
A Component Framework as an Enabler for

Industrial Cyber Physical Systems

Luis Neto∗‡, Anders L. Madsen†§, Nicolaj Søndberg-Jeppesen†, Ricardo Silva∗‡,

João Reis∗‡, Peter McIntyre¶ and Gil Gonçalves∗‡

∗ISR-P, Instituto de Sistemas e Robótica, Porto, Portugal
†HUGIN EXPERT A/S, Denmark

‡FEUP, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
§Department of Computer Science, Aalborg University, Denmark

¶Ford Motor Company, Powertrain Manufacturing Engineering Europe

Abstract—In this paper we show how Component Based
Software Engineering (CBSE) concepts were applied to design the
Sensor SelComp. Therefore, a component framework to address
the abstraction of Component Level within the SelSus European
Project ICPS. We show how the framework can be used to tackle
IPCS virtualization of sensors, machines and data processing.
Moreover, we show the applicability of Sensor SelComp to a real
case scenario where a Bayesian Network model was applied to
a SelSus demonstrator to perform runtime fault detection in a
RTV dispenser machine from Ford Motor Company.

Index Terms—Industrial Cyber Physical Systems; Component-
Based Software Engineering; Bayesian Networks; Smart Com-
ponent; Smart Manufacturing

I. INTRODUCTION

Modern production lines benefit from the IoT (Internet of

Things) and ICPS (Industrial Cyber Physical Systems) tech-

nological advances to create environments where Smart Con-

nected Products can influence its own production process and

companies can benefit from Service Based business models.

To accomplish this, there is an essential driver, information;

the differentiating aspect regarding it nowadays are the sources

and the amount of it. The number of internet connected devices

combined with the granularity of information produced by a

single device is growing so much that the estimated volume

of data just in industry reached 1000 Exabytes annually and

it is expected to increase by a factor of 20 times. [1]

This work is devoted to improve cooperation of field devices

and industrial plant personnel therefore fostering the smartness

in a Smart Factory environment. According with [2], any

actor in a production plant can be considered a manufacturing

component (e.g. computers, sensors, production machines,

PLC’s, robot’s and humans). Once an actor in the production

line is digitally abstracted by the factory ICPS, it becomes

a Smart Manufacturing Component (SMC). This abstraction

provides a physical component with smart capabilities, which

enables it to become an active part in the Smart Factory ICPS,

and consequently in the production environment.

The work presented in this paper is part of SelSus European

Project, whose objective is the development of a diagnostic

and prognosis environment. The SelSus ICPS defines three

levels of abstraction for its constituents: 1) Component Level,

which relates directly to machines or its sub-components

and is composed of smart sensory capabilities, methods for

self-diagnostics and predictive maintenance; 2) Station Level,

at this level the developments are constituted by previous

capabilities plus human machine interface and tools to support

the design and maintenance of the factory station; 3) Factory

Level, previous levels capabilities are combined to create a

semantic driven maintenance scheduling for large production

factory plants.

In a ICPS arrangement (e.g. in the Manufacturing Pyramid),

Component Level is mostly related to hardware and mechan-

ical properties of a production system. To make digital twins

of these components, one of the difficulties generally found in

any shop floor is the incompatibility between communication

stacks, because industrial grade solutions most of the times

are vendor specific. Another problem, is that machines and its

sub-components also lack the necessary sensory information

to build and feed feasible fault detection models. Lastly,

under an ICPS federation, these digital abstractions must

be semantically cohesive so any analysis or control module

can interface them. These issues require a reconfigurable

and updatable SMC too keep up with the always changing

production system composition and configuration. An SMC

must provide consistent mechanisms with which to configure,

deploy and dynamically reconfigure code; which is a problem

addressed by Component Based Software Engineering (CBSE)

discipline.

In the rest of the paper we show how CBSE theory (Section

II) was combined with the SMC concept to create the Sensor

SelComp component model and framework (Section III). In

addition (Section IV), we show an application of the Sensor

SelComp to add external sensors to an RTV Machine in order

to feed and run a BN model created to perform live fault

detection and inform it to the ICPS. We conclude (Section V)

by making considerations to improve the BN model used and

the Sensor SelComp.

