
An Approach to Teaching Computer Arithmetic
E.M. Garzón, I. García, J.J. Fernández

Dept. Arquitectura de Computadores y Electrónica
Universidad de Almería

E-mail:{ester,inma,jose}@ace.ual.es

Resumo
In this work we present an initiative to support teaching computer representation of numbers

(both integer and �oating point) as well as arithmetic in undergraduate courses in computer science
and engineering. Our approach is based upon a set of carefully designed practical exercises which
highlights the main properties and computational issues of the representation. In conjunction to
the exercises, an auxiliary computer-based environment constitutes a valuable support for students
to learn and understand the concepts involved. For integer representation, we have focused on the
standard format, the well known 2's complement. For �oating point representation, we have made
use of an intermediate format as an introduction to the IEEE 754 standard. Such an approach could
be included in an introductory course related to either computer structure, discrete mathematics
or numerical methods.

God made the integers, man made the rest.
L. Kronecker. German mathematician.

1 Introduction
Computational science is nowadays making it possible to solve grand-challenge problems thanks to
greatly improved computational techniques and powerful computers. Numerical computing is the basis
underlying computational science. Virtually, any technical, medical or scienti�c discipline relies heavily
on numerical computing. Scientists and engineers make intensive use of numerical methods and power-
ful computers to solve complex problems, which may range from the modeling of the microstructure
of the atom to building design [1].

Numerical computing is foremost based upon �oating point computation. However, computer
representation of integer numbers [2] is also involved since it is always implicit and it is essential for
almost any task in which the use of a computer is present. The most important computer representation
for integer numbers is the well known 2's complement, which constitutes the standard used in almost
every modern computer. The main issues related to that format, which any computer scientist or
engineer should be familiarized with, are the numeric ranges and how the arithmetic operations are
carried out. Such issues are learned in �rst-level courses in computer science and engineering, usually
making use of pencil-and-paper exercises as support.

Floating point computation [3] is undoubtedly of enormous importance in computational science.
Computers have supported �oating point computation since their earliest days, although using di�e-
rent representations developed by each computer manufacturer. However, in early 1980's, the fruitful
cooperation between academic computer scientists and the most important hardware manufacturers
allowed the establishment of a binary �oating point standard, commonly known as the IEEE 754 Floa-
ting Point Representation [4]. In essence, the standard aimed at (1) making �oating point arithmetic as
accurate as possible, within the constraints of �nite precision arithmetic; (2) producing consistent and
sensible outcomes in exceptional situations (e.g., over�ow, under�ow, in�nite, ...); (3) standardizing
�oating point operations across computer systems; and (4) providing the programmer with control over
exception handling (e.g. division by zero). Nowadays, most computers o�er this standard for �oating
point computation.

1



LEIC/Engenharia de Software

Due to the great importance of �oating point computation, computer scientists and engineers should
have an excellent knowledge of what a �nite �oating point representation and arithmetic involve and,
in particular, of the ubiquitous IEEE 754 standard. First of all, from the point of view of numerical
computing, computer scientists and engineers should be aware of extremely important issues such as,
for instance, precision, ranges or algebraic properties related to any �nite �oating point representation.
On the other hand, several aspects in the design of a computer system require a good knowledge on
�oating point. First, from the point of view of the computer architect, who has to deal with the design
of instruction sets including �oating point operations. Second, from the point of view of the compiler
and programming language design, in the sense that the semantics of the language has to be de�ned
precisely enough to prove statements about programs. Third, from the point of view of the operating
system (as far as exception handling concerns), in the sense that trap handlers may be de�ned by the
users/programmers to deal with the exceptions, according to the problem at hand.

The Joint IEEE Computer Society and ACM Task Force on Computing Curricula actually develops
curricular guidelines for undergraduate programs in di�erent computing disciplines [5]. Machine-level
representation of data has always been a core unit within the Computer Architecture and Organization
area in the introductory phase of the undergraduate curriculum, and tightly related to the Programming
Languages and Computational Science areas.

