
November 30, 2022

Week #12— Lecture #9

Software Testing,
Verification and Validation

Last week, we introduced mutation testing as part of
our set of white-box techniques. This week we will
(re-)visit Integration Testing and System Testing, and
also introduce Acceptance Testing and Regression
Testing.

White-box Testing

(White-box) Testing: Rule of thumb

- Do not start designing white-box test cases!

- Start with black-box test cases: equivalence
partitioning, boundary value analysis, …

- Check white-box coverage (line, decision, condition,
path, …)

- Use a testing coverage tool

- Design additional white-box test cases for not
covered code.

Testing Pyramid

Manual

System

Integration

Unit

More
reality

More
complexity

by Martin Fowler, https://martinfowler.com/bliki/TestPyramid.html

✅

Testing Pyramid

Manual

System

Integration

Unit

More
reality

More
complexity

✅

by Martin Fowler, https://martinfowler.com/bliki/TestPyramid.html

Integration Testing

Integration Testing

- Testing of groups of components integrated to create a sub-
system. Components should be tested previously.

- Usually the responsibility of an independent testing team
(except sometimes in small projects).

- Integration testing should be black-box testing with tests
derived from the technical specification.

- A principal goal is to detect defects that occur on the
interfaces of units.

- Main difficulty is localizing errors.

- Incremental integration testing (as opposed to big-bang
integration testing) reduces this difficulty.

Integration Testing: Terminology

- Test harness: auxiliary code
developed to support testing.

- Test drivers: call the target
code, simulating calling units or
a user.

- Test stubs: Simulate modules/
units/systems called by the
target code. Mock objects can
be used for this purpose. (We
strongly recommend you to
read Practical Unit Testing with
JUnit and Mockito by Tomek
Kaczanowsk.)

Integration Testing

The objective is to take unit tested components and build a program
structure that has been dictated by design. Integration testing is testing in
which a group of components is combined to produce output.

Integration testing is of four types:

 - Top-down: Start with high-level system and integrate from the top-down
replacing individual components by stubs (aka mocks) where appropriate.

 - Bottom-up: Integrate individual components in levels until the complete
system is created.

 - Sandwich: is the combination of bottom-up approach and top-down
approach, so it uses the advantage of both bottom up approach and top
down approach. Initially it uses the stubs and drivers where stubs simulate
the behavior of missing components.

 - Big-Bang

Integration Testing: Big-Bang

It is the simplest integration testing approach, where all the modules are combining
and verifying the functionality after the completion of individual module testing. In
simple words, all the modules of the system are simply put together and tested.
This approach is practicable only for very small systems. If once an error is found
during the integration testing, it is very difficult to localize the error as the error may
potentially belong to any of the modules being integrated. So, debugging errors
reported during big bang integration testing are very expensive to fix.

Advantages:
- It is convenient for small systems.

Disadvantages:
- There will be quite a lot of delay because you would have to wait for all the
modules to be integrated.

- High risk critical modules are not isolated and tested on priority since all modules
are tested at once.

Integration Testing: Top-down

Top-down integration testing technique used in order to simulate the
behavior of the lower-level modules that are not yet integrated. In this
integration testing, testing takes place from top to bottom. First high-level
modules are tested and then low-level modules and finally integrating the
low-level modules to a high level to ensure the system is working as intended.

Advantages:
Separately debugged module.

Few or no drivers needed.

It is more stable and accurate at the aggregate level.

Disadvantages:
Needs many Stubs.

Modules at lower level are tested inadequately.

Integration Testing: Top-down

Integration Testing: Bottom-up

In bottom-up testing, each module at lower levels is tested with higher modules
until all modules are tested. The primary purpose of this integration testing is,
each subsystem is to test the interfaces among various modules making up the
subsystem. This integration testing uses test drivers to drive and pass appropriate
data to the lower level modules.

Advantages:
In bottom-up testing, no stubs are required.

A principle advantage of this integration testing is that several disjoint subsystems
can be tested simultaneously.

Disadvantages:
Driver modules must be produced.

In this testing, the complexity that occurs when the system is made up of a large
number of small subsystem.

Integration Testing: Bottom-up

- Architectural validation: Top-down integration testing
is better at discovering errors in the system
architecture.

- System demonstration: Top-down integration testing
allows a limited demonstration at an early stage in the
development.

- Test implementation: Top-down integration requires
the development of complex stubs to drive significant
data upward while bottom-up integration requires
drivers.

