
Wiki Based Requirements Documentation of Generic Software Products

Clara Silveira 1, João Pascoal Faria 2,3, Ademar Aguiar 2,3, Raul Vidal 2
1Escola Superior Tecnologia Gestão do Instituto Politécnico da Guarda, Portugal

2 Faculdade de Engenharia da Universidade do Porto, Portugal
3INESC Porto, Portugal

{silveira, jpf, aaguiar, rmvidal}@fe.up.pt

Abstract

Organizations that develop generic software

products, such as ERP or CRM products, and
implement them in customers with varying needs, are
faced with the problem of relating each customer
requirements to the generic product requirements and
characteristics, in a way that accelerates product
implementation and supports product evolution
decisions. To help attain these goals, we present a
requirements documentation approach, comprising a
documentation model and a XML and Wiki-based
documentation infrastructure. The relationship above
mentioned is established mainly via configuration
parameters and associated configuration questions.
Variability in the requirements and characteristics of
the generic product is described based on the
configuration parameters. The requirements of each
implementation are described by answering the
configuration questions and, when needed, by
documenting variations to the base requirements and
characteristics. Linking and viewing facilities support
traceability analysis, instantiation of base
requirements and characteristics for actual parameter
values, and variability analysis among actual
implementations.

1. Introduction

Generic software products, intended to support the
business processes of organizations with varying
needs, such as Enterprise Resource Planning (ERP)
and Customer Relationship Management (CRM)
systems, are characterized by high modularity and
configurability. The customer can choose a subset of
modules according to his needs, conveniences or
budgets. Each module can be adapted to the customer's
specific needs, by configuration (e.g. by setting

configuration parameters) and, when needed, by
customization (customer specific developments).

The process of adapting a generic software product
to the specific needs of an individual customer, and
integrating it in the customer environment, is
sometimes called an implementation process, while the
process of building the product is called a development
process. Both the development and implementation
processes comprise requirements engineering (RE)
activities. RE at the product development level is
concerned with capturing the common and variable
requirements within the domain. RE at the product
implementation level is concerned with checking if the
product meets the customer needs, and determining the
configurations and customizations required.

When the development and implementation
processes are performed (or, at least, managed) by the
same organization, product implementation can be
accelerated and decisions about product evolution can
be better supported, if RE activities and artefacts at
both the product development and implementation
levels are closely related. Configuration choices
determined during the RE activities of an
implementation process are necessarily related to the
product scope and variability determined during the
RE activities of the development process. Such
relationship can be made explicit if the product
variability is described, from the beginning, as a
function of configuration parameters used in the
implementation process. This requires that the
configuration parameters are identified early, during
the RE activities of the development process.

The main contribution of this paper is a
requirements documentation approach, targeted for
organizations that want to manage in an integrated and
agile way the software requirements in the
development of generic software products and their
implementation in customers with varying needs. The
approach comprises a requirements documentation

model and a collaborative XML and Wiki-based
infrastructure, supporting:

(1) the structured documentation of requirements and
characteristics of the generic product, based on
templates, with variability defined as a function
of configuration parameters;

(2) the definition of the configuration parameters and
associated configuration questions;

(3) the documentation of the requirements of each
implementation, firstly, by answering the
configuration questions (black-box reuse), and,
secondly, by documenting variations and
extensions to the base requirements and
characteristics (white-box reuse);

(4) the integration of the previous artefacts,
supporting navigation, traceability, instantiation
of the base requirements and characteristics for
actual parameter values, and the analysis of
variability among actual implementations.

This approach is part of o more complete RE
process, for the development and implementation of
generic software products, to be described in [25].

The rest of the paper is organized as follows:
section 2 describes the requirements documentation
model proposed, independently of concrete tools and
platforms, section 3 describes the tool support, section
4 discusses related work, and section 5 presents some
conclusions and areas that deserve future work.

