
Sensor SelComp, a Smart Component for the
Industrial Sensor Cloud of the future

Luis Neto, João Reis, Ricardo Silva, Gil Gonçalves
{lcneto, jpcreis, rps, gil}@fe.up.pt

FEUP, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
ISR-P, Instituto de Sistemas e Robótica - Porto, Portugal

Abstract—Industrial Internet of Thing’s will pave the way for
Smart Manufacturing initiatives. Intelligence will be notices even
in fine grained devices, resulting in complex but at the same time
highly efficient manufacturing systems. The typical field worker
job will be replaced by machines and human intervention will be
shifted to supervision jobs. This work presents Sensor SelComp,
a Smart Component which will act in the factory shop-floor, cre-
ating the so called digital twin’s of machine’s by means of sensors
and exposing it’s functionalities as services. This component is
a building block of the SelSus project vision, whose aim is to
create and highly effective self-healing production environment.
This component eases the process of sensor integration and data
analysis by offering runtime reconfiguration and data processing
capabilities. Along this document it is shown that Sensor SelComp
can cope with tight industrial functional requirements and it’s
functionalities are described in detail.

Keywords–Smart Component; Industrial Sensor Cloud (ISC);
Industrial Wireless Sensor Network (IWSN); Software Reconfigura-
tion; Industrial Cyber Physical Systems(ICPS); Industrial Internet
of Thing’s (IIoT);

I. INTRODUCTION

The work presented in this paper is part of SelSus European
Project, whose objective is the development of a diagnostic and
prognosis environment [1], aware of the condition and history
of the machine components within a system or factory for
highly effective, self-healing production resources and systems
to maximize their performance over longer life times through
highly targeted and timely repair, renovation and upgrading.
Exploring Wireless Sensor Networks (WSNs) and Cloud Sys-
tems in Industry that ranges from sensor integration, sensor
data visualization, statistical processing and access, where
sensors, external to the process used for machine monitoring
were introduced at the shop-floor level, enabling self-aware
and self-healing production systems. This work focus on a
central piece of this architecture, the Sensor SelComp [2], a
smart component orchestrating WSN under SelSus Industrial
Sensor Cloud domain.

The nature of industrial environment, namely, shop floor
operation, has shaped the requirements of this solution in a
very specific way. There are some abstract concepts among
the IIoT (Industrial Internet of Thing’s), that can be applied to
industry in general [3]. Such is the case of division in layers
(perception, networking, service), adoption of SOA (Service
Oriented Architecture) concept’s and agreement on standards
for M2M (Machine to Machine) communication and service

interoperability. But when there is the need to tailor these
building blocks into something concrete and applicable in
real case scenarios, these techniques lacks detail and a lot of
unpredicted peculiarities interfere.

Economical, technological and operational differences
makes every smart factory implementation process unique.
Recurrent difficulties, such as the lack of common agreement
on service description language, leveraged to create a new
specification to suite the SelSus project needs. Another fun-
damental difference is the hardware used. A company can at
principle buy sensors from the same manufacturer, but new
requirements and the continuous offer of solutions in the
market, makes hardware in use to change. Older sensors are
maintained and new ones are introduced in the system. The
same happens with machines, software, processes, services and
so on. The Sensor SelComp solution is designed to cover some
of this issues that are inherent to the transient nature of the
smart factory environment.

There are three [4] frequent and common challenges in IoT
that are addressed in this work:

1) Currently WSN (Wireless Sensor Networks) are com-
posed of heterogeneous sensor nodes. This constraint
force developers to know low level details about
protocols used by the sensors they are trying to
integrate.

2) There is also a semantic gap between the proprietary
representation of low level data and the high level
needed to develop applications on top of the sensors.

3) Because of previous gap’s, a great effort is also
required to build high level applications. There is a
need to transform the control and functionalities of
sensor nodes in services for the high end developer
to use.