In spite of its enormous importance, �oating point representation still remains shrouded in mystery
by the average computer science or engineering student, and only well understood by experts. Several
initiatives have arisen in the nineties [6, 7, 8] and recently [10, 9] to make the �oating point arithmetic
accessible to the students. Some of them are focused directly on the IEEE �oating point standard[7,
9, 10], explaining the representation itself and all the issues involved in it. Others [6, 8] make use of
an intermediate �oating point representation so as to illustrate the main concepts. The works of [6]
and [10] also include exercises to clarify the concepts of precision and resolution involved in any �nite
�oating point representation. Finally, [10] provides a set of computer programs to show clearly what
the �oating point computation using the IEEE standard involves.

In this work, we present our own initiative to support the teaching of the computer representation
of numbers and arithmetic (both integer and �oating point), intended to be included in a �rst level
course for undergraduate computer science or engineering students. Our initiative combines (1) a set
of key practical exercises for both the integer and the �oating point cases, (2) the use of a supporting
environment consisting of a set of auxiliary computer programs, and (3) the use of intermediate �o-
ating point representations as an introduction to the IEEE standard, with the aim of facilitating the
illustration of all the computational issues involved in the 2's complement integer representation as well
as in any �oating point representation. Such an approach could be included in either a introductory
course related to computer structure, discrete mathematics or numerical methods.

2 Teaching Computer Representation and Arithmetic of Integers
The most extended computer representation format for integer numbers is the well known 2's comple-
ment. The range of the 2's complement integer representation using strings of p bits is [−2p−1, 2p−1−1].
This is a representation specially well suited from the point of view of the computer hardware, since
it does not require additional special hardware for integer subtraction. In order to illustrate all the
issues related to this representation, a complete set of carefully designed practical exercises have been
designed, supported by an auxiliary computer-based environment.

2.1 Representation of integer numbers.
The type of exercises in this category help the students to have experiences with the representation
itself, the range of numbers that is covered, and di�erent situations in which numbers do not �t ranges.
In that sense, the exercises that are proposed include (1) conversions of integer numbers between
decimal and 2's complement formats using di�erent word lengths, and vice versa; (2) calculation of
the minimum number of bits that are needed to represent given numbers; (3) determination of 2's
complement representation ranges for di�erent word lengths.

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 2 de 10



LEIC/Engenharia de Software

As an example of practical exercise, we ask students to do decimal-to-2's complement conversions
of given numbers and then feed the results into the reverse conversion, using our support environment.
As a result of such a �pipeline�, only those numbers that �t the corresponding representation ranges will
result in themselves. Students are then encouraged to think about the reasons underlying the di�erent
results. With this type of exercises, students experience, on their own, the limits of the representation
ranges and acquire skill to realize and deal with such situations in real life.

2.2 Integer arithmetic.
Exercises in this category mainly include the computation of integer arithmetic operations (addition,
subtraction, multiplication and division) using di�erent word lengths. This type of exercises and the
software that has been developed illustrate the algorithms used to carry out the integer arithmetic in
the hardware units. In addition, the understanding of exceptional situations derived from over�ow is
specially facilitated. Auxiliary programs have been included in the support environment to show in
detail the procedures of the integer addition and subtraction, and, specially, the Booth algorithm for
integer multiplication as well as the restoring and non-restoring algorithms for integer division. Such
procedures are shown by the software according to the notation used in [2]. For the particular case of
multiplication, our environment also a�ords the chance to show the procedure in a pencil-and-paper
format.

As an example of practical exercise related to integer arithmetic, we ask students to carry out
di�erent arithmetic operations with certain numbers and di�erent word lengths, using the support
environment. The numbers have been carefully chosen so that all possible situations occur, specially
related to over�ow. Figure 1 shows the output yielded by the support environment that describes the
procedure of the integer multiplication of −5 and +7 using a word length of 4 bits through the Booth
algorithm: The �rst column denotes the iteration of the algorithm; the second column represents
the register that supposedly contains the multiplicand; the third column indicates the action to do
in the corresponding step of the algorithm; �nally, last column represents the double-sized register
which initially contains the multiplier at its lower signi�cant half, and into which the result of the
multiplication is progressively computed and stored. The extra bit needed by the Booth algorithm is
the right-most one in the last column.

