Component Models for Embedded Systems in
Industrial Cyber-Physical Systems

Luis Neto*T, Gil Gongalves*T
*SYSTEC-FoF, Research Center for Systems and Technologies - Factories of the Future
TFEUP, Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, s/n 4200-465, Porto, PORTUGAL
Email: {lcneto,gil} @fe.up.pt

Abstract—Component Based Software Engineering is traditional
methodology that has significant advantages: reduction of pro-
duction cost, code reuse, code portability, fast time to market,
systematic approach to system construction and guided system
design by formalization and domain specific modelling languages.
This methodology is used in frameworks for enterprise systems,
user interfaces, web-applications, embedded systems for Indus-
trial Cyber Physical Productions Systems and Industrial Internet
of Thing’s. In this work, we surveyed Component Model solutions
and literature applied to Industrial Cyber Physical Systems. By
conducting a reproducible systematic mapping study, we search
and select results of interest. Research Questions are formulated
and addressed by applying classification schemes to the results.
Finally, classification results allow us to come up with a state-
of-the art in this domain and to draw some conclusions about
design considerations and research trends.

Keywords—Component Based Software Engineering; Component
Models; Embedded Systems; Industrial Cyber-Physical Systems.

I. INTRODUCTION

In this paper, a Systematic Mapping study in component
models for embedded systems in industrial environments is
addressed. All iterations of the systematic mapping process
were based in [1] and are detailed along the document,
finishing with results that consider the following research
questions. Heineman and Councill [2] provide a clear and
unambiguous definition of software component, component
model and software component infrastructure that we will use
as reference throughout this paper.

1) RQ1. Which component models exist whose scope
of application is industrial Industrial Cyber-Physical
Systems (ICPS) and the target are embedded sys-
tems?

2) RQ2. What are the similarities and design consider-
ations among them?

3) RQ3. How research in this topic is evolving over
time?

4) RQ4. What kind of contribution is given by particular
papers?

A software architecture designed by component model
solution is developed as ”a composite of sub-parts rather than
a monolithic entity” [3]]. The advantages of such tackle many
objectives of the software industry, some of them are: reduction
of production cost, code reuse, code portability, fast time to
market, systematic approach to system construction and guided
system design by formalization and domain specific modelling
languages.

The component model is the foundation of a component
based design. It defines, briefly, the composition standard,
that is: how components are composed into larger pieces,
how and if they can be composed at design and/or runtime
phases of component life-cycle, how they interact, how the
component repository (if any) is managed and the runtime
environment that contains the assembled application. Because
all of this, component models are hard to build, some problems
like achieving determinism and real-time, parallel flows of
component and system development, maintaining components
for reuse, different levels of granularity [4] and portability
problems [S] may occur.

The focus of our study are component models whose target
are factory floor systems and that allow to compose solutions
for discrete or continuous control and automatic reasoning,
the so called component-based industrial automation appli-
cations. Component based design architectures, as classified
in Vyatkin’s work [6], makes part of the traditional software
engineering methodologies. From the key areas of software
engineering [6], we will dive our attention in: software design
and construction, configuration management, tools and meth-
ods.

We are interested in cover the various levels of components,
from those who represent lower level parts of embedded
systems (such as drivers and system kernels) to higher level
(such as algorithms and services). Component models can
be characterized by their capability to assemble components.
These can composed using wrapping, static and dynamic
linking, and ”plug-and-play” methods. Component models
typically are thin layers that operate on top of an operating
system (OS) or runtime environment (RTE), which brings
portability and reuse issues. Because of the advent of Industrial
Internet of Things (IIoT) and ICPS, many hardware vendors
are providing heterogeneous solutions that require OS and RTE
independent solutions.

The rest of this paper is organized as follows: Section II
provides details of the search and selection process for articles;
Section III discusses some of the results found to provide the
reader with support for better interpretation of the mapping
process explained in Section IV. Section V concludes the paper
with a final discussion.

II. PRIMARY SEARCH

The proposed systematic map steps in [1] are illustrated
in Figure [I] The search sources for the first iteration of
the study were only databases of reference: SCOPUS, IEE-
Explore and ACM Digital Library. The initial search string

used, clearly reflects the research questions: (TITLE-ABS-
KEY (component model) AND TITLE-ABS-KEY (in-
dustry) AND TITLE-ABS-KEY (embedded systems))

Following the systematic mapping process, we did a first
review of the abstracts and selected a first set of documents
based on the criteria of Table [I| Because every research topic
have a specific terminology that is unknown to the unfamiliar
reader, new keywords of interest (e.g., Software Component
Framework, Component-Based Software, Component Life Cy-
cle, Component Syntax, Component Semantics, Component
Composition) to the research questions were identified to
increase the search efficiency.