To illustrate the approach, a running example,
related to the management of marketing campaigns in a
CRM system, will be used along the paper. This
example comes from a re-documentation experiment
(of a real world product) that was conducted to
validate the approach.

2. Requirements documentation model

Figure 1 presents a top-level view of the

requirements documentation model proposed to
support, in an integrated way, the main RE concerns at
the product development and implementation levels.

A major concern at the product development level
is to capture the common and variable requirements
within the domain. In order to allow explicitly relating
the configuration choices determined at
implementation time with the product scope and
variability defined at development time, we propose
that variability is described, from the beginning, as a
function of configuration parameters used in the
implementation process. Starting from a list of high-
level requirements (P1), including variability

requirements (configurability requirements for black-
box reuse and customizability requirements for white-
box reuse), detailed product requirements and
characteristics can then be developed and described
(e.g. through use case and entity models) (P3),
expressing variability as a function of configuration
parameters defined at the same time (P2).

Figure 1. UML package diagram [12] showing the
main requirements documentation packages and

dependencies.

At the product implementation level, main concerns

are to check if the product meets the customer needs,
and to determine the configuration settings and
customizations required. If a configuration question is
prepared for each configuration parameter, the
configuration settings required can be conveniently
obtained by answering a configuration questionnaire
(P4). Usually, in order to meet customer needs,
customizations (custom specific developments) are
also required. In some cases, the product itself has to
be enhanced. In general, the customer needs that
cannot be satisfied by mere configuration, can be
satisfied by adding, removing or modifying features
from the base product, and can be described as variants
(additions, removals and modifications) to the base
product requirements and characteristics (P5).

Identifier Configuration
parameter

Configuration question Type of answer Options

QCRM1 Use segments Do you want to be able to use an existing segment single choice Yes, No

k

«trace» «trace»

Product implementation requirements

«derive »

High-level
requirements

Configuration
parameters

Detailed requirements
and characteristics

Configuration
settings

Variations to base
requirements and

characteristics

/ Instantiated requirements
and characteristics

Product development requirements

P1

P2 P3

P4 P5

P6

as the target of a marketing campaign?
QCRM2 Add contacts manually

to marketing campaigns
Do you want to be able to add contacts manually as
the target of a marketing campaign?

single choice Yes, No

QCRM3 Marketing channels From the following list, what marketing channels
do you want to use: e-mail, letter or sms?

multiple choice e-mail,
letter, sms

QCRM4 Additional contact
attributes

What additional attributes do you want to use to
describe a Contact?

user defined list name,
description

QCRM5 Campaign statuses What are the possible statuses of a marketing
campaign?

user defined list name,
description

Figure 2. Example definition of configuration parameters.

By applying the configuration settings and
variants to the base product requirements and
characteristics, a detailed, self-contained, description
of the product requirements and characteristics for a
specific implementation can be automatically derived
(P6). Information about actual product variability
(not shown in Figure 1), can also be automatically
derived.

The next sections describe with further detail the
packages shown in Figure 1, and give some concrete
examples. The definition of high-level requirements
is not addressed, because it follows a straightforward
structure.

2.1. Definition of configuration parameters

Figure 2 illustrates the definition of some
configuration parameters and associated
configuration questions for the running example
(management of marketing campaigns). Each
configuration parameter has a name, an identifier, a
corresponding question (to be answered in each
product implementation), a type (single choice,
multiple choice, user defined list, number, date, text,
etc.) and a list of options (interpreted according to the
type).

The configuration questions are to be answered in
the initial phases of each implementation process.
The configuration parameters are used in the
description of the product requirements and
characteristics (and defined at the same time), to
express variability.

Supporting tools should allow the definition of
configuration parameters based on templates or
forms, and should automatically provide navigation
links between the definition of each configuration
parameter and all the related artifacts, for forward
and backward traceability. To answer the
configuration questions, an appropriate questionnaire
should be presented automatically to the user, based
on the definitions provided.

