
Sensor Cloud: SmartComponent
Framework for Reconfigurable Diagnostics
in Intelligent Manufacturing Environments

Luis Neto, João Reis, Diana Guimarães, Gil Gonçalves
Institute for Systems and Robotics

Faculty of Engineering of University of Porto
Porto, Portugal

Email Address: {lcneto , jpcreis , dlguim , gil} @fe.up.pt

Abstract—Sensor networks that consist of a va-
riety of sensor nodes, with capability for distributed
storage and analysis, interoperable and delay-tolerant
communication, will pave the way for a truly scalable
network of sensors which will support adaptable
plug-and-produce assembly stations. The concept of
Sensor Cloud has emerged as the cornerstone for en-
abling the integration of nearly real time data sources
into Service Oriented Architectures and as one of the
enablers for Reconfigurable Manufacturing Systems.

Hitherto there are still some challenges that need
to be tackled, namely the on-the-fly instantiation and
update of services at the system level and the dynamic
(re)organization of the services created. This paper
presents the first steps in the development of a frame-
work (taking advantage of several technologies like
UPnP, OSGi and iPOJO) to address these challenges
and make Sensor Clouds a reality in the shop floor.
The results from the first implementation reveal that
the performance of the system is linear in terms
of scalability, and from these scalability tests, we
proved the framework’s robustness and consistent
responsiveness.

I. INTRODUCTION

Taking into account the possible level differen-
tiations that can exist in a Manufacturing System,
the present work focus its implementation on the
Logical level, where the most complex and agile
functionalities should reside. Those functionalities
tackle problems like easy integration of equipment
as UPnPDevices – UPnP Architecture; easy and
dynamic model instantiation for data processing
(based on the software components available, the

system allows as many model instantiations as de-
sired) and on-the-fly replacement of those software
components for updated versions - OSGi Apache
Felix Framework; and dynamic reconfiguration of
the logical architecture (rearrange the dependencies
between the model instances and also the inputs of
the system) - iPOJO. This way the platform can
guarantee the flexibility required for data monitor-
ing and handling, and correct use of information
in levels very close to the shop-floor equipment.

The basis of this work, the SmartComponent
Framework is responsible to collect, accommodate,
treat, process and disseminate sensor data. Those
functionalities have a direct impact in the require-
ments of the latest concepts of Sensor Cloud, and
consequently, in the concretization of important in-
dustrial concepts like Reconfigurable Manufactur-
ing Systems (RMS). The main purpose of Sensor
Cloud is to easily integrate sensors into the system,
manipulate, access and visualize sensor informa-
tion using Cloud-based technologies [1]. One of
the latest explored applicability of Sensor Cloud
in the industry is related with the monitoring and
diagnosis of machines as key factors for achieving
the main characteristics of RMSs. Thereby, the
use of Sensor Cloud can be viewed as an enabler
for RMS, or more concretely, as a Reconfigurable
Inspection Machine (RIM) for machine easy mon-
itoring, process and visualization, which is clearly
explored in the present paper.

The present work has been developed in
the context of an European project called Self-

978-1-4799-6648-6/15/$31.00 ©2015 IEEE 1706

Sustaining Manufacturing Systems (SelSus). Its fo-
cus is on machines health monitoring, by analysing
a large amount of data gathered from the shop-floor
and helps to predict possible malfunctions and infer
its root cause.

This paper is organized in 4 main sections. In-
dustrial Context, where an industrial context about
Sensor Cloud and RMS is given. Framework, ex-
posing all the Framework’s implementation details
and functionalities. Results, presenting all the tests
performed to validate the framework’s execution.
Finally, Conclusions and Discussion, where the
potential impact of the framework is explored and
presents some future prospects to be exploited.