TABLE 1. Inclusion and Exclusion Criteria

Inclusion

Exclusion

Books and papers
reporting final solutions,
methodologies and
evaluation of component
models for embedded
systems in industrial
scenarios.

Available and existing
solutions (both commercial
and academic) with
documentation reporting
experiments, validation and
use cases.

Opinion, survey, taxonomy
and classification
frameworks, and
philosophical findings

on component models

Books and papers with
less than 10 references
will be excluded.

Any finding that does
not discuss the three
main keywords in the
abstract and introduction
“component model”,
“embedded systems”
and “industry” will be
excluded.

Component frameworks
with exclusive application
to enterprise systems,
user interfaces, web-
applications and others
rather embedded systems
for industrial domain.

for embedded systems in
industrial scenarios.

A. Search and Screening

To the original set of steps - the blocks represented with
a contiguous outline - there was added the ones outlined by
dashed lines of Figure [I] Instead of only base the research
questions on the first search to build one search string, the
keywords and abstracts of the accepted documents were used
to find frequent words and produce a new search string. To
generate the new search string, the RapidMiner Studio [1]
tool was used to count frequent words, along with an English
stopwords filter and a n-Grams operator, which allows to make
combinations of n keywords, to count frequencies of up to 4
consecutive words. After that, the resulting set of keywords
contained 44 keywords of interest. Because performing com-
binations with this set was a time consuming process, we
tried to query the selected databases with the entire set at
a time and none of them accepted such a long query. After
that, we decided to try Google Scholar search engine, which
accepted the long set of keywords and resulted in very accurate
preliminary results. We decided to merge the last results to
obtain an extended set of papers. At that point we decided
that to perform a pragmatic application of criteria, the number
of citations considered can not be the same, because Google
Scholar takes in account citations from a wider set of sources
than the other databases. To solve this issue, we searched
for each individual paper of the first set in Google Scholar
and calculated the multiplicative factor between the number of
citations in the second set. Finally, we calculated the average of

all multiplicative factors and by applying that value to replace
minimum number of references considered in Table [I| (for this
case), we came up with a minimum number of 36 references
for Google Scholar results to be considered in the second set.

TABLE II. Documents After Criteria

SCOPUS | _IEEExplore | ACM Digital Library | Google Scholar | Duplicates
Tnitial (Duplicates) 350 206 135 913
1 [>10 References (Duplicates)) 17 i 71 10
Abstract & Intro. Analysis (Duplicates) | 5 7 7 5 T
Final Set 8

The results of applying the Exclusion and Exclusion Cri-
teria specified in Table |I| drastically reduced the number of
documents, as can be observed in Table [l The final set of
documents was used to conduct the evaluation. For that a
classification scheme was used to combine with the mapping
process, this process is detailed in the next chapters.

III. MAPPING PROCESS

The following works are the ones of interest for this
study and will be used throughout the mapping process:
PECOS [8], Timing Definition Language (TDL) [9], FOR-
MULA [10]], Bold Stroke [[11]], Rubus [12], Real-Time-Linux-
Based Framework enhanced with IEC 61449 [13]], IEC 61449
model [14]], Programming Temporally integrated distributed
embedded systems (PTIDES) [15], Kevoree [3f], [16], Au-
tomatic Reasoning [17], Critical Scenario simulation using
IEC 61449 [18] and Component Design to tackle safety
analysis [19]]. Some of them does not provide enough details
to fill all the classification schemes proposed but all were of
the highest interest to provide insight in this study.

Figure 2] gives a concise overview of a component model.
It shows two main phases, from a component creation to its
usage. In the first stage the component its built in a builder
environment, a code editor (mostly when developing from
scratch) or in a graphical editor (mostly when using reusing
built components to produce a composite component, these
are normally represented by graphic shapes or diagrams). The
design phase ends with the developer sending the component
to a repository, in some cases, when there is no repository, the
component can be directly sent to a RTE. In the deployment
phase the components are fetch from the repository, composed
in a graphical or code environment and finally sent to the RTE.