Multiplication (−5)× (+7)

multiplicand: −5 ≡ 10112

multiplier: +7 ≡ 01112

Iter Multiplicand Action Product-Multiplier

0 1011 Initial Values 0000 0111 0
1 1011 Prod=Prod - Multiplicand 0101 0111 0

1011 Right Shift 0010 1011 1

2 1011 No Operation 0010 1011 1
1011 Right Shift 0001 0101 1

3 1011 No Operation 0001 0101 1
1011 Right Shift 0000 1010 1

4 1011 Prod=Prod + Multiplicand 1011 1010 1
1011 Right Shift 1101 1101 0

Final Result: -35 ==> 11011101

Figura 1: Integer multiplication by means of the Booth algorithm. The operands −5 and +7 are
multiplied using a word length of 4 bits.

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 3 de 10



LEIC/Engenharia de Software

3 Teaching Floating Point Representation and Arithmetic
Any �oating point representation makes use of a exponential notation to represent real numbers, in
which any number is decomposed into mantissa or signi�cand and an exponent for a, normally, implicit
base. For instance, a nonzero real number is represented by

±m×BE , with 1 ≤ m < B

where m denotes the mantissa, E the exponent, and B the implicit base.
Any computer-based representation involves a �nite number of bits to represent the main �elds of

the �oating point representation, mantissa and exponent. Consequently, rounding techniques have to
be used for the real numerical value to �t the number of bits of the representation format. Therefore,
�oating point computation is by nature inexact. In the particular case of the IEEE 754 standard, the
single precision of the standard involves 32 bits, one bit for the sign, 23 bits are used for the mantissa
and the exponent is represented by 8 bits, using an implicit binary base. Double precision in the
standard makes use of 64 bits, 52 for the mantissa and 11 for the exponent.

Finite �oating point representation involves a considerable number of issues which any computer
scientist or engineer should be aware of. The most important issues derived from the use of such a
representation are:

• There exists an interesting trade-o� in terms of precision and range of the format. The number
of bits in the exponent and the mantissa de�nes the range and the precision, respectively.

• The gap between successive �oating point numbers of the representation varies along the real
numerical intervals. The gap is smaller as the magnitudes of the numbers themselves get smaller,
and bigger as the numbers get bigger.

• There is a relatively great gap between zero and the nearest non-zero �oating point number.
However, the use of denormalized numbers allows under�ow to be gradual, evenly �lling such a
gap. Denormalized numbers are denoted by a zero exponent �eld and an unnormalized mantissa,
assuming that the implicit bit is 0. In this way, the value of a denormalized number in the single
precision IEEE standard is given by:

Real value = (−1)s × (0.m)× 2−126

• The machine epsilon, εmach refers to the gap between 1.0 and the smallest �oating point number
greater than 1.0. It provides an idea of the accuracy of the �oating point operations: �oating
point values are accurate to within a factor of about 1 + εmach [10]. Except for denormalized
numbers, neighboring �oating point numbers di�er by one bit in the last bit of the mantissa, so
εmach = 2−nm . For the single precision IEEE standard, εmach = 2−23 ' 10−7.

• The zero number is represented by a string of zero bits.

• Rounding, truncating and cancellation errors as well as error accumulation are heavily involved
in the �oating point arithmetic,

• Special quantities (In�nite, Not-a-Number) are designed to handle exceptional situations.

• Trap handlers for exception handling are under control of the user/programmer.

• Floating point representation introduces serious anomalies with respect to the conventional alge-
bra, in the sense that some fundamental rules of arithmetic, such as the associative or distributive
properties, are no longer guaranteed.

