 
}

Original

Mutant example

public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index <= 0) 
      break; 
  } 
}

Equivalent Mutants



public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index == 0) 
      break; 
  } 
}

Original

Mutant example

public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index <= 0) 
      break; 
  } 
}

Equivalent Mutants

Note how the original code starts with index set to 
10, decrements it at every iteration of the while 
loop, and breaks out of the loop when index equals 
0. The mutant works exactly the same, even though 
the condition is technically different. The index is 
still decremented from 10 to 0. Because index will 
never be negative, the == operator does the same as 
the <= operator. 

The mutant produced by the generator is an 
equivalent mutant in this case. 

Because of these equivalent mutants, we need to 
change the mutation score formula. We do not want 
to take the equivalent mutants into account, as there 
is nothing wrong with the tests when they do not kill 
these mutants.



public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index == 0) 
      break; 
  } 
}

Original

Mutant example

public void foo(int a) { 
  int index = 10; 
  while (...) { 
    // ... 
    index--; 
    if (index <= 0) 
      break; 
  } 
}

Equivalent Mutants

The new mutation score formula becomes: 

                                # killed mutants 
                        ———————————— x 100% 
                         # non-equivalent mutants 

For the denominator, we used the number of non-
equivalent mutants, instead of the total number of mutants.  

To compute this new mutation score automatically, we need 
a way to determine automatically if a mutant is an 
equivalent mutant. Unfortunately, we cannot do this 
automatically, as detecting equivalent mutations is an 
undecidable problem. We can never be sure that a mutant 
behaves the same as the original program for every 
possible input. 



Application

Mutation testing sounds like a great way to analyze and improve our test suites. 
However, the question remains whether we can use mutation testing in practice. 
For example, we can ask ourselves whether a test suite with a higher mutation 
score actually finds more errors. 

A lot of research in software engineering tries to gain some insight into this 
problem. So far all the studies about mutation testing have shown that mutants can 
provide a good indication of a test suite's fault detection capability, as long as the 
mutation operators are carefully selected and the equivalent mutants are removed. 

More specifically, a study by Just et al. shows that mutant detection is positively 
correlated with real fault detection. In other words, the more mutants a test suite 
detects, the more real faults the test suite can detect as well. Even more interesting 
is that this correlation is independent of the coverage. Furthermore, the correlation 
between mutant detection and fault detection is higher than the correlation 
between statement coverage and fault detection. So, the mutation score provides a 
better measure for the fault detection capability than the test coverage.



The Costs of Mutation Testing

Mutation testing is not without its costs. We have to generate the mutants, possibly 
remove the equivalent mutants, and execute the tests against each mutant. This makes 
mutation testing quite expensive, i.e., it takes a long time to perform. 

Assume we want to do some mutation testing. We have: 
- A code base with 300 Java classes 
- 10 test cases for each class 
- Each test case takes 0.2 seconds on average 
The total test execution time is then: 
    300 x 10 x 0.2 = 600 seconds (10 minutes) 
This execution time is for just the normal code. 

For the mutation testing, we decide to generate on average 20 mutants per class. We will 
have to execute the entire test suite of a class on each of the mutants. Per class, we need 
    20 x 10 x 0.2 = 40 seconds. 
In total, the mutation testing will take 
    300 x 40 = 12,000 seconds, or 3 hours and 20 minutes.



The Costs of Mutation Testing

Mutation testing is not without its costs. We have to generate the mutants, possibly 
remove the equivalent mutants, and execute the tests against each mutant. This makes 
mutation testing quite expensive, i.e., it takes a long time to perform. 

Assume we want to do some mutation testing. We have: 
- A code base with 300 Java classes 
- 10 test cases for each class 
- Each test case takes 0.2 seconds on average 
The total test execution time is then: 
    300 x 10 x 0.2 = 600 seconds (10 minutes) 
This execution time is for just the normal code. 

For the mutation testing, we decide to generate on average 20 mutants per class. We will 
have to execute the entire test suite of a class on each of the mutants. Per class, we need 
    20 x 10 x 0.2 = 40 seconds. 
In total, the mutation testing will take 
    300 x 40 = 12,000 seconds, or 3 hours and 20 minutes.



The Costs of Mutation Testing

Because of this cost, researchers have tried to find ways to make mutation testing faster for a long 
time. Based on some observations, they came up with the following heuristics. 

- The first observation is that a test case can never kill a mutant if it does not cover the statement 
that changed (also known as the reachability condition). Based on this observation, we only have to 
run the test cases that cover the changed statement. This reduces the number of test cases to run 
and, with that, the execution time. Furthermore, once a test case kills a mutant, we do not have to 
run the other test cases anymore. This is because the test suite needs at least one test case that 
kills the mutant. The exact number of test cases killing the same mutant does not really matter. 

- A second observation is that mutants generated by the same operator and inserted at the same 
location are likely to be coupled with the same type of fault. This means that when we use a certain 
mutation operator (e.g., Arithmetic Operator Replacement) and we replace the same statement 
with this mutant operator, we get two mutants that represent the same fault in the code. It is then 
highly probable that if the test suite kills one of the mutants, it will also kill the others. A heuristic 
that follows from this observation is to run the test suite against a subset of all the mutants (a 
technique also known as do fewer). Obviously, when we run the test suite against a smaller number 
of mutations, the overall testing will take less time. The simplest way of selecting the subset of 
mutants is by means of random sampling. As the name suggests, we select random mutants to 
consider. This is a very simple, yet effective way to reduce the execution time.



Tools

To perform mutation testing you can use one of many publicly available tools. 
These tools are often made for specific programming languages. One of the 
most mature mutation testing tools for Java is called PiTest (PIT Mutation 
Testing) https://pitest.org. 

 - PIT can be run from the command line, but it is also integrated into most 
popular IDEs (like Eclipse or IntelliJ). Project management tools like Maven or 
Gradle can also be configured to run PIT. As PIT is a mutation testing tool, it 
generates the mutants and runs the test suites against these mutants. Then it 
generates easy to read reports based on the results. In these reports, you can 
see the line coverage and mutation score per class. Finally, you can also see 
more detailed results in the source code and check which individual mutants 
were kept alive. 

- Another mutation testing tool is Major http://mutation-testing.org. Major 
enables efficient mutation analysis of large software systems as well as 
fundamental research on mutation testing.

https://pitest.org
http://mutation-testing.org
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