A. Classification Schemes

Four classification schemes will be taken into account to
perform the mapping of results found. The first classification
scheme is based in results found on: opinion, survey, taxonomy
and classification frameworks, and philosophical findings. The
second scheme is based on available and existing solutions
(both commercial and academic) with documentation reporting
experiments, validation and use cases. The third classification,
which is based in previous ones, specifically addresses RQ3.
The last classification scheme addresses RQ4, the categories
used are based in [1]].

From the extended set of relevant papers, not only can be
applied to all classification categories. Theoretical and Survey
papers does not apply to the choose taxonomy for component
models.

Process Steps Research 1st. Search
Questions ' And Screening

| 1% Setof |

Outcomes Review Scope Relevant

! Papers

Data Extraction
Extension and and Mapping
Screening Process

Search Keywording

Using Abstracts

l l l

Extended Set
of Relevant
Papers

Classification
Scheme

Systematic
Map

Figure 1. Modified Systematic Mapping Process.

1) Taxonomy Based: There exists literature [20, 21, 22|
23| that propose classification schemes for component based
software engineering. In [22], the authors provide a formal and
comprehensive framework of classification that will not used
because of the superficial nature of the reviewing process in
systematic mapping approaches. The taxonomy that we will
address is proposed in [20] and it classifies component models
by the three characteristics following.

e Component Syntax: The syntax of components is the
component definition language. In some cases it is a
programming language, but if the solution is required
to be more flexible it can be a specific language
defined by the component model. In the last case, a
compiler can generate code in various programming
languages and make the components more versatile.
Table [I1I| shows the syntax of the component models
analysed.

e Component Semantics: The semantics of a compo-
nent is what it meant to be: it can be an object in
the sense of object oriented languages, it can be a
plain piece of business logic code and be manipu-
lated by a manager instance created by the container
at deployment phase. In this sense, the semantic is
given by the run-time environment and defined by the
component model. Table shows the semantics of
the component models analysed.

e Composition: Process in which components are as-
sembled together to create new components or sys-
tems. This process can happen in two phases (Fig-
ure [2) of the software component life-cycle: at de-
ployment phase, the builder environment is able to
retrieve existing components from the repository and
use them to create a new one, that in the end pack-
aged, catalogued and sent to repository; at deployment
phase, existing components in the repository can be
assembled, instantiated in a run-time environment

TABLE III. Component Syntax

Component Syntax

Object Oriented Programming Language
IDL (interface definition language)
Architecture Description Languages

Component Model

(2[5
(81 [0 (101 [131 [14]

Regarding the Composition classification, the original tax-
onomy [20] defines 5 characteristics of composition that gives
origin to categories. The characteristics are: DR, In design

TABLE IV. Component Semantics

Component Semantics ~ Component Model

Classes 2]
Objects 131 1141 15]
Architectural Units 18} 19 [10]

TABLE V. Composition Classification

Characteristics
Category Component Models DR RR cs DC cP
1 185 110] X X X v X
2 112, X X v X X
3 [9] X X X X v
4 (130 114] v v X v X
5 [5] X X v X v

phase new components can be deposited in a repository;
RR In design phase components can be retrieved from the
repository; CS: Composition is possible in design phase; DC,
in design phase composite components can be deposited in
the repository; CP, composition is possible in deployment
phase. Table [V| shows the composition classification for the
component models analysed.

2) Design Considerations: Reading through the analysed
papers a characteristic perceived as of the highest impor-
tance is the time characteristics of modules. Parallelism,
(a)synchronism, worst case time, events, threads, the mix of
hard, soft and non real-time constraints are characteristics
that concern to industrial control applications and that are
hard to achieve altogether in component models. Integrating
technologies from multiple vendors is challenging and results
in fragile tool chains which requires a considerable effort to
maintain. This also touches the domain of granularity: a single
component can emulate an entire system (coarse grained),
benefiting from the reliability and efficiency, but having a
reduced capability of reuse. The footprint of components and
the container run-time environments is a recurrent concern
when developing to embedded systems, which are typically
cons. System Communication refers to the application of
component models to distributed systems. In scenarios where
several nodes in a network are distributed physically over
a production plant, the component model should be capable
of making this nodes interact as components of monolithic
system.

3) Design Considerations Over Time: The graph of Fig-
ure [3] shows the evolution of design considerations over the
years. Despite the small population used to trace the graph,

Component A

v

Builder

=0
c €
"alle] EO

Composite

Component \K

—C «—{Required Services

=)+ Provided Services

Run-time Environment
e e

¢ FOH

oA

p-ofj¥es

A
Assembly of Component Interfaces /

Figure 2. Component Model Overview.