II. INDUSTRIAL CONTEXT

A. SensorCloud

The Sensor Cloud concept emerged as an ex-
tension of Cloud Computing concept (see [1] for
details) to allow device management. It provides
a vast storage capacity and processing capabilities
and has various advantages over the direct sharing.
The Sensor Cloud virtualizes multiple physical
sensors making it possible for users to benefit from
the sensors and control them - monitor availability
and status, set a frequency of data collection and
group different sensors - via their Web browsers
without worrying about their locations and detailed
specifications. The literature shows mainly a three
layers Cloud structure - Sensor Integration Layer,
Logical Layer and User and Application Layer.
The publish-subscribe mechanism gives the End-
user the customization requested. Some related
works are: [2] [3] [4].

In the context of this work, the sensor inte-
gration would no longer be a concern, once the
SmartComponent would take this responsibility.
The Cloud will interact with the sensor’s virtual-
ization at the Logical Layer, where the services’
management takes place (with a service logic re-
configurability level similar to the one SmartCom-
ponent Framework have), making the subscribed
information available to the consumers. Based on
this logic, the presented concept and dynamics of
Sensor Cloud can be viewed as an enabler for
the inspection process of a Manufacturing Sys-
tem, where the shop-floor machinery should be

monitored in order to infer in run-time its current
condition and assess its performance.

B. Reconfigurable Manufacturing Systems

Since the 1980s, the production paradigm has
diverted its attention from mass production to mass
customization, due to the possibility have the same
production costs in both approaches and the latter
being closer to the customer demands, presenting
a wider range and spectrum of product variety
[5]. All these facts led to the concept of RMS
where, in comparison with Dedicated Manufactur-
ing Lines (DML) and Flexible Manufacturing Sys-
tems (FMS), the greatest advantage is the system’s
responsiveness attending to sudden market changes
combining the high productivity of DMLs together
with the flexibility of FMS [6].

Most of the RMS characteristics - Customiza-
tion, Convertibility, Scalability, Modularity, Inte-
grability and Diagnosability - are basically hard-
ware goals to be met on both production and
system level. As presented in the previous sub-
section, the inclusion of Sensor Cloud concept on
the manufacturing process is one way of achieving
the inspection and monitoring of machines in an
easy, flexible and reconfigurable way – similarly
as a Reconfigurable Inspection Machine (RIM) -
fulfilling the Diagnosability characteristic, together
with Integrability and Scalability (in terms of sen-
sors). In case of sudden changes in the market, the
use of Sensor Cloud allows for a quick and robust
change in both hardware and software RIMs (as
a Sensor Network), shortening the ramp-up phase
when comparing with DMLs and FMSs, by means
of a easily deployable and reliable solution.

Additionally, I-RAMP3 is an ongoing European
Project that takes advantage of virtual representa-
tion of shop-floor equipment (machines and sen-
sor) for easy logical reconfiguration using task-
driven communication and sensor data validation
techniques. For more details see [7].

III. FRAMEWORK

This chapter presents all the technologies used
to build the proposed solution. For each one, a brief
description is given, along with all the details of
the internal logic of the framework and its internal
components.

1707

A. Technologies

1) OSGi Apache Felix Framework: OSGi tech-
nology provides a controlled execution environ-
ment and orchestrates the interactions between
specially built modules of code, known as bundles.
A bundle is a plain old JAR file, which is ma-
nipulated during the build process, and includes a
MANIFEST.XML file declaring its public, protected
and private dependencies. [8]

Bundles run in the adopted OSGi framework
execution environment (Figure 1). A required bun-
dle to be deployed in the framework must embed
or declare its own dependencies, because bundles
have no a-priori knowledge of each other and
dependencies must be resolved by the framework
if not embedded.

The Apache Felix framework was chosen be-
cause of its extensive documentation, and also for
including an UPnP specification implementation
plug-in, officially integrated and developed by the
Apache Felix project [9]. To understand the frame-
work functionalities and consolidate the special
considerations in developing OSGi application.

2) UPnP Basedriver: Acting as a bridge be-
tween the framework and the network, this
driver [10] allow to import and export UPnP
devices. Represented in Figure 1 in red, it is
composed of two internal modules that provides
two core services - the Exporter and Importer
module. The Exporter module registers objects
implementing the UPnPDevice interface specified
by the OSGi specification. Any changes in that
device (OSGi ServiceEvents) will be reported to
the framework. The Importer module, that is lis-
tening in the framework for the changes, will
consequently export and reflect these events to the
network. Events coming from the network to the
exported device will follow the opposite logic path.
They are notified to the framework and an UPn-
PDevice instance listening to these service events
will be matched through its unique ServiceProp-
erties and notified of external actions. This core
module implements the ControlPoint UPnP speci-
fication, which allows start listening ServiceEvents
from UPnPDevices to the framework.