II. COMPONENT MODELS

To achieve software reconfigurability, in this case, the ca-

pacity to plug-in software components, and this way rearrange

a system, a component model and framework are required. A

software architecture designed by a component model solution

is developed as ”a composite of sub-parts rather than a

monolithic entity” [3].

Briefly, in a software system composed by components, a

component model is a set of rules, conventions and standards.

It dictates how a component is defined, interfaced, tested and

deployed for execution. In practical terms, the component

framework is the set of tools that implements the component

model specifications. The framework is an aggregation of

a mandatory runtime and optional tools, such as repository,

compiler, verification and composition environment. The com-

ponent model is the foundation of a component based design.

It defines the composition standard, that is: how components

are composed into larger pieces, how and if they can be

composed at design and/or runtime phases of component life-

cycle, how they interact, how the component repository (if

any) is managed and the runtime environment that contains the

assembled application. Because all of this, component models

are hard to build, some problems like: achieving determinism

and real-time, parallel flows of component and system devel-

opment, maintaining components for reuse, different levels of

granularity[4] and portability [5].

In terms of application to industrial environments, a compo-

nent model eases the task of building control and monitoring

applications. Considering a visual composition environment,

an user which is not familiarized with software development,

can simply design applications by pick and place, e.g., data

processing algorithm, machines and sensors representations.

The person in question does not need to know the internal

details of a component, all it sees is a black box whose

functionality, configuration and interface is formally and well

documented. There is a clear separation between component

technology applied to business and embedded systems, which

is the case of interest to the lower levels on an ICPS.

Embedded systems concerns range from scare physical re-

sources, Quality of Service (QoS), timing to trustworthiness

properties (security, safety and reliability). The latter are of

special importance regarding safety critical applications. The

following properties are the foundation of any Component

Model.

a) Component Implementation and Interface: Compo-

nents syntax, is the language used for component definition

and which may be different from the implementation language.

Depending on the component model, implementations can

be binary, byte code, compilable code (C, C++) or custom

languages. Properties and functionalities that are externally

visible to a component constitute its interface.

b) Component Contracts: Interfaces show what a com-

ponent does without telling how, and so, they are the very first

form of component verification and validation. The relation

between client and provider components is not the unique

dynamic that must be agreed and often components must

express constraints and quantitative properties. Components

that need to declare QoS properties, depend on extra system

layers such as the OS or runtime environment. Thus, contracts

need to capture functional and extra-functional properties in

component interfaces. Beugnard et al. [6] propose four levels

of contracts, ranging in its flexibility to be negotiated by the

component runtime.

c) Component Composition: The composition environ-

ment supports the developer in several steps of the develop-

ment process. It is out of scope to think in how components

are and how to define interfaces and properties. Therefore, the

composition environment comes into play when the developer

constructs, tests or deploys an application. In application

construction the developer can either implement the inner

functionality of a component and wire components to form

an application. Depending on the component reuse policy, the

environment can allow to use already existing components

to build a new component. Testing comprises test case gen-

eration, debugging and test case execution. The deployment

phase must support the installation of an application in a target

device. Components can be composed using wrapping, static

and dynamic linking, and ”plug-and-play”; according with the

composition environment.

d) Component Base System Life-cycle: In software en-

gineering there are several models to guide the development

life-cycle [7]. The waterfall is a classic sequential model in

which each phase must be complete before proceeding and the

output of a phase is the input of the next. These models can

be adapted to conceive component based life-cycle.

III. SENSOR SELCOMP

The SelComp (SelSus Component) is a realization of the

SMC concept, which in practical terms is a digital shell that

cohesively abstracts entities under the same ICPS federation.

In the SelSus ICPS domain, there are two types of SMCs, the

Sensor SelComp and the Machine SelComp. The first [8] is

used to: a) abstract machines that lack any useful technology

that allows to virtualize them (e.g. purely mechanical); b) to

abstract sensors coupled to machines whose built in sensory

information is not enough to feed the data analysis methods

requirements; c) to abstract sensor networks deployed in the

shop floor to capture physical properties of the environment.