We have developed a relatively simple �oating point representation format faithfully resembling all
the important issues in the IEEE 754 �oating point standard, with the aim of attenuating the relatively
tedious aspect of teaching these kind of issues. This format is based on a user-de�ned word length
so that the concepts related to precision and range is easily illustrated. The base format makes use

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 4 de 10



LEIC/Engenharia de Software

of 12 bits, 1 for sign, 5 for the exponent and 6 for the mantissa. Because the anomalies arising as
a result of a �nite �oating point representation are ampli�ed, the use of this base format allows to
easily show them, and therefore, facilitating the understanding by the student. Table 1 summarizes
the most important features of this representation. This shorter version of the IEEE standard 754
has a �ve-fold aim: (1) an easy identi�cation of the relationship between the real number and its
�oating point representation as well as the e�ects of the truncation/rounding in the conversion; (2)
a clear illustration of the concepts related to the range/precision trade-o�; (3) the understanding of
the algorithms underlying the �oating point arithmetic operations; (4) a clear identi�cation of which,
when and why anomalies arise in �nite precision �oating point computation (such anomalies include
the e�ects of rounding errors in arithmetic operations, the non-ful�llment of the properties of the
conventional algebra, and the exceptional situations); (5) the word length may be small enough to
allow calculations by-hand, if convenient.

Tabela 1: The Simpler Floating Point Representation

The most important features of the representation
Length of the representation: 12 bits:

sign: 1 bit
exponent: ne =5 bits
mantissa: nm =6 bits

Exponent Bias: 2ne−1 − 1 = 15 = 011112

Range of the exponent: [−14, 15]
Machine epsilon: εmach = 2−nm = 2−6

Supported rounding modes: Truncation , Round to Nearest
Denormalized numbers: Fully supported
Supported exceptions: Overflow, Underflow, Invalid,

Division by Zero

The most important (positive) special values
Special value Representation Value

Largest normalized: 0 11110 111111 +1.984375× 215

Smallest normalized: 0 00001 000000 +1.000000× 2−14

Largest denormal.: 0 00000 111111 +0.984375× 2−14

Smallest denormal.: 0 00000 000001 +0.015625× 2−14

+ Zero 0 00000 000000 +0.0
+ Infinite: 0 11111 000000 �-
Not-a-Number (NaN): 0 11111 111111 �-

In summary, the �oating point format proposed here is specially well suited for illustrating all
issues related to �nite precision �oating point representation, and in particular the IEEE standard
754. In that sense, a complete set of practical exercises have been thoroughly devised to highlight
such aspects. Some of the exercises are based on the aforementioned format, but many others work
on a general �oating point format, by specifying di�erent lengths for the exponent and mantissa �elds.
These practical exercises are accompanied by a computational environment that turns out to be an
excellent auxiliary tool, from the pedagogical point of view, to illustrate such not-so-trivial issues.

The practical exercises that have been devised fall into di�erent categories:

• The �rst category of exercises is intended to help students to learn the procedure to convert
a real number to its �oating point representation, analysing the e�ects of the rounding modes
in terms of the relative error. In that sense, the exercises deal with the determination of the
representation of di�erent real numbers with the simpler �oating point format (12 bits length),
using di�erent rounding techniques. Specially care has been taken to choose proper real values
to give rise special situations in the conversions (for example, the smallest normalized �oating
point number, the biggest �oating point number, the extreme values in the denormalized �oating
point range, etc).
Figure 2 shows some examples of representations, as reported by the computer program in charge
of the conversion. The �rst example was computed using truncation as the rounding mode,
resulting in that the real number 1.999 is represented as 1.984375. The second, which turns out
to be a denormalized number in this format, used round-to-nearest rounding mode. The third
and fourth are examples of values bringing about exceptions: 0.0000001 is too small and 65500.0

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 5 de 10



LEIC/Engenharia de Software

Real Number: 1.999000 = 1.999000e+00 = 0.999500 x 2^1
Representation: 0 01111 111111
Float. P. Value: 1.984375 = 1.984375e+00 = 1.984375 x 2^0

Real Number: 0.000040 = 4.000000e-05 = 0.655360 x 2^-14
Representation: 0 00000 101010
Float. P. Value: 0.000040 = 4.005432e-05 = 0.656250 x 2^-14

!! Denormalized Number !!

