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Abstract—The fourth industrial revolution promotes Industrial
Cyber Physical Systems (ICPS) as the key to achieve smart,
efficient, flexible and self-organizing production plants. In a
shop floor there are heterogeneous physical and logical assets
that form the ICPS. But without proper communication and
composition techniques the integration of these assets in ICPS is
compromised. Component Based Software Engineering (CBSE)
is a discipline of growing relevance for ICPS because integration
and composition issues have been extensively researched in the
software domain. Under the Reference Architecture for Industry
4.0 (RAMI 4.0), the Industry 4.0 Component Model inherits
aspects of CBSE to specify how several industrial plant assets
can form an ICPS. The technological aspects for physical assets
digitalization and integration have been explored, but the 14.0
Component model lacks proposals and use cases for dealing
with industrial software components. In this work we discuss
the development of the Smart Component Model as a proposal
for integration of software components in ICPS. Furthermore,
we focus on how prediction and monitoring applications could
be converted in 14.0 Components and integrated in ICPS. To
sustain our proposals, we describe a real industrial case study
where these developments are being applied.

Index Terms—Component Based Software Engineering; Com-
ponent I14.0; Smart Component; Cyber Physical Systems; Pre-
dictive Maintenance; Condition Monitoring

I. INTRODUCTION

The assets in a traditional production line are strongly
coupled in sub-systems to accomplish specific physical pro-
cesses. The combination of these sub-processes results in
production of one or several final products. Each asset can be
characterized by a different level of abstraction; a lower level
asset could be a proportional-integral-derivative (PID) peace of
software or a sensor feeding the PID instance, while a higher
level asset could be an entire manufacturing execution system
(MES) or a whole production cell. Components can also be
characterized, among other properties, by their granularity; a
lower level component like the sensor can be considered as
atomic, while a higher level component like the production
cell can be considered as a composite component due to high
amount of sub-systems that compose it. One of the Industry
4.0 objectives is to transport this view of the factory and
apply it to realize the vision of reconfigurable manufacturing
systems. Components with various degrees of abstraction and

granularity could then be quickly composed to respond to new
necessities, among other positive outcomes [1].

This discrete view of systems has been extensively explored
in the software domain for decades, the reader should refer
to [2], where several aspects of component-based software
systems are allready discussed. One objective of CBSE is
to create applications with heterogeneous components in a
plug&play fashion [3], therefore, standardized abstractions and
architectures are needed to support this paradigm. In industry
the same composition problem is known as plug&produce [4],
[5]. This concept deals with integrating production line assets
in a automatic way and has been explored in several research
works [6]. The Component 14.0 model [7], [8] is essentially a
standardized proposal to address plug&produce in the context
of Industry 4.0. This proposal builds on top of several consoli-
dated standards to create a component-based ICPS transversal
to physical and digital assets.

A component model is a set of rules that dictate how
components can be built and composed to form a system [9].
These rules include, at least the definition of syntax and
semantics that allows the components be interfaced. An ICPS
can be considered a component model. The components of
a CPS need to be integrated and able to understand each
other, otherwise the ICPS could not be established. As in
a component model, the elements of an ICPS must follow
certain communication and integration rules to be able to
cooperate. Several works [10], [11] explore this perspective
to suggest a component models for CPS. Other component
model approaches regarding embedded systems and industrial
applications are surveyed in [12]. In this work we describe
the first steps towards a component model whose objective
is to constitute a solution for digital assets in industrial
environments.

The rest of the paper is organized as follows: Section II
introduces the Component 14.0, a Component Model applied
to Industry 4.0 components. In Section III, addresses how the
Smart Component Model, joins the Component Based Soft-
ware Engineeing theory and the Component 14.0 requirements
to realize a component model for Industry 4.0. Section IV,
describes the case study and details the problems of a company
with old machines. We also address how each machine, sensor



and actuator considered is mapped in a component abstracted
by the Smart Component. In Section V, we discuss future work
plans to process data from these machines and how to make
it useful for other components in the company ICPS.

II. COMPONENT 14.0

One example of how a component model can be applied
to several disciplines is the concept of Component 14.0,
proposed by German Electrical and Electronic Manufacturers
Association’s (ZVEI’s) and Plattform Industrie 4.0 [7]. In this
vision, an Asset Administration Shell (AAS) abstracts one or
several assets, by being able to map the asset properties to
different information models. An asset abstracted by an AAS
becomes a [4.0 Component, because all its properties and
functions are mapped into standardized information models
and the interfaces between i4.0 Components are standardized.
Therefore, all AAS share standardized communication stacks
and semantics, which makes it possible to integrate all 14.0
Components in a ICPS.

