
September 23, 2022

Week #2 — Recitation #1

Software Testing,
Verification and Validation

Static Verification

Static Verification

Static Testing is a software testing technique which is used to
check faults in a software application without executing its
source code. It is concerned with the analysis of the static
system representation (source code, documents, models,
prototypes, etc.) to discover faults.

- Early detection of faults prior to test execution.

- Early warning about suspicious aspects of the code or design.

- Detecting dependencies and inconsistencies in software
models, such as links.

- Improved maintainability of code and design.

- Prevention of faults, if lessons are learned in development.

Static Verification

The two main types of static testing techniques are:

- Manual examinations: Manual examinations include
analysis of code done manually, also known
as Reviews.

- Automated analysis using tools: Automated
analysis are basically static analysis which is done
using tools.

Static Verification
Tools

What can static analysis do?

A form of automated testing:

- Check for violations of standards.

- Check for things which may be faulty.

- Can find unreachable code, undeclared variables, parameter type
mis-matches, uncalled functions, etc.

- Static analysis tools are scalable and generally require less time to
set up.

The objective of static analysis is to find faults in software source
code and software models. Static analysis is performed without
actually executing the software being examined by the tool. As with
reviews, static analysis finds faults rather than failures.

Types of Static Analysis Tools

- Lexical: Words, strings, and regexps.

- Syntactic: Tree of program structure.

- Control flow graph.

- Data flow graph.

Here are a few examples of well-know static analysis tools:

- [Checkstyle](https://checkstyle.sourceforge.io)

- [SpotBugs](https://spotbugs.github.io)

- [PMD](https://pmd.github.io)

- [Google's Error Prone](https://errorprone.info)

- [SourceMeter](https://www.sourcemeter.com)

- [Checkmarx](https://www.checkmarx.com)

https://checkstyle.sourceforge.io
https://spotbugs.github.io
https://pmd.github.io
https://errorprone.info
https://www.sourcemeter.com
https://www.checkmarx.com

False Positive / Negative

Many static analysis tools are based on heuristics which
may produce a large number of warning messages,
which need to be well managed to allow the most
effective use of the tool.

- Correct positive: Warning, and a true problem (👍 let’s fix
it!)

- Correct negative: No warning, no problem. (no action
required 😎)

- False positive: Warning, but not a problem (annoying 😡)

- False negative: Problem, but no warning (dangerous 💣)

Data flow analysis

Data-flow analysis is a technique for gathering information
about the possible set of values calculated at various points in a
computer program. In other words, study program’s variables.

x = y + z; // x is defined, y and z are used

if (a > b) { // a and b are used

 read(s); // s is defined

}

Data flow analysis

n = 0;

read(x);

n = 1; // anomaly: n is re-defined

 // without being used

Control flow analysis

In computer science, control-flow analysis (CFA) is a
static-code-analysis technique for determining the
control flow of a program. A control-flow graph (CFG) is
a representation, using graph notation, of all paths that
might be traversed through a program during its
execution.

Control flow analysis can check, e.g.,

- Infinite loops

- Unreachable code

(Code) Metrics

- Lines of code

- Complexity: number of if-statements per method

- Coupling: number of classes a class depend on

- Cohesion: correlation between variables and methods

- Nesting levels: relate to how deeply nested statements are
within other IF statements.

- Cyclomatic complexity is a software metric used to indicate
the complexity of a program, i.e., of a flow graph. It is a
quantitative measure of the number of linearly independent
paths through a program’s source code. The more complex
the flow graph, the greater the measure.

Demo

https://paginas.fe.up.pt/~jcmc/tvvs/2022-2023/recitations/recitation-1-jpacman.zip

1. Get the jpacman game's source code available in here,
https://paginas.fe.up.pt/~jcmc/tvvs/2022-2023/
recitations/recitation-1-jpacman.zip.

2. Unzip the given recitation-1-jpacman.zip file.

3. Open IntelliJ IDEA.

Point IntelliJ IDEA to the unzipped folder.

Search for the plugin, in this case, checkstyle

A new panel has been added to the editor

Either select Sun Checks
or Google Checks

Run the plugin

• Perform the exact same steps for the two other tools:

• PMD, https://pmd.github.io

• SpotBugs, https://spotbugs.github.io/index.html

https://pmd.github.io
https://spotbugs.github.io/index.html