3) iPOJO: iPOJO is a service oriented com-
ponent model for modular application systems,
strongly integrated with the Apache Felix OSGi

framework. The focus of iPOJO framework is
to orchestrate the interactions between the com-
ponents of a SOC (service oriented computing)
application based on the separation of the code
implementing the service functionality from the
SOC coupling dynamics.

The iPOJO component is represented in Fig-
ure 1, in the same colour used to represent the
interactions between the components that it is
responsible to manage (Figure 2). The use of
this component allowed us to focus just in the
business logic and functionality of the application
components. Hence, the components of the system
still remain “plain old Java objects” (POJO). [11]
The result is an adaptable application, regarding
loosely coupling of services, in which, the internal
constitution can be rearranged, depending on the
deployed components in the execution environment
and the shop-floor device composition.

B. Logical Architecture

The components in Figure 1 have the main
responsibility of driving the architecture to its
final purpose: data analysis, management, recon-
figuration and logistic of services. The developed
API defines two internal services to retain: De-
viceServices, which represent a service provided
by a device (eg: Temperature from a sensor or
Position of a robotic arm); ComplexServices, which
represent the services provided by instances of
analysis modules deployed in the SmartComponent
(eg: Aggregation Mean and MinMax Validation).

As OSGi bundles, every component provides
at least one service at OSGi framework level. Pro-
vided services are ready to be consumed as soon as
all its dependencies (Figure 2) are resolved by the
OSGi framework. If a service leaves, all consumers
depending on that service must be notified and
proper actions must be taken. iPOJO plays a pre-
ponderant role in managing this volatile behavior.
It provides callback methods for (un)registering,
stopping or updating a service, thus ensuring the
application has a much more controlled and stable
behavior.

Internal functionality of the framework relies
on a SOC approach [12]. The services at the Smart-
Component framework level are extensions of the
SmartComponent Service abstraction, defined by

1708

Figure 1. Architecture Components Diagram.

the API. Recurring to the uniqueness of prime
numbers [13] a strategy for identifying each service
to grant uniqueness and efficient hierarchical tree
organization has been implemented.

DeviceServices are introduced in the framework
by modules providing a service compliant with the
DeviceManager module. This module listens in the
framework for bundles providing DeviceServices
specification. As soon as the ContolPoint and OPC-
UA Importer bundles are active, the DeviceMan-
ager starts listening for events from that compo-
nents. An event can be a device (un)registration
or a message containing data from a service of a
specific device. This way, new modules of com-
munication (eg. ModBus, Profibus or iLan), could
easily be integrated to make the system adapt to
incorporate new types of hardware.

Figure 2. Component interaction description.

C. Framework Functionalities

To interact with the framework, components
are exposed to the network through the UPnP
BaseDriver, as UPnPDevices. Three components
are immediately exposed as soon as the SmartCom-
ponent is running. The ServiceManager component
allows retrieving information and dispose the ac-
tive services in the framework, and the two Ser-
viceFactory components allows to instantiate new
ComplexServices and retrieve information about
the analysis models that each one can instantiate.

1) Analysis Modules Deployment: ServiceFac-
tory components (Figure 1 in light blue), are
like containers for analysis modules producing
instances of ComplexServices by type; as said
before, a ComplexService type can be Aggregation
or Validation. To manage the type association to the
correspondent ServiceFactory and perform instanti-
ation, two software pattern strategies are combined,
Whiteboard [14] and Factory patterns.