The rest of the paper is organized as follows: Section
II, dives into the Smart Component philosophy; Section III,
describes intrinsic characteristic of the Sensor SelComp im-
plementation; Section IV, reports some of the plugin’s built for
Sensor SelComp and tests made; Section V, results from the
previous section are discussed; Section VI, some conclusions
are drawn and future work is presented.

II. SENSOR SELCOMP

The Sensor SelComp technology inherits its main charac-
teristics from the Smart Component philosophy. This philoso-
phy is based in a consistent study of the Smart Manufacturing



initiative and it is being systematically refined and matured
by past and present European projects (XPress, IRamp3 and
SelSus). There are five essential characteristics to a Smart
Component:

• Reconfigurable and modular; the solution must be
capable of extend its capabilities by adding new soft-
ware modules and it must be capable of reconfigure
it’s internal operation in runtime.

• Data processing capabilities; system state assess-
ment, event detection and fault alarm requires data
processing capabilities.

• Omnidirectional communication and interface ca-
pabilities; omnidirectional means that the system must
be capable to talk with devices at a lower level (sen-
sors and machines), same level (other Smart Compo-
nent’s) and higher level (cloud servers, manufacturing
systems).

• Process events and take actions; this capability
provides the system with a certain degree of smartness
and autonomy. In case any event of interest, the system
must be capable of detecting it and take the proper
actions.

• Real-time acquisition, processing and delivering;
typically, field devices operate at variable real-time
scales, performing multiple tasks in a coordinated
way. Provide actions in real time is a vital factor for
industrial scenarios.

Due to previous characteristics, such a system must adopt
the ontology from the environment that surrounds it. This
characteristic makes the Smart Component fully adaptable and
ready to integrate in any manufacturing system. The ontology
of the SelSus System, it is characteristic, that in practice,
converts a Smart Component into a Sensor SelComp. By
adopting the ontology defined in the project (SelComp Self
Description and Data Payload), SelComp is capable to interact
with any actor within the SelSus environment.

It is also necessary to urge the increasingly importance
to develop components that are embeddable into advanced
production environments. Such is the case of Industrial Cloud
Computing (ICC) and Industrial Cyber Physical Systems
(ICPS). The proposed solution was designed with this necessity
in mind, some benefits of such approach are pointed next.
Some advantages of support such technologies summarized
in [5] are: 1) physical hardware and software used in the fac-
tory can be intelligently perceived, therefore, the information
collected can be correctly processed and used in the whole
life-cycle of production. 2) Cloud Computing applications
can work over large quantities of data enabling production-
related & product-related services [6] and even more advanced
business models [7]; 3) smart logistics of both machine and
human labour as well the energy spent.

The Smart Component is able to span vertically over the
four-layered architecture proposed [3] for IIoT, at the same
time, cooperating horizontally at each layer of abstraction
(Fig. 1).

Sensor SelComp transforms heterogeneous devices in com-
patible services, any application or device in the network
can use any possible combination of services. In [8] a
middleware component, DREAMS, features some interesting

Figure 1: Sensor SelComp layers of interaction.

characteristics. The component have a Module Pool with a
clever organization of modules, identified by characteristics
such as the amount of memory and energy they consume. A
reconfigurable smart sensor module is presented in [9]. This
component implements the IEEE1451.2 1 standard. It defines a
smart transducer with reconfiguration capabilities to interface
sensors and actuators.

III. IMPLEMENTATION

A. SelSus System Interfacing
In a traditional Service Oriented Architecture (SOA) there

are three fundamental parties [10]: service provider, consumer
and broker. In the SelSus system, every node is both a
consumer, provider and broker, the system itself was designed
to run free of fixed service registry. In the chosen approach,
each node must describe its services and ask for other’s service
descriptions. This mesh style approach to SOA requires that
every node share the same ontology, independently of the kind
of hardware that is being abstracted. Beyond a common service
description, connectivity requirements of ICPS [11] (real-time
data acquisition and feedback, intelligent data management,
Plug& Play), leveraged the adoption of a common data pay-
load format. The advantages of such are mostly reflected in

1IEEE1451 standard: http://ieee1451.nist.gov/senoct11-2col.pdf

Figure 2: Sensor SelComp architecture.