The second is used to abstract assets that have all the techno-

logical capabilities required to be abstracted as a SelComp.

It can be said that this SMC concept was first introduced

by Multi-Agent Systems applied to production devices [9],

and later adopted by the ICPS [10] to realize the ”digital

twin”. The idea behind the Sensor SelComp was to have a

piece of software that could act as generic abstracting shell. To

accomplish this, the main obstacle was the communication. To

solve that, the Sensor SelComp should be capable of extending

its capabilities in runtime to support the required protocols to

abstract a certain entity. The obvious answer to this problem

was to model the Sensor SelComp as a Component Model

Middleware, with that, even local data processing could be

added and reconfigured in runtime, all this transparent to be

controlled by the ICPS on demand.

The realization of the proposed component model and

framework was guided by theory discussed in Section II. To

better comprehend the implementation details, one may refer

to Table I. The properties shown were selected based on the

the set of complete historical data. This model cannot in itself

be used for root-cause analysis or predictive maintenance.

Instead we use the concept of evidence conflict to indicate a

malfunctioning of the machine. The fundamental idea is that

the concept of conflict of evidence can be used to identify

suspicious findings pointing to problems in the sealant bead

quality. The data conflict measure conf(ǫ) considered here is

due to [25] and defined as

conf(ǫ) = log

∏
i P (ǫi)

P (ǫ)
. (2)

The assumption behind this measure is that individual findings

in the evidence ǫ are positively correlated under the model. If

this is not the case, then this may be caused by a data conflict

producing a positive conf(ǫ).
Let ǫ′ = ǫ ∪ {ǫsi} where si is a sensor reading, then the

conflict measure decomposes as conf(ǫ′) = log(P (si)/P (si |
ǫ)) + conf(ǫ) [24]. This decomposition may be exploited to

monitor the readings of an individual sensor si through its

normalised likelihood P (si | ǫ)/P (si), i.e., the sensor reading

with the lowest normalized likelihood given the other readings

has the highest contribution to the conflict. The logarithm of

the inverse normalized likelihood reflects the contribution of

sensor si to conf(ǫ) and as such it can, for instance, be used

to identify sensor readings indicating a malfunctioning part of

the component. For n = 34, we have conf(ǫ) = 8.78 with

log(P (si)/P (si | ǫ \ ǫsi)) = 3.67 for material feed pressure

and log(P (si)/P (si | ǫ \ ǫsi)) = 2.94 for material application

pressure. This suggests that the purge operation produces feed

and application pressures that are misaligned with the other

sensor readings.

C. Results

The data was collected from a RTV machine over a period

of three months from late April 2017 to late July 2017. Data is

collected at a frequency of one second even when the machine

is idle and the data is complete, i.e., no missing values. The

data contains no information on when the machine is active,

which engine type is being processed nor if any failures have

occurred. If the machine is idle, then the same value is repeated

in the data.

Figure 4 shows the structure of the model constructed by

from the collected operational data using a greedy search-

and-score algorithm. The structure specifies the dependence

of operational data. The data sequence (collected October,

2017) shown in Figure 5 contains three cycles with time step

n = 0, . . . , 147. This first cycle is a purge operation to the

system to get rid of clogs after the machine has been idle

for some time. The purge operation completely evacuates the

material from the application container, this causes a major

drop in feed pressure and sensor readings are out of sync.

The purge operation is followed by two cycles of the machine

where the sealant bead is applied to engine blocks. Figure 6

shows the running average of the data conflict measure for the

operational produced by the RTV machine. To make the curve

smooth and make the measure less sensitive to fluctuating

Fig. 4. The structure of the model constructed from operational data.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

P
re

ss
u

re

Time steps

Material Feed

Material Application

Fig. 5. Sequence of sensor readings.

values in the sensors, a running average over five seconds

is applied. It is clear that the model detects the unexpected

behaviour of the sensor readings during the purge operation

and the two following operation cycles do not produce any

indication of issues with the operation of the machine and

thereby the quality quality of the bead.