Usually, configuration parameters are not fully
independent. Dependencies among configuration

parameters can be defined as configuration
constraints. Since each constraint relates multiple
parameters, constraints are better defined separately.
Figure 3 illustrates the definition of a configuration
constraint for the running example. Both a human
readable and a machine readable description are
provided. The machine readable descriptions should
be used to validate or guide the user answers to the
configuration questions.

Identifier Description Formula
CCCRM1 QCRM1 and QCRM2

cannot be both 'No'
QCRM1 = 'Yes' or
QCRM2 = 'Yes'

Figure 3. Example definition of a configuration
constraint.

2.2. Parameterized descriptions of product
requirements and characteristics

2.2.1. Parameterization mechanisms. In our
approach, the detailed descriptions of product
requirements and characteristics are parameterized by
the values of the configuration parameters. Two main
parameterization mechanisms are possible:
• substitution - a parameter reference in the middle

of the documentation is substituted by its actual
value in each product implementation;

• conditional inclusion (optional feature) - a part
of the documentation (describing some optional
feature) is tagged with a condition that
references one or more configuration parameters;
in each product implementation, that part of the
documentation is excluded if the condition is
false.

2.2.2. Use case descriptions. In general, functional
requirements can be conveniently described with use
cases [3]. In the case of a generic software product,
the concrete behavior of a use case may vary from
implementation to implementation. In our approach,
those variations should be described together (to
promote understanding), based primarily on the

values of the configuration parameters. Figure 4
presents an example template to describe a use case
at the product level, with variants based on the values
of the configuration parameters. Such use cases can
be called parameterized use cases, although the
parameters are not defined locally as in [2], but
globally. Our full approach accommodates both
global configuration parameters and local parameters,
but only global ones are of concern here.

Element Description
Identifier Unique use case identifier (e.g. module

identifier + sequence number).
Name Use case name (e.g. verb + nom).
Brief
description

A short description of the main purpose of
the use case.

Configuration
parameters

List of global configuration parameters
that affect the behavior and, in general,
any part of the description of this use case
(by substitution or conditional inclusion).

Actors List of primary and secondary actors that
interact with the system in this use case.

Inclusions List of use cases that are included by this
use case.

Extensions List of use cases that extend this use case,
together with the conditions under which
each extension applies.

Basic and
alternative
flows of events

Description of the basic flow of events
and the alternative flows of events, each
comprising a sequence of steps.

Pre and post-
conditions

Lists of pre-conditions and post-
conditions.

Entities List of domain entities manipulated by
this use case, with the manipulation
modes (Create, Retrieve, Update, Delete).

Figure 4. Example template to describe a
parameterized use case. Highlighted elements can

be conditional, based on the configuration
parameters.

Figure 5 shows a use case diagram for the running
example and Figure 6 shows a possible description of
the use case "Create Marketing Campaign".

Contact

Create M arketing Campaign

Add Contact

Create Segment
Campaign
Manager

Figure 5. Use case diagram for the running

example.

Element Description
Identifier UCCRM1
Name Create Marketing Campaign
Brief
description

This use case allows the definition of a
marketing campaign and its target
segment or set of customers.

Configuration
parameters

QCRM1, QCRM2, QCRM3

Actors Campaign Manager
Inclusions None
Extensions None
Basic and
alternative
flows of events

Basic flow:
1. The user inputs descriptive data of the

campaign.
2. The user selects the campaign target,

by one of the following methods:
2.1. [if QCRM1='Yes'] The user

selects the option “Use existing
Segment” and selects an existing
segment.

2.2. [if QCRM2='Yes'] The user
selects the option “Add contacts
manually” and selects the contacts
to be added to the campaign.