2) ComplexService instantiation: As UPnPDe-
vices, the factories modules provide the follow-
ing functionalities: InstantiateServiceAccumula-
tionCycles - Allows the instantiation of a new
ComplexService, where the service providers can

1709

also be specified; InstantiateServiceFrequency-
Data - It has the same functionality of the previous
action, but additionally it allows to specify the time
in milliseconds in which the information should be
collected from the service providers; ListAvailable-
Services - Indicates the services that the factory is
able to instantiate. Once a service is instantiated,
it is registered in the ServiceManager module and
a correspondent representation is exported to the
network by the UPnP Exporter module.

3) Services Reconfiguration: As the services
met at the same level of abstraction, they can
be (de)coupled easily. This versatility allows an
on-the-fly rearrangement. The UPnP representa-
tion of each ComplexService provides 4 UPn-
PAction methods to: add consumers of the ser-
vice’s output (AddConsumer); add providers of
information as service’s input that can be either
DeviceService or ComplexService (AddProvider);
remove providers of information as service’s input
(RemoveProvider); and finally to list all the exist-
ing providers of information (ListProviders).

Figure 3. Reconfiguration of services on-the-fly.

In Figure 3, circles are DeviceServices and
rectangles ComplexServices. In the first scenario
a complex service is consuming data from 3 de-
vice services. Analyzing the differences, a clear
reconfiguration is illustrated in the second scenario.
A new complex service instance is consuming
from the previous complex service, the blue sensor
service was disconnected from the initial complex
service and added as provider of the newer one.
Finally, a new device service, the brown circle,
was introduced and selected as provider of the new
instance.

IV. RESULTS

Based on a simulation of a demonstrator case
of the European project SelSus, the framework has
been tested formulating a hypothesis. One of the

sub-tasks of an assembly unit is the application of
sealant in the contact surface of two parts. The
sealant is applied by a robotic arm equipped with
4 sensors and the parts transported in a NC-Axis,
which incorporates 2 sensors. The set of machines
embeds a total of 6 sensors, from which data needs
to be collected and treated.

To simulate the sensors, a tool was built to
announce the sensors in the network as UPnP De-
vices through a dedicated wired Ethernet network.
The generated data was threated by three devel-
oped ComplexServices: MinMax fires warnings for
measures that exceeds minimum and maximum
thresholds for each specific type of sensor service
(eg. Temperature, Pressure); MeanAggregation is a
mean calculation of the given sensors input; and
DummySum produces a sum of all the inputs. The
interaction with the framework and the response
times were collected by the UPnP Device Spy
tool [15]. The tests were performed by calling the
following method, exposed by the UPnPDevice
representation of each ComplexService instance
running in the framework: GetSnapshot() - gen-
erates a new result.

Figure 4. Response time performance

A first test displayed a linear response time
until an exponential increase was recorded with
144 sensors. A sudden exception closed the HTTP
Socket, and therefore, a second test was performed.
The second test involved three powerful machines,
contrary to the two in the first test; one containing
the SmartComponent and the other two running
the simulation environment. The machines running
the simulation created a total of 240 sensors. The

1710

results observed in the second test are displayed
in Figure 4. The response times showed a linear
trend and the exponential behavior that was pre-
viously observed, was due to the non-capacity of
the hardware to handle a large number of parallel
connections.

V. CONCLUSIONS AND DISCUSSION

The technologies and concepts explored and
depicted in this paper reflect some of the Frame-
work’s logical architecture and functionalities that
can be used for the achievement of Sensor Cloud
approach in terms of its Logical Layer, provid-
ing already the tools and techniques for sensor
diagnostics. Moreover, in the industrial context
(specifically in the RMS), the concept of Sensor
Cloud concept reveals to be an efficient and effec-
tive software solution for all the logic involved in
monitoring, accessing and dynamic organization of
equipment virtual instantiation and models as in-
tegrated software components. Dynamic inclusion,
removal and update of software components for
data treatment based on the equipment virtualiza-
tion; automatic logical architectural reconfiguration
based on the available model dependencies; and
model replacement on-the-fly in the system are the
foundations of the work in the present paper.

Regarding the results of the present architec-
ture, the tests have proven a correct function of
the system. Response to action invocation has a
linear temporal growth and, not being yet totally
independent from the number of sensors being
monitored, the increase of processing time is so
small (lasting milliseconds) that it should be con-
sidered independent in pragmatic perspective. As
the cost of hardware is in constant decrease, we
conclude the solution is feasible and covers all
requirements of the simulated application scenario.