Real Number: 0.0000001 = 1.000000e-07 = 0.838861 x 2^-23
Representation: 0 00000 000000
Float. P. Value: 0.0000000 = 0.000000e+00 = 0.000000 x 2^0

! Exception: Underflow !

Real Number: 65500.000000 = 6.550000e+04 = 0.999451 x 2^16
Representation: 0 11111 000000
Float. P. Value: +Infinite

! Exception: Overflow !

Figura 2: Representation of certain values according to our �oating point format, using 5 and 6 bits
for exponent and mantissa, respectively.

is to big to be represented in the format. The output of the program shows the input real number,
the representation, and the value of the �oating point representation.

• The following group of exercises aims at facilitating the understanding of the concepts of precision,
range and the precision-range trade-o�. Exercises in this group include the following aspects:

� determination of the representation of di�erent real numbers using di�erent formats (i.e.,
varying bits for exponent and mantissa).

� determination of the gap between �oating point numbers in some intervals of di�erent re-
presentation formats.

� determination of the ranges covered for di�erent �oating point formats (including the sub-
range of denormalized numbers, and that of normalized numbers).

� computation of the minimum number of bits dedicated for the exponent and mantissa �-
elds to ful�ll certain given constraints, for example, to be able to distinguish between the
representations of two given real numbers very close to each other.

As an example, Figure 3 summarizes the process to work out the minimum number of bits
(in exponent and in mantissa �elds) required to distinguish the real numbers 15.9 and 15.925
and, at the same time, to represent the real number 100000. Students start working from the
simpler format, using ne = 5, nm = 6, and then they progressively increase the number of bits
in mantissa until 15.9 and 15.925 get distinguishable representations. In that �gure, it can be
seen that nm = 8 is the minimum number of bits required, which makes 15.9 and 15.925 get
represented as 15.875 and 15.90625, respectively. Then, students try to get the representation
of 100000 using the format just computed, obtaining an Over�ow exception. They progressively
increase the number of bits in the exponent �eld until 100000 gets representable. The �nal answer
is that the minimum format to ful�ll the requirements of the assignment is to use ne = 6, nm = 8.

• The following class of exercises is related to arithmetic, and is intended to help students to learn
the procedures to carry out the �oating point arithmetic operations. Exercises in this group are
mainly focused on the computation of �oating point additions, subtractions, multiplications and
divisions using di�erent pairs of operands, experiencing with the di�erent rounding modes, and
measuring the relative error of the results. The operands that are proposed are specially chosen
so that di�erent situations occur. Specially interesting is, for instance, the addition of pairs of
operands that are enormously di�erent in magnitude (for instance, our simpler format, using
ne = 5 and nm = 6, makes 1000.0 + 2.5 equal to 1000.0).
Figure 4 is intended to show the output of the program in charge of illustrating the process
of �oating point addition. As can be seen, the program speci�es in detail all the stages in the

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 6 de 10



LEIC/Engenharia de Software

Determination of the minimum number of bits
in mantissa field to distinguish 15.9 and 15.925

15.9 15.925
Floating Point Format Representation Representation

ne = 5, nm = 6 0 10010 111111 0 10010 111111
ne = 5, nm = 7 0 10010 1111110 0 10010 1111110
ne = 5, nm = 8 0 10010 11111100 0 10010 11111101
ne = 5, nm = 8 15.9→15.875 15.925 →15.90625

Determination of the minimum number of bits
to distinguish 15.9 and 15.925 and represent 100000

Real number: 100000
Floating Point Format Representation Value

ne = 5, nm = 8 0 11111 00000000 +In�nite
ne = 6, nm = 8 0 101111 10000110 99840.0