3. The user selects the marketing channel
from the available list (QCRM3).

4. The user confirms the input data.
5. The system saves the campaign data.

Pre and post-
conditions

Pre-conditions:
1. [if QCRM1='Yes'] The target segment

was created with "Create Segment".
2. [if QCRM2='Yes'] The target contacts

were created with "Add Contact".
Post-conditions:
1. A new campaign is registered in the

system.
Entities Campaign (Create),

[if QCRM1='Yes'] Segment (Retrieve),
Contact (Retrieve), Channel (Retrieve)

Figure 6. Example use case description.

2.2.3. Domain entity descriptions. In general,
information requirements can be captured in a
domain model comprising domain entities and their
attributes, relationships and constraints [5]. In the
case of a generic software product, the relevant
elements of the domain model may vary from
implementation to implementation. In our approach,
those variations should be described together (to
promote understanding), based primarily on the
values of the configuration parameters.

Figure 7 shows a simplified class diagram for the
running example, and Figure 8 shows a possible
description of the entity "Campaign", with variants
based on the values of configuration parameters.

Constraints on attribute values are also defined. Any
supertype, attribute or constraint can be conditional,
based on the values of the configuration parameters.

SelectionRule

Segment

0..*

1

0..*

1

Contact
0..* 0..*0..* 0..*

Channel Campaign 0..10..* 0..10..*

0..*

0..*

0..*

0..*

1..* 1..*1..* 1..*
segment

contacts

channels

Figure 7. Class diagram showing domain entities

and relationships for the running example.

Element Description
Identifier ECRM3
Name Campaign
Brief
description

Group of marketing actions directed
towards contacts (customers) through
communication channels.

Configuration
parameters

QCRM1, QCRM2, QCRM3, QCRM5

Attributes
(and
associations)

Condition Name Description
 name
 description
 startDate
 endDate
 status
QCRM1 =
'Yes'

segment target segment

QCRM2 =
'Yes'

contacts target contacts

 channels channels used
(subset of
QCRM3)

 ...

Constraints 1. EndDate > StartDate
2. status is in QCRM5

Figure 8 Example entity description.
2.3. Definition of configuration settings

Figure 9 illustrates a possible choice of
configuration settings for the running example.

In a practical implementation, the configuration
settings are obtained by answering a configuration
questionnaire produced automatically based on the
definitions of configuration parameters and
constraints.

Identifier Question Answer
QCRM1 Do you want to be able to use

an existing segment as the
target of a marketing
campaign?

No

QCRM2 Do you want to be able to add
contacts manually to a
marketing campaign?

Yes

QCRM3 From the following list, what
marketing channels do you
want to use: e-mail, letter, sms?

e-mail,
sms

QCRM4 What additional attributes do
you want to use to describe a
Contact?

nationality
language

QCRM5 What are the possible statuses
of a marketing campaign?

plan, run,
closed

Figure 9 Example configuration settings.

2.4. Definition of variants to the base product
requirements and characteristics

Customer needs that cannot be satisfied by mere
configuration, can be satisfied by adding, removing
or modifying features from the base product, and can
be described as variants (additions, removals and
modifications) to the base product requirements and
characteristics.

Additions and modifications can be described
using the same structure as the base requirements and
characteristics, with special tags to indicate where (in
the base documentation) they should be inserted or
what base element they should replace, respectively.

Removals from the base requirements and
characteristics can be described by indicating the
base element to be removed.

Figure 10 illustrates the definition of a variant for
a hypothetical implementation in the running
example. In this example, a post-condition is added.

Element Description
Identifier UCCRM1
Pre and post-
conditions

Post-conditions:
[Add] 2. An e-mail notification is sent to

the marketing department head.

Figure 10 Example description of a variant to
base requirements and characteristics.

2.5. Deriving instantiated descriptions of
product requirements and characteristics

Figure 11 illustrates the result of applying the
configuration settings of Figure 9 and the variants of
Figure 10 to the base product requirements and
characteristics described in Figure 6.

Element Description
Identifier UCCRM1
Name Create Marketing Campaign
Brief
description

This use case allows the definition of a
marketing campaign and its target
segment or set of customers.