Plug & Play and consequently in the Sensor SelComp and
SelSus System reconfiguration.

B. Internal Structure
A Sensor SelComp can receive sensor data from distinct

physical devices and application protocols. That data can
be treated by different algorithms, which are encapsulated
in modules. Once instantiated, these act as services which
subscribe and publish data. Any active instance of sensors,
data treatment modules and SelSus System devices (Sensor
Cloud, other SelComp’s and HMI device’s) can be combined
in a way that can be represented as a graph (Fig. 3).

Figure 3: Internal Sensor SelComp configuration.

The Sensor SelComp internal logic arrangement, is rep-
resented using a directed acyclic graph (DAG). The graph
structure in Fig. 3, which represents the internal flow of
information within Sensor SelComp. It can be divided into
three levels, each with a different label and colour assignment:
the Sensor Level includes sensor instances (bottom level),
providing data to the gateway; the data treatment level (middle
level), includes nodes representing instances of algorithms
embedded at the gateway that can treat information in several
ways (eg: aggregate data using mean or other functions,
perform trend analysis); the Network Level (top level) includes
nodes where the flow resulting from the lower level nodes can
be redirected to subscribing hosts in the network. Each edge
of the graph has a buffer that can be adjusted in size. When a
certain buffer reaches its size, the whole content will be sent
to the subscribing nodes. Adjustment in buffer size allows to
select the number of samples and also to synchronize time
differences between sensors; which can be useful if data from
two sensors with discrepant sampling frequencies is needed
at the same time. This internal structure can be dynamically
rearranged in runtime: new sensors and data modules can be
loaded into the Smart Node; the connections between nodes
can be reformulated to synchronize and treat data in new ways.

C. Dynamic Modular Software Reconfiguration (DMSR)
The Dynamic Modular Software Reconfiguration is the

proposed solution embedded in the Sensor SelComp to be
highly reconfigurable and to quickly adapt industrial demands.
Therefore, it must provide consistent mechanisms to config-
ure, deploy and dynamically reconfigure the Sensor SelComp
source code responsible for data processing, which traduces
in a component-based middleware. It is component-based
because each piece of software that can be reconfigured at

the Sensor SelComp level is seen as a component that can be
easily updated or exchanged.

In software engineering the terms Modular Software and
Software Component are the most approximate topics to
what we refer as Reconfigurable Software. Component reuse,
reduction of the production cost, reconfiguration in runtime,
short time to market and systematic approach to the system
construction are some of the key benefits of using a component
model. Component models can be divided in two categories:
1) as in object-oriented programming, components are objects;
2) components represent units in software architectures. A
generally accepted view of a software component is that
it is a software unit with provided services and required
services.” [12]

In the proposed solution two component model approaches
are offered to provide an even better flexibility. At the system
level there is the possibility to extend the Sensor SelComp
building blocks with plugins. At data processing level, there
is the possibility to add new data treatment and processing
modules to the Sensor SelComp to use. There are two ways to
develop data treatment modules: 1) develop code in Java using
the defined interfaces; 2) develop code in C#, Java or C++
and use the SelSus Cloud to convert the code in a JavaScript
module file. In both ways, the SelSus Sensor Cloud uploads the
modules to the Sensor SelComp, which maintains the modules
in the local file-system Figure 2.

A SelComp internal logic arrangement is represented us-
ing a directed acyclic graph (DAG). The graph structure in
Figure 3 can be divided in three levels, each with a different
label and color assignment: the Sensor Level includes sensor
instances (bottom level), providing data to the gateway; the
data treatment level (middle level), includes nodes representing
instances of algorithms embedded at the gateway that can
treat information in several ways (e.g. aggregate and validate
data using techniques such as control charts, perform trend
analysis, etc.); the Network Level (top level) includes nodes
where the flow resulting from the lower level nodes can be
redirected to subscribing hosts in the network (e.g. Sensor
Cloud, industrial machines). This internal structure can be
dynamically rearranged in runtime using the Sensor Cloud,
where new sensors and data modules can be loaded and
therefore, the connections between nodes can be reformulated
to synchronize and treat data in new ways.