Figura 3: Procedure to determine the minimum �oating point format to ful�ll the requirements that
the real numbers 15.9 and 15.925 are distinguishable and that the real number 100000 is representable.
Top: the minimum mantissa length to distinguish 15.9 and 15.925 is worked out to be nm = 8. Bottom:
ne = 6 is the minimum exponent length required to represent 100000.

procedure of such an arithmetic operation: (1) conversion of operands to their representation; (2)
alignment of mantissas; (3) addition of mantissas; and �nally (4) the result of the normalization
and rounding. Such a program is extremely useful for students to discern all the issues concerning
the round-o� problems in arithmetic operations. This operation was performed using our simpler
�oating point representation (ne = 5, nm = 6).

Floating Point Addition 1.0 + 0.999, using 2 guard bits.
Format using: 5 bits/Exp. 6 bits/Mantissa; 2 Guard bits.

1.- Representation of operands.
s e m s e .m

Operand 1 -> 0 01111 000000 -> 0 01111 1.000000 = 1.000000
Operand 2 -> 0 01110 111111 -> 0 01110 1.111111 = 0.999000

2.- Alignment of operands.
s e .m g

Operand 1 -> 0 01111 1.000000 00
Operand 2 -> 0 01111 0.111111 10

3.- Addition of mantissas.
s e .m g

Operand 1 -> 0 01111 1.000000 00
Operand 2 -> 0 01111 0.111111 10
------------------------------------
Addition -> 0 01111 1.111111 10

4.- Normalization and Rounding of the result.

Result -> 0 10000 1.000000 = 2.000000

Result of the Addition: 0 10000 000000
Decimal Value: 2.000000 = 2.000000e+00 = 1.000000 x 2^1

Figura 4: Procedure and result of the �oating point addition of 1.0 and 0.999.

• This category deals with the algebraic anomalies that arise as a result of the �nite nature of the
�oating point representation. It is imperative that students have insights into the machinations
of �oating point arithmetic on computers and, in particular, into those anomalies, to succeed in
real life computation problems. So, exercises in this category include:

� analysis of the cancellation error that arises in the subtraction of two operands extremely
close to each other.

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 7 de 10



LEIC/Engenharia de Software

� practical exercises to show the e�ect of accumulation of rounding errors. For instance, mul-
tiplication of a given �oating point number by a integer constant by means of accumulated
sum of the former, using di�erent rounding modes. Students have to do a graph showing
the evolution of the relative error during the accumulated sum. Figure 5 shows the result
of the multiplication 1.999 × 10 as shown by the auxiliary programs. Here, the interme-
diate results from the accumulated sum are shown. On the left, the sums are carried out
using truncation. On the right, the round-to-nearest rounding mode is used. The last line
shows the �nal result of the multiplication. Clearly, the superiority of the round-to-nearest
rounding mode is evident. These results are rapidly generated using one of the programs
of our environment. Students have to analyze the results, and generate graphs of the error
evolution.

Multiplication 1.999× 10

Truncation Round to Nearest

Iter Representation Value Representation Value
------------------------------------- -----------------------------
1 -> 0 01111 111111 -> 1.99900 0 01111 111111 -> 1.99900
2 -> 0 10000 111111 -> 3.96875 0 10000 111111 -> 3.96875
3 -> 0 10001 011111 -> 5.93750 0 10001 011111 -> 5.93750
4 -> 0 10001 111110 -> 7.87500 0 10001 111111 -> 7.93750
5 -> 0 10010 001110 -> 9.75000 0 10010 001111 -> 9.87500
6 -> 0 10010 011101 -> 11.62500 0 10010 011111 -> 11.87500
7 -> 0 10010 101100 -> 13.50000 0 10010 101111 -> 13.87500
8 -> 0 10010 111011 -> 15.37500 0 10010 111111 -> 15.87500
9 -> 0 10011 000101 -> 17.25000 0 10011 000111 -> 17.75000
10 -> 0 10011 001100 -> 19.00000 0 10011 001111 -> 19.75000

Figura 5: Multiplication 1.999 × 10 by means of an accumulated sum. The simpler �oating point
representation has been used (5/6 bits for exponent/mantissa).