Actors Campaign Manager
Inclusions None
Extensions None
Basic and
alternative
flows of events

Basic flow:
1. The user inputs descriptive data of the

campaign.
2. The user selects the campaign target,

by one of the following methods:
2.2. The user selects the option “Add

contacts manually” and selects the
contacts to be added to the
campaign.

3. The user selects the marketing channel
from the available list (e-mail, fax,
sms).

4. The user confirms the input data.
5. The system saves the campaign data.

Pre and post-
conditions

Pre-conditions:
2. The target contacts were created with

"Add Contact".
Post-conditions:
1. A new campaign is registered in the

system.
2. An e-mail notification is sent to the

marketing department head.
Entities Campaign (Create), Contact (Retrieve),

Channel (Retrieve)

Figure 11 Derived description of an instantiated
use case for the running example.

2.6. Deriving actual variability information

2.6.1. Actual variability information at the
configuration parameter/question level. This is a
derived view that shows, for each configuration
parameter, the actual values and frequencies that
occur in existing implementations. This information
is useful, for example, for product maintenance and
evolution.

2.6.2. Actual variability information at the
detailed requirements and characteristics level.
This is a derived view that shows the detailed
descriptions of product requirements and
characteristics, with the optional parts rendered or
annotated according to their frequency of inclusion in
actual implementations (see dimmed elements in
Figure 6). This information is also useful for product
maintenance and evolution.

3. Tool support

To support requirements documentation and
management in the development and implementation
of generic software products, according to the
documentation model and features presented in
section 2, it was used an existing XML and Wiki-
based software documentation tool - XSDoc [18].

In the next sections, after brief overviews of tools
used in traditional requirements documentation
approaches and of the XSDoc tool, we explain how
the most important features of our requirements
documentation model are supported by the XSDoc
tool with appropriate configurations and extensions,
some of which are the subject of ongoing work.

3.1. Tools used in traditional requirements
documentation approaches

Requirements are usually documented with the

help of a combination of tools: requirements
management tools, like IBM Rational RequisitePro,
to identify and describe lists of requirements;
modeling tools, like IBM Rational Rose, to model
requirements by UML or other diagrams; and word
processing tools, like Microsoft Word, to provide
supplementary descriptions and compose
requirements documents that can delivered to
stakeholders.

Requirements management tools are useful to
gather requirements, control changes and versions,
track status and maintain traceability links. Many
requirements management tools integrate with other
software engineering tools, including modeling tools
and word processing tools. Overviews and
comparative analysis of requirements management
tools can be found for example in [13, 14, 16, 17].

Requirements management tools can be classified
as database or document centric [17, 22]. Database-
centric tools store all requirements (including their
textual descriptions), attributes and traceability
information in a database. Requirements can be
imported from various sources, but they then reside
in the database. Some tools support links to external
files with supplementary information. Requirements
documents are essentially reports from the database.
By contrast, a document-centric tool treats a
document created using a word-processing tool as the
primary container for requirements. Selected
elements of the document are stored as discrete
requirements in the database and described with
additional attributes and traceability information. For

example, DOORS can be classified as database
centric, while RequisitePro can be classified as
document centric [22].

3.2. Collaborative approaches and the XSDoc
tool

Recently, software documentation approaches
based on WikiWikiWebs [19] are gaining popularity.
These approaches privilege collaborative working,
ease of change, accessibility, open formats and tools,
and reduced up-front investments, and support some
of the principals of agile methods for software
documentation [23, 24] and requirements engineering
[26, 27].