1) Data Processing Modules: To increase the system flex-
ibility, the Data Processing unit was designed to run Java and
JS modules. The Java approach still mandatory when exists the
necessity to use system level API’s and higher data processing
speeds. Nevertheless, the Rhino JS Engine2 engine used has the
capability to load JAR API’s. The life-cycle requires different
approaches in both cases:

• JS modules: These modules can be developed directly
in JS or using C, C++, C# or Java. The developer
has to implement a prototype function which will be
invoked in runtime. The JSIL compiler [13], installed
in the Sensor Cloud, converts the code in JS and
uploads it to the chosen Sensor SelComp. Once the
Nort Gate detects a new module, it is stored in the
local file-system and a new Rhino engine instance
compiles the new file.

2https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino



• Java modules: Must implement the data processing
abstract interface and be identified with Name, Version
and Type String fields. The modules are also sent to the
desired SelComp by the Sensor Cloud. Via reflection,
.class files are catalogued using the three key fields so
later they can be instantiated using the same strategy.

In both chases there are two validation steps that guarantee
the correct type when interfacing any two modules. The first
step is performed in the Sensor Cloud; the user must prompt
some information about the modules and the input and output
types as well. The Sensor Cloud does not issue reconfiguration
processes unless all input and output types of connected
modules are compatible.

2) Sensor SelComp Plugins: The constant appearing of
new IoT hardware solutions and the lack of standards to
integrate them justified an extra effort to make the SelComp
software capabilities extensible. Sensor Cloud hosts and main-
tains the plugins in a central repository. In the SelComp,
plugins are maintained in the local file-system, the deployment
and life-cycle processes of a certain plugin are controlled
by Sensor Cloud. All plugin implementations provide start,
stop and restart functions. In this context, a plugin can be a
piece of software to drive hardware and also purely software
components. The diagram of Figure 4 shows the present
plugins that can be used to acquire and send sensor data. The
blocks in grey represent plugins that are being developed to
extend the functionalities of Smart Component.

Figure 4: Sensor SelComp Stack.

D. Sensor Integration
The aim of the South Gate module was to be as most

expandable as possible. By expandable, it is intended that the
component should be able to work at least at three levels
of abstraction: 1) to embed new communication protocols;
2) to incorporate proprietary driver software, wrapped by the
plugin interface; 3) to directly connect sensors by wire, using
the embedded platform libraries. In addition, a flexible sensor
integration methodology was developed as a plugin. This
component listens to all free serial ports to find a data input.
Once a data source is found, it buffers the input and tries to
parse it using a list of available XML files in the local file-
system. These XML files describe the fields of a data packet.

IV. TESTING

The modules developed for sensor integration described in
this section can be better perceived by analysing Figure 4.
The blocks filled in grey are plugins that will be developed
as future work. All the other blocks form a flexible solution,

which can cope with the majority of the scenarios in which
IIoT plays a fundamental role.

This section describes briefly the different blocks imple-
mented and relies on design considerations for industrial IoT
applications (”From the technology perspective, the design
of an IoT architecture needs to consider extensibility, scal-
ability, modularity, and interoperability among heterogeneous
devices.”) [3] to provide the tests needed to proof the Smart
Component robustness. The testing process was split according
with two major considerations. One off the major issues was
to verify if the solution was able to scale, using a reasonable
number of nodes (Subsection IV-2). Due to the time scale
requirements in industry operation, the solution was tested to
a reasonable frequency of operation (Subsection IV-5).

1) Spectrometer: One of the issues of using a Java ap-
proach, is the abstraction level, which can be both a barrier
considering low level at which sensor driver solutions are
implemented and the loss in performance. To mitigate these
issues a solution based in IEEE1451 is being designed. In
the current state of development, a provisional solution was
adopted. Using Java Native Interface (JNI), a solution was
developed to communicate with a Dynamic Link Library (DLL)
from the spectrometer sensor manufacturer. The SelComp was
able to fetch and treat 54000 data points sampling per 1Hz.