� practical exercises to show that some fundamental rules of the conventional algebra are not
ful�lled in �oating point computation:
∗ �oating point addition is not associative.
∗ �oating point multiplication is not associative.
∗ �oating point multiplication does not necessarily distribute over addition
∗ ordering of operations is signi�cant.
∗ the cancellation property is not always valid, i.e., there exist positive �oating point

numbers A, B, C such that A + B = A + C and B 6= C.
∗ multiplication of a �oating point number by its inverse is not always equal to 1.
∗ it is almost always wrong to ask whether two �oating point numbers are equal.

One of the most interesting examples of algebraic anomalies is related to the computation of
Harmonic series:

Hn = 1 + 1/2 + 1/3 + . . . + 1/n.

We use such a series to show how the ordering of operations may be extremely signi�cant. We
propose to compute the series, �rst, literally as in the formula and, second, in reverse order. The
results help students to learn that summing the smallest values �rst, progressively increasing in
magnitude, yields more accurate �nal results. Such an ordering avoids loosing the lowest precision
bits of the smallest quantities in summing with values very di�erent in magnitude. Figure 6 shows
the results generated by our software package. This exercise aims at highlighting the fact that the
ordering of �oating point operations may be signi�cant. On the left, the results for an ordering

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 8 de 10



LEIC/Engenharia de Software

according to the original formula. On the right, the results for the reverse ordering. The results
include the current term that is to be added in the series, and the intermediate value of the
accumulated sum.
On the other hand, such a series is mathematically proven to diverge. However, in �oating point
representations, the series converge due to the round-o� errors. We have also designed practical
exercises on that.

Computation of Harmonic series
∑10

n=1
1
n

∑1

n=10
1
n

Index Number Sum 1..N Number Sum N..1
----- --------------------------- ---------------------------
1 1/1 = 1.00000 1.000000 1/10 = 0.10000 0.100000
2 1/2 = 0.50000 1.500000 1/9 = 0.11111 0.210938
3 1/3 = 0.33333 1.828125 1/8 = 0.12500 0.335938
4 1/4 = 0.25000 2.062500 1/7 = 0.14286 0.476562
5 1/5 = 0.20000 2.250000 1/6 = 0.16667 0.640625
6 1/6 = 0.16667 2.406250 1/5 = 0.20000 0.843750
7 1/7 = 0.14286 2.562500 1/4 = 0.25000 1.093750
8 1/8 = 0.12500 2.687500 1/3 = 0.33333 1.421875
9 1/9 = 0.11111 2.812500 1/2 = 0.50000 1.921875
10 1/10 = 0.10000 2.906250 1/1 = 1.00000 2.937500

Figura 6: Computation of the Harmonic series with N = 10 using our simpler �oating point format (5
bits exp., 6 bits mantissa), and using di�erent orderings.

• The last category of exercises comprises those related to exceptions. Since the IEEE standard 754
allows exception handling to be under control of the user/programmer, it is extremely important
to familiarize students with the situations that produce exceptions, how to manage them, and
the �oating point values resulting from exceptions. The exercises in this category are mainly
intended to come exceptions into manifest:

� practical exercises to show that some arithmetic operations with, in principle, normal num-
bers may result in exceptions because the operation yields a result not representable in the
format. For instance, the multiplication of extremely small �oating point numbers may give
rise to an Under�ow exception, or the addition/multiplication of two big numbers may re-
sult in an Over�ow exception, etc. Two concrete examples are that 0.0009 ∗ 0.001 produces
an Under�ow exception and 1875 ∗ 35 brings about an Over�ow one, if our simpler format
(with ne = 5 and nm = 6) is used.

� computation of A +∞, A ∗∞, A/0, A/∞, etc, given a �oating point number A.
� computation of ∞+ 0, ∞+∞, ∞−∞, ∞∗ 0, ∞∗ (−∞), 0/0, ∞/∞, ∞/0, etc.