XSDoc [18] is an example of a software
documentation infrastructure developed along these
principles. XSDoc extends a traditional Wiki engine
with several features to facilitate the edition,
visualization, integration and validation of software
documentation contents of different kinds (free text,
XML documents, UML diagrams, source code, etc.).
The automatic linking mechanism originally
restricted to Wiki pages was enhanced to support also
linking and inlining of source code fragments, UML
diagrams, and structured contents, using simple
naming conventions (e.g. prefixes, suffixes, and
patterns). To enable content integration and
extensibility, all contents are stored internally in
XML format. For version control, XSDoc can access
repositories of version control systems. New content
types can be added using a plugin mechanism.
XSDoc can be used standalone, in a web-browser, or
integrated in an IDE such as Eclipse, via plugins. The
XSDoc architecture is illustrated in Figure 12.

Figure 12 XSDoc architecture.

3.3. Templates

The requirements documentation model presented
in section 2 defines templates for documenting use
cases (Figure 4), entities, configuration parameters,
configuration constraints, etc.

In XSDoc, a template can be defined as a
combination of a document schema definition (XSD),
a document formatter (XSL) and several exemplars
(XML). Documents created based on a template are
stored internally in XML format, and are rendered
using the corresponding XSL formatter.

Naming conventions can be used to automatically
associate Wiki documents, identified by Wiki names,
with existing templates. For example, all Wiki names
including "UseCase" can be associated with the
template "UseCaseTemplate".

Template based documents are currently edited
directly in XML. An open source solution is being
integrated into XSDoc to support document edition
by filling in a form that is created automatically
based on the XSD definition.

A set of templates have been created to support
the different types of documents described in section
2. These templates can be easily adapted, and other
templates can be easily created.

3.4. Parameterized documents

XSDoc is being extended to support the definition
of parameterized documents, with the
parameterization mechanisms described in section
2.2.1 (substitution and conditional inclusion).

Conditional inclusion is supported at the element
level. Any element in a XML document can be
annotated with an attribute condition that defines a
condition, based on the values of configuration
parameters, that indicates if the element should be
included or excluded.

Appendix A illustrates the definition of the XSD
part of a template for documenting parameterized use
cases (according to Figure 4). A XML representation
of the use case description of Figure 5, not included
for space limitation reasons, can be found in
www.fe.up.pt/~jpf/research/AWRE05/UCCRM1.xml.

3.5. Delta documents

An open source solution is being integrated in
XSDOC to support the definition of variants to base
documents via delta documents, using an approach
similar to the one presented in [20] and implemented
in [21]. A delta document is a XML document that

Contents
extraction

Creation Management Publishing Presentation

XSDoc infrastructure

Wiki
contents

external
contents

XSDoc
Configuration XML contents

repository

Converters
to XML

XSDocWiki

Java, C++,
and UML

editors

Contents
integration

Wiki,
HTML,
and PDF

files

Web
browser

XSDoc
plugin

for IDEs
Converters
from XML

defines changes to a base XML document at the
element level, as illustrated in Figure 13. The delta
document follows the same structure as the base
document, and the elements changed are annotated
with a special attribute (delta) that specifies the type
of change (add, delete or replace).

 <UseCase>
 <identifier> UCCRM1</identifier>
 <post_conditions>
 <post_condition number="2" delta="add">An e-
mail notification is sent to the marketing department
head.</post_condition>
 </post_conditions>
 </UseCase>

Figure 13. Definition of the variants of Figure 10

by a delta XML document.

Alternative approaches exist that define delta
documents as sequences of delta operations
(described as XML elements). We favor the approach
illustrated above for readability reasons.

3.6. Bidirectional navigation links

Navigation links for backward traceability
(navigate to referenced documents) are automatically
provided via Wiki references, as in any Wiki tool.

Navigation links for forward traceability
(navigate to referencing documents) are
automatically computed by the document viewer (see
section 3.8).

3.7. Dynamically derived templates

Configuration questionnaires will be supported by
dynamically derived templates that are being
introduced in XSDoc.

Based on the definition of the configuration
parameters and questions (as the ones illustrated in
Figure 2), a template will be dynamically created for
the corresponding configuration questionnaire (as the
one illustrated in Figure 9).