2) Motes: Motes are programmable boards which embeds
a set of sensors, typically have Radio Frequency (RF) com-
munication capabilities and there are proprietary and open
source solutions. Solutions for both proprietary (Libelium
Waspmote V1.2 3) and open source (MTM-CM5000 (TelosB
generic) 4) were developed and tested. The proprietary drivers
and software libraries are used to build up plugins to integrate
these devices. Such is the case of Tmote, Libelium, Mica2.
All of the above mentioned devices were integrated in such a
way that they can have a variable number of sensors. These
boards provide a fixed number of sensors, anyway, the number
of sensors in the board can be increased or reduced. This
changes cause the messages being sent to vary in size. The
plugins developed have the capability of report values from
all the sensors, even in case they change in number.

TABLE I: SCALABILITY RESULTS

For scalability testing, a scenario featuring 10 MTM-
CM5000 motes was set. The Sensor SelComp was configured
to receive data of two sensors (Invisible and Visible Light),
from the 10 motes, sampling at 2Hz each. Two tests were
performed: in the first one, the sensor data was sent in raw
format, representing 20 nodes in the internal structure; in the
second one, the flow of data from each sensor was treated

3Waspmote V1.2 datasheet: http://www.libelium.com/downloads/
documentation/v12/waspmote datasheet.pdf

4MTM-CM5000 features: http://www.advanticsys.com/shop/
mtmcm5000msp-p-14.html



using a data normalization JS module, representing 30 nodes
in the internal structure.

3) UPnP: As a stack of protocols, UPnP (Universal
Plug&Play) offers a set of advantages that regards a lot of the
necessities exposed throughout the document. The necessity
of interconnect devices, which can share services with the
minimum effort from the users to do configurations has been
the principal motivation behind this architecture protocol. This
architecture was introduced by Microsoft with a ”connected
home” aim, currently is maintained by the Open Connectivity
Foundation5. This protocol is independent from the physical
platform, supports zero configuration in lack of DNS servers
and promotes device connectivity allowing devices to discover
each one services, subscription of events and control. An
UPnP plugin was developed to benefit from: 1) Sensor Cloud
communication alternative; 2) sensor interfacing; 3) inter-
SelComp communication.

4) ZeroMQ: Modern messaging protocols are becoming
popular [14] options for IoT. Its lightweight implementations
and multiple architectural possibilities make them suitable
for a variety of applications, such as industrial internet so-
lutions [15]. For these reasons, and also to test sensor data
acquisition in the SelSus Project using this technology, a
ZeroMQ plugin was developed. The Dealer to Dealer Request-
Reply combination6 was implemented.

5) Serial Port Interface: Given the requirements of solu-
tions oriented to industrial application, the best way to acquire
real time data is by wiring sensors directly to the Smart
Component. The protocols used are shown below the GPIO
(general purpose input/output) block in Figure 4. To perform
tests, a thermocouple sensor was attached by wire to the Smart
Component. Using the Serial Peripheral Interface (SPI) plugin,
the sensor was integrated; the plugin also provides acquisition
frequency control. By increasing the sampling frequency, the
throughput of the Smart Component was measured, with
and without data treatment modules in the data flow. The
wired sensor interfacing was chosen to test the solution in
terms of throughput because is the most suitable way to test
with high input acquisition rates. The tests were performed
in a Raspberry Pi 2 platform, running Raspbian Linux and
using a single MAX31855 thermocouple sensor. The complete
SelComp experiment set-up was connected to the Sensor Cloud
through Ethernet cable.

Essentially two metrics was used to evaluate the reliability
of the solution, throughput capacity (Table II) and reconfig-
uration speed (Table III). There are three variables that have
the most impact in the results obtained: 1) the number of data
treatment nodes in a data flow of a sensor; 2) the acquisition
frequency of the sensor; 3) the sizes of buffers in each edge
of the graph (Figure 3).