Let si be a sensor with reading ǫsi . The contribution of

si to conf(ǫ) is determined by the normalised likelihood

P (ǫsi)/P (ǫsi | ǫ\ǫsi). Hence, we can use this value to identify

the main contributing factors to the data conflict. This can be

used in a diagnostics process even when root causes are not

represented in the model. At time step n = 34, conf(ǫ) = 8.68
with logP (ǫsi)/P (ǫsi | ǫ\ǫsi) = 3.67 for si equal to material

feed pressure and logP (ǫsi)/P (ǫsi | ǫ \ ǫsj) = 2.94 for sj
equal to material application pressure. This suggests that these

measurements are not aligned with the other sensor readings,

which can be explained by the purge operation.

V. CONCLUSIONS

The data conflict measure is based on comparing the

probability of the evidence between two different models. In

particular, the marginal independence model is used as the

-4

-3

-2

-1

 0

 1

 2

 0 20 40 60 80 100 120 140 160

Time steps

Average conflict

Fig. 6. Plot of the running average data conflict measure for a single
operational cycle.

straw man model. More advanced models can be considered.

Also, the decomposition of data conflict measure into local

conflicts makes it possible to trace the origin of a, e.g.,

Station Level conflict to a Component Local conflict. The

self-contained model of the equipment at the Component level

can be integrated into wider Station or Factory Level models

through the use of object-oriented modelling.

Parameter learning algorithms for continuous model im-

provement using operational data [26] are being considered.

However, here there is a challenge that the parameters of the

model may adapt to a malfunctioning sensor reading.

The Sensor SelComp can extend its compliance with other

ICPS’s simply by adopting standardized data representation

schemes such as AutomationML [27]. The issue of incompat-

ibility between algorithms implemented in different languages

is a priority for applicability to real world. A final consider-

ation is real-time capability, which was not a requirement in

this work, but constitutes an interesting capability if combined

with fault detection modules for control applications.

ACKNOWLEDGMENTS

SelSus EU Project (FoF.NMP.2013-8) Health Monitoring

and Life-Long Capability Management for SELf-SUStaining

Manufacturing Systems funded by the European Commission

under the Seventh Framework Programme for Research and

Technological Development.

REFERENCES

[1] S. Yin and O. Kaynak, “Big data for modern industry: challenges and
trends [point of view],” Proceedings of the IEEE, vol. 103, no. 2, pp.
143–146, 2015.

[2] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing

Letters, vol. 3, pp. 18–23, 2015.
[3] K.-K. Lau and Z. Wang, “Software component models,” IEEE Transac-

tions on software engineering, vol. 33, no. 10, pp. 709–724, 2007.
[4] C. Maga, N. Jazdi, and P. Göhner, “Reusable models in industrial

automation: experiences in defining appropriate levels of granularity,”
IFAC Proceedings Volumes, vol. 44, no. 1, pp. 9145–9150, 2011.

[5] F. Fouquet, B. Morin, F. Fleurey, O. Barais, N. Plouzeau, and J.-M.
Jezequel, “A dynamic component model for cyber physical systems,”
in Proceedings of the 15th ACM SIGSOFT symposium on Component

Based Software Engineering. ACM, 2012, pp. 135–144.

[6] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

[7] S. Balaji and M. S. Murugaiyan, “Waterfall vs. v-model vs. agile:
A comparative study on sdlc,” International Journal of Information

Technology and Business Management, vol. 2, no. 1, pp. 26–30, 2012.
[8] L. Neto, J. Reis, R. Silva, and G. Gonçalves, “Sensor selcomp, a smart

component for the industrial sensor cloud of the future,” in Industrial

Technology (ICIT), 2017 IEEE International Conference on. IEEE,
2017, pp. 1256–1261.

[9] G. Gonçalves, J. Reis, R. Pinto, M. Alves, and J. Correia, “A step
forward on intelligent factories: A smart sensor-oriented approach,”
in Emerging Technology and Factory Automation (ETFA), 2014 IEEE.
IEEE, 2014, pp. 1–8.