3.8. Advanced viewing facilities

XSDoc provides an advanced document viewer.

Besides the identifier (Wiki name) of the document
one wants to view, the document viewer is being
extended to accept additional optional parameters to:

• identify delta documents and parameter
settings to be applied to the base document;

• render conditional elements according to
their frequency of inclusion among a range of
parameter settings;

• show the list of documents that reference the
current document.

These parameters can be set on a per call basis, or
globally. For modularity reasons, these features are
implemented via specific formatters or transformers
that are applied in pipeline.

4. Related work

A main issue in the design of the requirements
documentation model is how to model requirements
variability. A similar issue also appears in the context
of the development of software product lines, which
has deserved a lot of research effort [10, 11].

The dominant approaches for modeling
requirements variability in the context of software
product lines are based on feature models. Feature
models capture commonalties and differences of
applications in a domain by means of feature trees
with common, alternative and optional features. For
example, the Feature-Oriented Reuse Method
(FORM) [6] extends the well-known Feature
Oriented Domain Analysis method [7] with a 4-
layered feature model (capability, operating
environment, domain technology, and
implementation technique layers) that is used to
develop reusable domain architectures and
components.

Approaches also exist to model variability
directly in more detailed requirements models,
namely use case and other UML models. There are
also proposals that combine feature and UML
models. For example, the FeatuRSEB method [8]
expands the use case driven RSEB method [9] with
an explicit feature model to provide a feature index
into common and variable use case, design and
implementation elements.

A different approach is proposed in the Variation
Point Model (VPM) [5]. Variation points are first
defined in the requirements view (as high-level
requirements for variability) and realized in design
views (component, static and dynamic views) of the
core assets. This approach allows modeling
variability, not only in scenarios where variants are
known in advance, but also in scenarios where
reusers may create their unique variants.

The main differences of our approach when
compared with the approaches described above are
the following:

• requirements variability is modeled directly in
the use case and entity models, and not in a
separate feature model (in our case, the feature
model is not needed for feature selection
purposes, because feature selection is achieved
by answering configuration questions);

• variability is defined as a function of the
configuration parameters that are used later in
product implementation (this allows instantiating
the detailed descriptions of product requirements
and characteristics for each implementation).

These differences are motivated by the specific
context we address in this paper: the development of
generic software products.

5. Conclusions and future work

It was presented a requirements documentation
approach, targeted for organizations that want to
manage in an integrated and agile way the software
requirements in the development of generic software
products (e.g. ERP or CRM products) and their
implementation in customers with varying needs.

The main aims of the approach are to accelerate
product implementation and to provide better support
for decisions about product evolution.

The approach comprises a requirements
documentation model and a XML and Wiki-based
documentation infrastructure (XSDoc). Product
requirements and characteristics, determined at
development time, and customer specific
requirements, determined at implementation time, are
explicitly related via configuration parameters and
associated configuration questions. Requirements are
structured based on customizable templates.
Variability is supported by parameterized documents
and delta documents. Advanced linking and viewing
facilities support traceability analysis, instantiation of
base requirements and characteristics for individual
implementations, and variability analysis among
actual implementations.

We are currently improving the tool support, as
explained in section 3, and plan to introduce and
experiment the approach in several product oriented
software development companies.

6. References

[1] A. Bertolino, A. Fantechi,S. Gnesi, G. Lami, and A.
Maccari, “Use Case Description of Requirements for
Product Lines”, REPL’02, September 2002, pp. 12-18.
[2] Alistair Cockburn, Writing Effective Use Cases,
Addison-Wesley, 2001.