If we consider a 3D Printer as an example of a physical
asset, we can describe it according different properties. Each
property can be mapped in specific technical domain, e.g.
mechanical, electrical and software domains. In [13], there are
several examples of how properties, data and functions from
several machines can be mapped in standardized information
models, according with its technical domains. In [8], Ye and
Hong present and describe in detail the steps to convert assets
of lab scale manufacturing system in Components 14.0; and
how to integrate them in a CPS. This component model tra-
verses several technical domains to create an ICPS composed
of 14.0 Components.

III. SMART COMPONENT MODEL

The Component I4.0 concept established itself as a reference
component model for the realization of Industry 4.0, under
the scope of RAMI 4.0. While ZVEI'’s and Platform Insdutrie
4.0 published several technical specification documents [7],
[13]-[15], and the academia is also addressing this research
topic [16], [17]. The Smart Component model that we propose
addresses some aspects related with the software domain that
we consider are still missing.

ZVEI released in October 2018 a position paper involving
an use case for 14.0 software components [18]. This posi-
tion paper states some of the common issues of software
components models, such as standardization of interfaces
and dependency problems. The document also barely details
the use case and does not describe technical proposals. In
section IV, we present a case study of a real industrial
scenario that highlights some aspects related with software
components in ICPS. We think the problems described in
the case study, and the Smart Component model proposal to
those problems, might constitute a more concrete contribute
for software integration in the Component 14.0.

o The shop floor is composed of software and machines

from different vendors and generations, therefore is not
straightforward to acquire data from these assets, to

integrate software components to process this data, and to
convert these software components in 14.0 Components.

e There exists a growing trend, that we also tried to
address in this case study, to introduce machine learning
techniques for condition monitoring [19], [20], process
parameter optimization [21]. These techniques are de-
veloped in high level programming languages, such as
python. This contrasts with the typically low level lan-
guages used to program for field devices and industrial
communication protocols. To integrate these techniques
with low level systems requires a considerable effort.

o When dealing with industrial machine controllers, soft-
ware is typically closed source and provides scarce in-
terfaces, information is hard to extract and integrate with
other systems.

The Smart Component is a on-development component
model and framework that addresses these problems and tries
to constitute an AS for inclusion of software in Industry 4.0
based CPS. The problem with language independence is that
a lot of scientific and open source machine learning code
is produced in languages that are not exactly tailored for
embedded systems. In this work we address mainly how the
Smart Component Model (SCM) provides a way to integrate
such OTS (of the shelf) software components.

In Fig. 1 a functional block diagram of the Smart Com-
ponent is illustrated. The right side of the figure shows the
Component Repository, it contains all components that can be
instantiated by the Component Infrastructure. This repository
is local and can be updated with new components. The
component runtime, was running on top of a Java Virtual
Machine (JVM) in previous versions of the Smart Compo-
nent [22], [23]. The JVM approach has a portability advantage,
but it lacked performance and it proved very difficult to
integrate components built in other programming languages.
To tackle these issues, the Linux Kernel is now used as runtime
environment. This approach allows to integrate components
built in different programming languages, due to the Kernel
inter-process communication (IPC) mechanisms based on files,
pipes and shared memory pages. The Smart Component block
that allows to manage the running components is built as
a Linux Kernel module. This allows to extend any Linux
based distribution with the proposed Smart Component Model
capabilities.

The Smart Component interfaces, illustrated in Fig. 2, spec-
ifies the access points to a component. These interfaces data
types are standardized to enable reuse and allow components
to inter-operate locally and remotely. The data types used by
the interfaced are OPC UA Data Types, specified in the OPC
UA Base Model [24]. Tt is important to note that an interface
offers no implementation of any of its operations. Instead,
it merely names a collection of operations and provides the
descriptions and protocols for these. Components can import
and export interfaces; imports declare what a component needs
form the environment, exports declare what a component
offers to the environment.
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Fig. 1. Functional block diagram of SmartComponent (Adapted from [2])