[10] L. Wang and A. Haghighi, “Combined strength of holons, agents and
function blocks in cyber-physical systems,” Journal of Manufacturing

Systems, vol. 40, pp. 25–34, 2016.
[11] Apache Software Foundation, “Maven 3,” https://maven.apache.org,

2017, accessed: 2017-12-12.
[12] Mozzila, “Rhino javascript compiler,” https://developer.mozilla.

org/en-US/docs/Mozilla/Projects/Rhino/JavaScript Compiler, 2007,
accessed: 2017-12-12.

[13] K.-K. Lau and Z. Wang, “A taxonomy of software component mod-
els,” in 31st EUROMICRO Conference on Software Engineering and

Advanced Applications. IEEE, 2005, pp. 88–95.
[14] I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R. Chaudron, “A classi-

fication framework for software component models,” IEEE Transactions

on Software Engineering, vol. 37, no. 5, pp. 593–615, 2011.
[15] P. Hošek, T. Pop, T. Bureš, P. Hnětynka, and M. Malohlava, “Com-

parison of component frameworks for real-time embedded systems,” in
International Symposium on Component-Based Software Engineering.
Springer, 2010, pp. 21–36.

[16] G. Doukas and K. Thramboulidis, “A real-time-linux-based framework
for model-driven engineering in control and automation,” IEEE Trans-

actions on Industrial Electronics, vol. 58, no. 3, pp. 914–924, 2011.
[17] P. Adolphs, H. Bedenbender, D. Dirzus, M. Ehlich, U. Epple, M. Han-

kel, R. Heidel, M. Hoffmeister, H. Huhle, B. Kärcher et al., “Status
report-reference architecture model industrie 4.0 (rami4. 0),” VDI-Verein

Deutscher Ingenieure eV and ZVEI-German Electrical and Electronic

Manufacturers Association, Tech. Rep, 2015.
[18] J. Breese and D. Heckerman, “Decision-theoretic troubleshooting: A

framework for repair and experiment,” in UAI, March 1996, pp. 124–
132.

[19] M. S. Sayed and N. Lohse, “Printer troubleshooting using bayesian
networks,” Intelligent Problem Solving. Methodologies and Approaches,
pp. 367 – 379, 2000.

[20] G. Weidl, A. L. Madsen, and E. Dahlquist, “Decision support on com-
plex industrial process operation,” in Bayesian Networks: A Practical

Guide to Applications. Wiley, 2008, ch. 18, pp. 313–328.
[21] G. Weidl, A. L. Madsen, and S. Israelson, “Applications of object-

oriented Bayesian networks for condition monitoring, root cause analysis
and decision support on operation of complex continuous processes,”
Computers and Chemical Engineering, vol. 29, pp. 1996–2009, 2005.

[22] A. L. Madsen, N. Søndberg-Jeppesen, N. Lohse, and M. S. Sayed, “A
Methodology for Developing Local Smart Diagnostic Models Using
Expert Knowledge,” in Proceedings of the 2015 IEEE International

Conference on Industrial Informatics (INDIN), 2015, p. 6.
[23] U. B. Kjærulff and A. L. Madsen, Bayesian Networks and Influence

Diagrams: A Guide to Construction and Analysis, 2nd ed. Springer,
2013.

[24] T. Nielsen and F. Jensen, “Alert systems for production plants: A
methodology based on conflict analysis,” in ECSQARU, 2005, pp. 76–
87.

[25] F. Jensen, B. Chamberlain, T. Nordahl, and F. Jensen, “Analysis in
HUGIN of data conflict,” in UAI, 1991, pp. 519–528.

[26] A. Madsen, N. Sondberg-Jeppesen, F. Jensen, M. Sayed, U. Moser,
L. Neto, J. Reis, and N. Lohse, “Parameter learning algorithms for
continuous model improvement using operational data,” in ECSQARU,
2017, pp. 115–124.

[27] R. Drath, A. Luder, J. Peschke, and L. Hundt, “Automationml-the glue
for seamless automation engineering,” in IEEE International Conference

on Emerging Technologies and Factory Automation, ETFA 2008. IEEE,
2008, pp. 616–623.