[3] Kurt Bittner and Ian Spence, Use Case Modeling,
Addison-Wesley, 2003.
[4] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified
Software Development Process, Addison-Wesley
Longman, Inc., 1999.
[5] D. Webber and H. Gomaa, “Modeling Variability in
Software Product Lines with the Variation Point Model”,
Science of Computer Programming, Vol. 53, Nº 3, 2004,
pp. 305-331.
[6] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M.
Huh, “FORM: A feature-oriented reuse method with
domain-specific reference architecture”, Annals of Software
Engineering, Kluwer Academic Publishers, Dordrecht,
Holland, Vol. 5, 1998, pp. 143–168.
[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, Feature-Oriented Domain Analysis (FODA)
Feasibility Study, Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1990.
[8] M. Griss, J. Favaro, and M. Alessandro, “Integrating
Feature Modeling with RSEB”, 5th International
Conference on Software Reuse (ICSR-5), Victoria, Canada,
1998.
[9] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse:
Architecture, Process, Organization for Business Success,
ACM Press, Addison-Wesley, 1997.
[10] M. Griss, “Product-Line Architectures”; Component-
Based Software Engineering: Putting the Pieces Together;
Heineman, G. T.; Councill, W. T. (Eds.), Addison-Wesley,
2001, pp. 405-419.
[11] R. R. Lutz, “Extending the Product Family Approach
to Support Safe Reuse”, Journal of Systems and Software,
Vol. 53, Nº 3, 2000, pp. 207-217.
[12] “UML 2.0 Superstructure Specification”, OMG,
October 8, 2004, www.uml.org.
[13] "Requirements Management Tools Survey",
International Council on System Engineering
(Incose), www.paper-review.com/tools/rms/read.php.
[14] "Requirements Tools", Volere,
www.volere.co.uk/tools.htm.
[15] M. Hoffmann, N. Kühn, M. Weber and M.
Bittner, “Requirements for Requirements
Management Tools”, Proceedings of the 12th IEEE
International Requirements Engineering Conference
(RE’04), 2004.
[16] R. Wieringa and C. Ebert, “RE’03: Practical
Requirements Engineering Solutions”, IEEE
Software, Vol. 21, Nº 2, 2004, pp. 16-18.
[17] K. Wiegers, “Automating Requirements
Management”, Process Impact, 1999.
www.processimpact.com/articles/rm_tools.pdf.
[18] Ademar Aguiar, Gabriel David, Manuel Padilha,
"XSDoc: an Extensible Wiki-based Infrastructure for
Framework Documentation", VIII Jornadas de

Ingeniería del Software y Bases de Datos (JISBD
2003), 2003, pp. 11-24.
[19] Ward Cunningham, "The original wiki front
page", 1999, http://c2.com/cgi/wiki.
[20] Robin La Fontaine, "A Delta Format for XML:
Identifying Changes in XML Files and Representing
the Changes in XML", XML Europe 2001, 21-25
May 2001, Berlin, Germany.
[21] www.deltaxml.com
[22] Karl E. Wiegers, Software Requirements, 2nd
Edition, Microsoft Press, 2003
[23] Scott Ambler, "Agile documentation",
http://216.239.59.104/search?q=cache:gdjxR2caYOs
J:www.agilemodeling.com/essays/agileDocumentatio
n.htm+agile+documentation&hl=en.
[24] Andreas Rueping, "Agile documentation",
www.developerdotstar.com/mag/bookreviews/davis_
agiledocumentation.html.
[25] Clara Silveira, Reutilização de Requisitos no
Desenvolvimento e Adaptação de Produtos de
Software, PhD thesis, FEUP, Porto, Portugal, 2005
(to be published, in portuguese).
[26] A. Sillitti and G. Succi, "Requirements
Engineering for Agile Methods", Engineering and
Managing Software Requirements, A. Aurum and C.
Wohlin, eds., Berlin, Springer, 2005, pp. 309-325.
[27] K. Kolehmainen, “Agile Requirements
Engineering: Building tool support for XP”, VTT,
2003, www.vtt.fi/moose/docs/agile_re.pdf.
Appendix A - Example definition of a use
case template in XSD (schema view)