Each individual test reported in Table II was run for 60
minutes. For each of the tested frequencies, the SelComp was
tested with data treatment nodes during at least 24 hours to
ensure that in a continuous processing the solution would not
fail. As reported in subsection III-C1, it is possible to run data
processing modules written in Java or JS. The modules used in
the tests were written in JS, which is the option with heaviest
processing requirements. The buffer which varies in the tests,

5UPnP Protocol: https://openconnectivity.org/
6ZeroMQ manual: http://zguide.zeromq.org/page:all

is the one associated to edge between the sensor node and the
node after. Varying this buffer allows to establish a trade-off
between sending data to cloud at higher rates and send few
packets with more data.

TABLE III: RECONFIGURATION RESULTS

Reconfiguration process, in the worst case, requires two
operations. The results in Table III were collected for the worst
case, which involves transfer of modules to Sensor SelComp.
If any module required by the reconfiguration process is not
present locally, Sensor Cloud first transfers the module, and
secondly, it sends a reconfiguration message.

V. DISCUSSION

Regarding the results, a loss of throughput when applying
processing to data can be perceived in Table II. The number
of packets transmitted it is reduced by the double each time
a processing node is added to the data flow. The throughput
difference can be explained by taking in account that the
minimum buffer value for any edge is 2. The reason is that
for any processing operation, it is safer to provide at least
two values to the function treating data. If there is the need
to perform an operation with multiple values, it is always
guaranteed that the processing will not fail. This means that
if the buffer size was 1, the impact in throughput results
would be minimal and the solution would be able to deliver
at high rates to Sensor Cloud. In terms of reconfiguration,
the speed of operation is shown to slow when sampling data
at higher rates. Despite this fact, time results obtained are
adequate to the kind of operation being performed, since the
reconfiguration process runs smoothly even in high frequency
data collection. Regarding the quality and quantity of data,
there is a trade-off by varying the buffer size in the sensor
edge. In a situation which requires that data reaches the Sensor
Cloud at higher rates, a small buffer value provides an adequate
response, although it is uncommon to send data to Cloud at
those speeds. At small frequencies, the quantity of sensor data
is the same, however, total number of bytes transmitted is
far less in this case. This can be of the higher importance
if we consider a network were multiple Sensor SelComp’s,
machines and other devices are flooding the network with
information. In terms of throughput, it can be verified that
the impact caused by the size of the buffer is smaller when
the number of nodes increases. If there are no data treatment
nodes, the number of packets sent is always at least the double
when we use the smaller buffer size. When two data treatment
nodes are used, for the same sampling frequency, the number



TABLE II: THROUGHPUT RESULTS

of packets sent is much more similar than when compared
with the same frequency without data treatment. In terms of
scalability (Table I), the solution shows a linear behaviour in
comparison with throughput results. The number of nodes can
be considered few, but these results were obtained using real
hardware available and running continuously for 24h, which
proves the scalability.

VI. CONCLUSION AND FUTURE WORK

Additionally to the testing, this solution was also deployed
in the demonstrators of the SelSus project and proved that it
can offer the it’s core functionalities (reconfiguration and easy
sensor integration capabilities) under real operation scenarios.
One drawback of this solution is that it requires development
of new modules to adapt to new situations. But once the plug-
ins are developed, they are reusable and this compensates the
effort in develop new software. To take advantage of this re-
usability, a distributed repository of plug-ins can be created,
and this way, the community can share solutions. A priority
in future work will be the focusing in industrial protocols and
standards for plug-in development. In Figure 4, are identified
two plug-ins which represent a concern step into industrial
environment. The IEEE 1451 plug-in, for automatic sensor
information retrieval, will eliminate much of the effort creating
new sensor plug-ins by automatically filling in sensor informa-
tion and properties. Regarding wired sensor integration, CAN
protocol is widely used in industrial environments and will
be a priority regarding plug-in development. Considering the
end user control interface in Figure 1, as well as the compo-
nent model developed to create new modules (Section III-C),
standards exist [16] and they will be investigated as current
H2020 European Projects for Smart Industry [17] initiatives
are pointing out in that direction.