A. Smart Component Kernel Module

As previously discussed, the decision change the runtime
environment of the Smart Component Framework (SCF) from
a JVM to a Linux Kernel brings some advantages. In this
subsection we discuss how the Smart Component Kernel
Module (SCKM) complies with the Smart Object Compo-
nent Model (SOCM), how it keeps track of executing com-
ponents and how component interfaces are managed. The
SCKM maintains a Smart Object Self Description (SOSD)
structure that describes all components and their relations.
SOSD:Device objects are data structures which hold asset
properties. SOSD:Servicelnstance objects, are instances of
components, for the Linux Kernel, they are regular pro-
cesses. The data structure that holds SOSD related info also
contains pointers to the kernel process descriptor structure.
This way, the SCKM keeps track of the running compo-
nents, and because it resides in the kernel space, it can
access the component memory regions. This is fundamental
to establish the relationships between components that are
specified by the SOSD structure. This characteristic also
makes it possible to develop a component compliant with
the SOCM specification with minimal intervention from the
developers. Each compliant component must have a correspon-
dent SOSD:ServiceDescription object, where all interfaces and
properties (see Fig. 2 must be declared. A set of functions
will be available for the developers to register the program
variables within the SCKM. Each of the declared component
interfaces must be mapped into a program variable by the
developer. This way, with minimal effort, the programmer can
read/write data directly from/to regular program variables, as
if the other components were part of the same package and
written in the same programming language. The restriction
imposed so far is that the component interfaces must only
adhere to the OPC UA Data Types, specified in the OPC UA
Base Model [24]. Sometimes it happens that a closed piece

of software (e.g. a device driver or database connector) must
be integrated into the design. One way to achieve this, using
the SCF, would be to create a simple interface component,
which would connect to closed software using the available
interfaces, and then, to map those channels into variables
described in a SOSD:ServiceDescription.
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Fig. 2. Component interfaces.

Each interface between components is handled by a
SOSD:Subscription structure, see Fig. 2. This structure cor-
responds to a shared memory region that is attached to the
participating processes address space. As illustrated in Fig. 2,
the subscription structure can hold: a scalar, a linked list, a
vector or a queue/stack. The Port blocks are illustrative, these
encode information such as the read/write permissions and
synchronization mechanisms. The SOSD:Subscription class
properties are used to encode all information related with
Ports.

B. SOSD

The Smart Object Self Description information model was
created to describe the software components available to
instantiate, or running, in a certain Smart Component; to relate



these components with other assets; and also design applica-
tions based on the relation of components themselves [25].
It works like an Architecture Description Language, because
the SOSD:Device class purpose is to give context and hold
properties of the assets. In terms of the CPS, this allows
to identify what software components are associated to other
assets. In terms of software components, these can read the
associated SOSD:Device structure to get/set specific parame-
ters useful for its service. As an example, the Inductive object
in Fig. 3 - which corresponds to the inductive sensor in the
case study architecture (Fig 4) - includes properties such as
the digital pin number, that keep the address associated with
the pin to which the sensor is attached. This property can
be retrieved by the Digital Signal Acquisition component, so
it knows what address must be read to retrieve the sensor
reading. A SOSD:Servicelnstance class, correspond to an
instance of a SOSD:ServiceDescription class, running in a
certain SmartBox. In Fig. 3, are illustrated two instances of
the Digital Signal Acquisition component, these are sampling
the Inductive Sensor and the Light Tower signals, which map
the respective assets in physical architecture of the case study,
Fig. IV. A component instance is identified by an unique ID,
and the details of that component can be obtained through a
DID (Description ID), which establishes the correspondence
between SOSD:Servicelnstance and SOSD:ServiceDescription
classes. The ServiceDescription class describes the software
components and respective interfaces. This class is also useful
to manage components in the repository (Fig. 1), the properties
declared can be used to compare versions and query for certain

types of components.
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Fig. 3. Map of the case study in SOSD classes.

C. OPC UA

So far we discussed the SCM and some technical aspects
of how the SCKM manages components. In this subsection
we address how a remote SmartBox - running a component
design on top a Linux Kernel with the SCKM - is managed.
As the Component 14.0 technical documents specify, OPC
UA is the standard architecture for communication between

14.0 Components. This was the major reason to establish a
tight integration between this architecture and the SCF, but
there are other advantages, as described in [6]. The OPC UA
address space is based in a very rich information model and
applies an object oriented approach to how information is
structured, encoded and related. An information model can
be added to an OPC UA server if its objects are built on top
of OPC UA models. This allows for any OPC UA Client to
be able understand and de-serialize information of a node in
OPC UA Server without prior knowledge. The SOSD model,
as previously stated, was built on top of the OPC UA Base
Model, so it can be mapped in a OPC UA Server address space.
Because of this integration, the SOSD structure held by the
SOKM is tightly integrated with an OPC UA Server. Changes
made in the design by an OPC UA Client are reflected in a
remote Smart Component Runtime, which is a straightforward
way to create new applications or to reconfigure the design in
execution. Another possible advantage of this tight coupling,
is that a certain design can request or subscribe information of
another OPC UA Server. If that server is also integrated with
a SCKM, this would constitute a transparent way of building
distributed applications, taking full advantage of a CPS based
in 14.0 Components.