To conclude this section, we should mention that all the practical exercises that we have devised
are supported by the computer-based environment that will be described in the following section. The
programs in the environment are intended to provide answers and their justi�cations to all the questions
and exercises formulated in the assignments.

4 Conclusions
In this article we have described an approach to teaching computer representation of numbers and
arithmetic. This initiative mainly consists of a complete set of thoroughly designed practical exercises
conceived to emphasize all the important issues in �nite length computer arithmetic. A computational
environment that turns out to be a very valuable support tool for students to practice is also provided.
Our experience after several years of lecturing and teaching computer arithmetic in an introductory
course on computer organization in undergraduate computer science curricula allows us to claim the
success of this initiative.

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 9 de 10



LEIC/Engenharia de Software

As far as the integer representation is concerned, we have experienced that the use of carefully
designed practical exercises allows students to learn easily how the 2's complement represents the
integer numbers, and all the issues regarding range and word lengths. The algorithms and the computer
hardware involved in the integer arithmetic are also facilitated. In conjunction to the practical exercises,
the computer-based environment devised in this work provides students with a valuable support for
their learning.

From the pedagogical point of view, we have experienced that teaching �oating point representation
based upon a simple format which helps us illustrate all the issues in any �oating point representation
system is successful. We use this simple format as an introduction to the IEEE 754 �oating point
standard. Students feel more comfortable to deal with the IEEE standard once they are familiarized
with the simple format and all the computational issues involved. The use of a simpler format allows
all the singularities of �oating point representation to be highlighted and ampli�ed, and consequently,
students are more impressed by those e�ects.

In ultimate instance, this approach facilitates lecturers to achieve the goal as a academic sta� of
making students aware of the computational issues involved in �nite length number representation and
arithmetic. This approach may be valuable for introductory undergraduate courses related to compu-
ter organization, programming, discrete mathematics and numerical methods in computer science or
engineerings.

Acknowledgments
This work has been partially supported by the Spanish CICYT through grants TIC99-0361 and
TIC2002-00228.

Referências
[1] C.W. Ueberhuber Numerical Computation. Methods, Software, and Analysis, Vols. 1&2. Springer-

Verlag, 1997.

[2] D.A. Patterson and J.L. Hennessy. Computer Organization and Design. The Hardware/Software
Interface Morgan Kaufmann Pub., 1998.

[3] D.E. Knuth. The Art of Computer Programming, 3rd ed, volume 2, Seminumerical Algorithms.
Addison-Wesley, 1998.

[4] W. Kahan. IEEE Standard 754 for Binary Floating-Point Arithmetic. WWW document, 1996.
http://www.cs.berkeley.edu/ wkahan/ieee754status/ieee754.ps

[5] Curriculum 2001 Joint IEEE Computer Society/ACM Task Force. �Year 2001 Model Curricula for
Computing ((CC-2001),� Final report, December 15, 2001.

[6] T.J. Scott. �Mathematics and computer science at odds over real numbers,� ACM SIGCSE Bulletin,
23(1):130�139, 1991.

[7] D. Goldberg. �What every computer scientist should know about �oating-point arithmetic,� ACM
Comp. Surveys, 23:5�48, 1991.

[8] C.W. Steidley. �Floating point arithmetic basic exercises in mathematical reasoning for computer
science majors,� Computers in Education Journal, 2(4):1�6, 1992.

[9] W. Kahan. Ruminations on the design of �oating-point arithmetic. WWW document, 2000.
http://www.cs.nyu.edu/cs/faculty/overton/book/docs/)

[10] M.L. Overton. Numerical Computing and the IEEE Floating Point Standard. SIAM, 2001.

[11] S. Guelich, S. Gundavaram, G. Birznieks. CGI Programming on the World Wide Web. O'Reilly,
2000.

Grupo X, versão 1.0, 31 de Agosto de 2004 Página 10 de 10