Integration Testing: Bottom-up vs
Top-down

System Testing

System Testing

- Testing the system as a whole by an independent testing team.

- Often requires many resources: laboratory equipment, long test times, etc.

- Usually based on a requirements document, specifying both functional and
non-functional (quality) requirements.

- Preparation should begin at the requirements phase with the development of a
master test plan and requirements-based tests (black-box tests).

- The goal is to ensure that the system performs according to its requirements,
by evaluating both functional behavior and quality requirements such as
reliability, usability, performance and security.

- Especially useful for detecting external hardware and software interface
defects, for example, those causing race conditions, deadlocks, problems with
interrupts and exception handling, and ineffective memory usage.

- Tests implemented on the parts and subsystems may be reused/repeated, and
additional tests for the system as a whole may be designed.

System Testing: Performance Testing

Performance Testing is a type of software testing that ensures software applications to perform properly
under their expected workload. It is a testing technique carried out to determine system performance in
terms of sensitivity, reactivity and stability under a particular workload.

Goals:

- Check whether the software meets the performance requirements.

- See whether there are any hardware or software factors that impact on the system's performance.

- Provide valuable information to tune the system.

- Predict the system's future performance levels.

Results of performance tests should be quantified, and the corresponding environmental conditions
should be recorded. Resources usually needed:

- A source of transactions to drive the experiments, typically a load generator.

- An experimental test bed that includes hardware and software the system under test interacts with
- Instrumentation of probes that help to collect the performance data (event logging, counting,
sampling, memory allocation counters, etc.).

- A set of tools to collect, store, process and interpret data from probes.

System Testing: Stress Testing

Stress Testing is a software testing technique that determines the robustness of software by
testing beyond the limits of normal operation. Stress testing is particularly important for critical
software but is used for all types of software. Stress testing emphasizes on robustness,
availability and error handling under a heavy load rather than on what is correct behavior under
normal situations. Stress testing is defined as a type of software testing that verifies the stability
and reliability of the system. This test particularly determines the system on its robustness and
error handling under extremely heavy load conditions. It even tests beyond the normal
operating point and analyses how the system works under the extreme conditions. Stress
testing is performed to ensure that the system would not crash under crunch situations.

Characteristics of Stress Testing:

- Stress testing analyzes the behavior of the system after a failure.
- Stress testing makes sure that the system recovers after failure.
- It checks whether the system works under the abnormal conditions.
- It ensures to display appropriate error message when the system is under stress.
- It verifies that unexpected failures do not cause security issues.
- It verifies whether the system has saved the data before crashing or not.

System Testing: Load Testing

Load Testing determines the performance of a system, software product or
software application under real life based load conditions. Basically load testing
determines the behavior of the application when multiple users use it at the same
time. It is the response of the system measured under varying load conditions. The
load testing is carried out for normal and extreme load conditions.

Objectives of Load Testing is to identify performance congestion before the
software product is launched in market.
- To maximize the operating capacity of a software application.
- To determine whether the latest infrastructure is capable to run the software
application or not.
- To determine the sustainability of application with respect to extreme user load.
- To find out the total count of users that can access the application at the same
time.
- To determine scalability of the application.
- To allow more users to access the application.

System Testing: Load Testing vs
Stress Testing

Load Testing Stress Testing

Load Testing is performed to test the performance of
the system or software application under extreme load.

Stress Testing is performed to test the robustness of the
system or software application under extreme load.

In load testing load limit is the threshold of a break.
In stress testing load limit is above the threshold of a
break.

In load testing, the performance of the software is
tested under multiple number of users.

In stress testing, the performance is tested under
varying data amounts.

Huge number of users. Too much users and too much data.

Load testing is performed to find out the upper limit of
the system or application.

Stress testing is performed to find the behavior of the
system under pressure.

The factor tested during load testing is performance.
The factor tested during stress testing is robustness and
stability.

Load testing determines the operating capacity of a
system or application.

Stress testing ensures the system security.

System Testing: Configuration
Testing

Configuration Testing is the type of software testing which verifies the performance
of the system under development against various combinations of software and
hardware to find out the best configuration under which the system can work
without any flaws or issues while matching its functional requirements.

Goals:
- To determine whether the software application fulfills the configurability
requirements.
- To identify the defects that were not efficiently found during different testing
processes.
- To determine an optimal configuration of the application under test.
- To do analyze of the performance of software application by changing the
hardware and software resources.
- To do analyze of the system efficiency based on the prioritization.
- To verify the degree of ease to how the bugs are reproducible irrespective of the
configuration changes.