IV. CASE STUDY

This case study was explored in the context of the Por-
tuguese research project PRODUTECH-SIF [26]. The vali-
dation of the SmartComponent is being performed on the
shop floor of a textile unit that produces clothing labels. This
factory in its industrial plant has machines with different levels
of technology, old without any type of sensing and modern
with some sensors, PLCs for control, local data processing
and communication with the MES / ERP. The old machines
are operational, fulfill their production functions, but are not
as efficient as desired due to unexpected outages related to
failures. In addition do not have the ability to communicate and
produce the desired KPIs for the production and maintenance
teams. Based on this, the installation of sensors and intelligent
controllers (SmartBoxes) for data acquisition and processing
is essential to allow the Smart Component to perform its
functions. The next section details the SmartBox that executes
the Smart Component.

A first phase of the case study consisted in retrofitting one
of the older looms with several sensors in order to gather
production data. The set of sensors was selected with the help
of the maintenance team, that provided insights for typical
breakdown problems and maintenance routines. Figure 4
illustrates the physical architecture for the case study. The
Jacquard, which is a complex electromechanic component of
the loom, was equipped with: 1) a triple axis accelerometer,
connected to the analog pins of the SmartBox, to measure
mechanical vibrations; 2) a microphone, connected to an
analog pin, to capture mechanical noise; 3) an inductive sensor,
connected to a digital pin, facing one of the gears, allowing to
count pulses, therefore being able to extract the production
speed and quantity; 4) the light tower, connected to three
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digital pins, to detect the machine states, which are encoded
by specific pulse sequences.

A. Smart Box

The SmartBox is a modular hardware controller devel-
oped over a Programmable Automation Controller (PAC)
CompactRIO 9040 from National Instruments [27] that runs
the Smart Component at the shop floor level. The Com-
pactRIO system was chosen by the combination of a real-time
controller, Reconfigurable I0 (RIO) modules and an FPGA
module in the same chassis. This combination allows the
controller for multitasking in data acquisition, processing and
implementation of control algorithms, with a wide range of
sampling frequencies. The modularity of the SmartBox allows
scalability for different industrial scenarios, also allowing the
Smart Component to be scalable and adaptable to different
realities. Another advantage of using the CompactRIO is that
by running a patched Linux Kernel, it allowed to deploy
and validate several SCKM aspects. The most important, the
data acquisition software is developed in LabView, while the
OPC UA server used is implemented in Java. The SCKM
allowed to easily interconnect these components to form a
data monitoring application.

The SmartBox works as an OPC UA server, collects data
from sensors, implements data signal conditioning and cal-
ibration by software. It has resources to communicate with
machine controllers via different industrial communication
protocols, converging them into a unified communication
architecture enabling link to higher hierarchical levels in
the automation pyramid. The Functional block diagram of
SmartBox is illustrated in Fig. 5.
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Fig. 5. Functional block diagram of SmartBox.

B. Results

In the IDEPA scenario, one SmartBox was installed for edge
computing of one legacy loom, but is in process the installation
of more SmartBoxes with capabilities to integrate groups of 4
machines by controller in all factory plant. The connections
between machines and the controller are done by remote 1/Os
under EtherCAT communications.

Older looms are being upgraded with additional devices
(rotary encoders and environmental sensors) to enable the
collection of operational information already available on
new looms. Predictive maintenance functionalities based on
information such as temperature, humidity, noise and vibration
will also be implemented.

At the time of writing this paper, the SmartBox has been
collecting sensor data from the first loom equipped with
sensors for roughly 3 months. The plot of Fig. 6 shows an
excerpt of sensor data during operation. The Acceleration in
X, Y and Z components, Microphone and Lights (Red, Orange
and Green) are plotted against the left vertical axis in Volts.
The Inductive series is in fact the output of Impulse to Meters
component depicted in Fig.3. This series is plotted against
the right vertical axis in meters and represents the production
length.

As can be observed in this excerpt, the loom was operating
normally, as the Inductive series indicates, when the Red light
started to pulse indicating a breakdown. After this, it is clear
that the machine stopped, as can be deduced from the lower
peak to peak amplitude of the vibration and acoustic sensors;
and also from the flat line of the Inductive series.

V. FUTURE WORK

As future work, data from sensors and machine signaling
will be used to implement supervised learning algorithms
for predictive maintenance and condition monitoring. Datasets
of acoustic sensors and accelerometers will be processed by
the SmartBox, in order to identify and classify the different
frequencies, helping decision support systems to identify prob-
lems on the looms. One of the main future goals will be to
assess how the Smart Component will ease the process of
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feeding the algorithms and integrating their predictions with
other components.

The currently developed component description techniques
do not qualify attributes such as accuracy, availability, la-
tency and security, which are fundamental to deterministic
applications. In future iterations of the SOSD language, these
characteristics must be revised and incorporated. In the same
domain, a real time patch for the Linux Kernel will be included
to see how well the SCF handles soft real-time components.
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