REFERENCES

[1] M. Yuriyama and T. Kushida, “Sensor-cloud infrastruc-
ture - physical sensor management with virtualized sen-
sors on cloud computing,” in Network-Based Information
Systems (NBiS), 2010 13th International Conference on,
Sept 2010, pp. 1–8.

[2] A. Alamri, W. S. Ansari, M. M. Hassan, M. S. Hossain,
A. Alelaiwi, and M. A. Hossain, “A survey on sensor-
cloud: Architecture, applications, and approaches,” In-
ternational Journal of Distributed Sensor Networks, vol.
2013, 2013.

[3] M. Eggert, R. Häußling, M. Henze, L. Hermer-
schmidt, R. Hummen, D. Kerpen, A. Pérez, B. Rumpe,
D. Thißen, and K. Wehrle, “Sensorcloud: Towards the
interdisciplinary development of a trustworthy platform
for globally interconnected sensors and actuators,” in
Trusted Cloud Computing, H. Krcmar, R. Reussner, and
B. Rumpe, Eds. Springer International Publishing, 2014,
pp. 203–218.

[4] P. Zhang, Z. Yan, and H. Sun, “A novel architecture
based on cloud computing for wireless sensor network,”
in Proceedings of the 2nd International Conference on
Computer Science and Electronics Engineering. Atlantis
Press, 2013.

[5] S. Hu, J. Ko, L. Weyand, H. ElMaraghy, T. Lien, Y. Ko-
ren, H. Bley, G. Chryssolouris, N. Nasr, and M. Shpitalni,
“Assembly system design and operations for product
variety,” {CIRP} Annals - Manufacturing Technology,
vol. 60, no. 2, pp. 715 – 733, 2011.

[6] Y. Koren, U. Heisel, F. Jovane, T. Moriwaki,
G. Pritschow, G. Ulsoy, and H. Van Brussel,
“Reconfigurable manufacturing systems,” CIRP Annals-
Manufacturing Technology, vol. 48, no. 2, pp. 527–540,
1999.

[7] G. Goncalves, J. Reis, R. Pinto, M. Alves, and J. Correia,
“A step forward on intelligent factories: A smart sensor-
oriented approach,” in Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, Sept 2014, pp. 1–8.

[8] OSGi, “Osgi aliance,”
""http://www.osgi.org/Main/HomePage", 2015 (accessed
February 13, 2015).

[9] T. A. S. Foundation, “Apache felix framework,”
""https://felix.apache.org/", 2015 (accessed February 13,
2015).

[10] ——, “Apache felix upnp basedriver,”
""https://felix.apache.org/site/apache-felix-upnp.html",
2015 (accessed February 13, 2015).

[11] C. Escoffier, R. S. Hall, and P. Lalanda, “ipojo: An
extensible service-oriented component framework,” in
Services Computing, 2007. SCC 2007. IEEE Interna-
tional Conference on. IEEE, 2007, pp. 474–481.

[12] M. Huhns and M. Singh, “Service-oriented computing:
key concepts and principles,” Internet Computing, IEEE,
vol. 9, no. 1, pp. 75–81, Jan 2005.

[13] K. Thoelen, N. Matthys, W. Horré, C. Huygens,
W. Joosen, D. Hughes, L. Fang, and S.-U. Guan,
“Supporting reconfiguration and re-use through self-
describing component interfaces,” in Proceedings of the
5th International Workshop on Middleware Tools, Ser-
vices and Run-Time Support for Sensor Networks. ACM,
2010, pp. 29–34.

[14] P. Kriens, “Osgi design technique,”
""http://blog.osgi.org/2006/04/details-are-important-
when-you-are.html", 2015 (accessed February 13,
2015).

[15] Intel, “Developer tools for upnp technologies,”
""https://software.intel.com/en-us/articles/intel-tools-
for-upnp-technologies", 2015 (accessed February 13,
2015).

1711

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