ACKNOWLEDGMENT

SelSus EU Project (FoF.NMP.2013-8) Health Monitoring
and Life-Long Capability Management for SELf-SUStaining
Manufacturing Systems funded by the European Commission
under the Seventh Framework Programme for Research and
Technological Development.

STRIDE Smart Cyber-physical, Mathematical, Compu-
tation and Power Engineering Research for Disruptive Inno-
vation in Production, Mobility, Health, and Ocean Systems
and Technologies - funded by program N2020 (2016-2020)
supported partially by FEDER.

REFERENCES
[1] M. S. Sayed, N. Lohse, N. Sondberg-Jeppesen, and A. L. Madsen,

“Selsus: Towards a reference architecture for diagnostics and predictive
maintenance using smart manufacturing devices,” 2015.

[2] L. Neto, J. Reis, D. Guimarães, and G. Gonçalves, “Sensor cloud:
Smartcomponent framework for reconfigurable diagnostics in intelligent
manufacturing environments,” in 2015 IEEE 13th international confer-
ence on industrial informatics (INDIN). IEEE, 2015, pp. 1706–1711.

[3] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, 2014, pp.
2233–2243.

[4] F. C. Delicato, P. F. Pires, L. Pirmez, and T. Batista, “Wireless sensor
networks as a service,” in Engineering of Computer Based Systems
(ECBS), 2010 17th IEEE International Conference and Workshops on.
IEEE, 2010, pp. 410–417.

[5] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, and B. H. Li, “Cciot-cmfg: cloud
computing and internet of things-based cloud manufacturing service
system,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2,
2014, pp. 1435–1442.

[6] G. Allmendinger and R. Lombreglia, “Four strategies for the age of
smart services,” Harvard business review, vol. 83, no. 10, 2005, p. 131.

[7] D. Wu, D. W. Rosen, L. Wang, and D. Schaefer, “Cloud-based design
and manufacturing: A new paradigm in digital manufacturing and design
innovation,” Computer-Aided Design, vol. 59, 2015, pp. 1–14.

[8] A. El Kouche, L. Al-Awami, and H. Hassanein, “Dynamically reconfig-
urable energy aware modular software (dreams) architecture for wsns
in industrial environments,” Procedia Computer Science, vol. 5, 2011,
pp. 264–271.

[9] Q. Chi, H. Yan, C. Zhang, Z. Pang, and L. Da Xu, “A reconfigurable
smart sensor interface for industrial wsn in iot environment,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2, 2014, pp. 1417–
1425.

[10] A. Arsanjani, “Service-oriented modeling and architecture,” IBM de-
veloper works, 2004, pp. 1–15.

[11] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, 2015, pp. 18–23.

[12] K.-K. Lau and Z. Wang, “A survey of software component models,”
in in Software Engineering and Advanced Applications. 2005. 31 st
EUROMICRO Conference: IEEE Computer Socity. Citeseer, 2005.

[13] K. Gadd. Jsil compiler. [Online]. Available: http://jsil.org/ (2016)
[14] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight internet proto-

cols for web enablement of sensors using constrained gateway devices,”
in Computing, Networking and Communications (ICNC), 2013 Inter-
national Conference on. IEEE, 2013, pp. 334–340.

[15] A. Buda, K. Främling, J. Borgman, M. Madhikermi, S. Mirzaeifar,
and S. Kubler, “Data supply chain in industrial internet,” in Factory
Communication Systems (WFCS), 2015 IEEE World Conference on.
IEEE, 2015, pp. 1–7.

[16] V. Vyatkin, “Iec 61499 as enabler of distributed and intelligent au-
tomation: State-of-the-art review,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, 2011, pp. 768–781.

[17] D. Rotondi, E. Coscia, K. Fischer, L. Aştefănoaei, M. Rooker, M. Isaja,
O. Botti, and S. Voss, “D2. 1-d 2.1 a beincpps architecture and business
processes,” Update, vol. 1, 2016, p. 13.