System Testing: Usability /
Accessibility Testing

Accessibility Testing is the process of testing the degree of ease of use of a
software application for individuals with certain disabilities. It is performed to
ensure to that any new component can easily be accessible by physically
disabled individuals despite any respective handicaps.

Accessibility testing is part of the system testing process and is somehow
similar to usability testing. In the accessibility testing process, the tester uses
the system or component as it would be used by individuals with disabilities.
The individuals can have the disabilities like visual disability, hearing
disability, learning disability or non-functional organs.

Accessibility testing is a subset of usability testing where in the users under
consideration are specifically the people with disabilities. This testing focuses
to verify both usability and accessibility.

Acceptance Testing

Acceptance Testing

Acceptance Testing is a formal testing according to
user needs, requirements and business processes
conducted to determine whether a system satisfies the
acceptance criteria or not and to enable the users,
customers or other authorized entities to determine
whether to accept the system or not. Acceptance
Testing is the last phase of software testing performed
after System Testing and before making the system
available for actual use.

Acceptance Testing

Alpha Testing is used to determine the product in the
development testing environment by a specialized
testers team usually called alpha testers.

Beta Testing is used to assess the product by exposing
it to the real end-users, usually called beta testers in
their environment. Feedback is collected from the
users and the defects are fixed. Also, this helps in
enhancing the product to give a rich user experience.

Acceptance Testing: Alpha vs Beta

Alpha Testing Beta Testing

Alpha testing involves both the white box and black box
testing.

Beta testing commonly uses black box testing.

Alpha testing is performed by testers who are usually internal
employees of the organization.

Beta testing is performed by clients who are not part of the
organization.

Alpha testing is performed at developer’s site. Beta testing is performed at end-user of the product.

Alpha testing ensures the quality of the product before
forwarding to beta testing.

Beta testing also concentrates on the quality of the product but
collects users input on the product and ensures that the product
is ready for real time users.

Alpha testing requires a testing environment or a lab. Beta testing does not require a testing environment or lab.

Developers can immediately address the critical issues or fixes
in alpha testing.

Most of the issues or feedback collected from beta testing will
be implemented in future versions of the product.

Regression Testing

Regression Testing

- Regression testing is not a level of testing, but it is the
retesting of software that occurs when changes are made to
ensure that the new version of the software has retained the
capabilities of the old version and that no new defects have
been introduced due to the changes.

- Regression tests are especially important when multiple
software releases are developed.

- Sometimes the execution of all tests is not feasible so there
is the need to select a subset of those tests in order to reduce
the time for regression testing. Some techniques include:
selection, minimization, and prioritization of such test cases.

Regression Testing

When should we do regression testing?

- When a new functionality is added to the system and the code has been modified to absorb
and integrate that functionality with the existing code.

- When some defect has been identified in the software and the code is debugged to fix it.

- When the code is modified to optimize its working.

Advantages:
- It ensures that no new bugs have been introduced after adding new functionalities to the
system.
- As most of the test cases used in Regression Testing are selected from the existing test suite
and we already know their expected outputs. Hence, it can be easily automated by the
automated tools.
- It helps to maintain the quality of the source code.

Disadvantages:
- It can be time and resource consuming if automated tools are not used.
- It is required even after very small changes in the code.

Regression Testing vs Retesting

Regression Testing is a type of software testing, which
is used to verify that modifications in the software or
the environment have not caused any unintended
adverse side effect.

Retesting is done to make sure that a bug is fixed and/
or a failed functionality is working fine or not.

References

- I. Burnstein. Practical software testing a process-oriented
approach. (Chapter 6)
- P. Ammann, J. Offutt. Introduction to Software Testing. (Chapter
13)
- P. Jorgensen. Software Testing A Craftsman's Approach.
(Chapters 13 and 14)
- M. Pezze, M. Young. Software Testing and Analysis Process,
Principles and Techniques. (Chapters 21 and 22)
- S. Yoo, Mark Harman; Regression testing minimization, selection
and prioritization: a survey, 2012. https://doi.org/10.1002/stv.430
- Gordon Fraser and José Miguel Rojas; Software Testing, 2019.
ISBN 978-3-030-00262-6.

https://doi.org/10.1002/stv.430