TABLE VI. Design Considerations

Design Consideration Component Model

Component Granularity 151

Intelligent Reasoning 117]

Real-time (12} 21 [9) [111 [13] [14} [151 [18]
Security 15} 119]

Footprint 1125 5]

Portability (1O} 110k 1134 [14])

Component Reuse (L) 1130 114]

System Communication 1211 19 1141 [151 15]

Systematic Design 124 110} L1O} 114 [16]

some conclusions can be drawn. This classification addresses
RQ3.

Design Considerations Over Time

m Component Ganularity
m Safety
m Real-time

Footprint

1

1997 2002 2003 2005 2006 2008 2010 2011 2012

® System Communication
® Portability

m Component Reuse

m Systematic Design

m Inteligent Reasoning

Figure 3. Design Considerations Over Time.

4) Type of Research and Contribution: According with
the research type facet defined in [1], Table shows a
classification of the works presented in the previous sub
chapters. This table also addresses RQ4.

IV. RESULTS DISCUSSION

In this section, we discuss some of the findings with more
relevance to the topic. The objective of this analysis and the
present discussion was to gain some insight in the details
of the solutions found. There are some design considerations
typical of industrial scenarios that this solutions address and
are important to retain.

According to Lau et al. [3], components can be divided into
2 main classes, 1) objects, as in OO languages; 2) architectural
units, that together compose a software architecture. According
to the authors, there are no standard criteria for what consti-
tutes a component model. Components syntax, is the language
used to component definition and which may be different
from implementation language. Typically the component con-
tainers and runtime environments are general purpose server
computers. In this case we are interested in a particular kind
of architecture in which a centralized general purpose server
holds the component repository and the runtime environment
is contained in physically distributed embedded systems. The
taxonomy that Lau et al. [3] work defines will be used to
describe the result found in the systematic mapping study.
The authors conclude that a theory that supports component
model process in the whole life-cycle did not exist and that a
perfect component model should allow composition at design
and runtime phases. A component should be deployed along
with a complete information of its provided and required
interfaces [2]]. To enable reuse and interconnection of com-
ponents, component producers and consumers must agree on
a set of interfaces before the components are designed. These
agreements can lead to standardized interfaces.

The authors of [21] present a survey of component frame-
works for embedded systems, they point out two main diffi-
culties in the development of component systems. The authors
also present the evaluation criteria for a real-time component
model for embedded systems and compare the frameworks pre-
sented against the given criteria. Component frameworks for
industrial domain are also presented, THINK [24], MIND [25]]
(based in THINK) and SOFA HI [26]. The classification
criteria and review of the frameworks are very enlightening
in the sense that reading this work provides a great deal of
insight in component frameworks from various perspectives
of application.

Authors in [13]] consider component based development
as a key promising technology in embedded research domain.
Here authors poit out the differences that make component
model solutions for general purpose computers (other articles)
not viable to embedded systems. A series of component
models for embedded systems in industry, based in software
engineering and control theory best practices are pointed out.
From our experience in recent European projects, industrial

TABLE VII. Type Research and Contribution Classification

Contribution Facet
Metric] Tool Model Method Process
[200Dy [m2hoiin [(2037 | [10] 113 116} [19]
Research Facet
Evaluation Validation Philosophical Experience Opinion Solution
Research Research Paper Research Paper Proposal
(12511351170 (9L 1104 [13]) I [r2kof ol il el 119 (2L 9L 10k 3L [17]

component models need to look into disciplines, such as IoT
and big data. Beyond control, embedded systems of today
smart factories must analyse data, communicate with vendor
independent hardware (sensors, machines, actuators, cloud
systems and HMI devices) and take actions.

Rubus [12] is a component model for embedded systems,
regarding industrial requirements that are elicited, under mixed
timing and resource constrained requirements. The components
in this solution have also a set of modes or a set of states, which
allows the components to execute different code in different
states.

Authors in [8] present a good list of reasons for motivation
of a component model for field devices. In this work, a
case study based on a board containing the PECOS solution
and controlling a motor speed, using a speed sensor and
control algorithms was developed. The board has web-access
and thus is compatible with industrial (ModBus) and Web
protocols (Ethernet). This solution show how components can
be passive, in the sense that they are invoked by a scheduler
or other components; or they can be active, own a thread to
process asynchronous events or perform long computations in
background.

V. CONCLUSION

To draw more realistic conclusions, commercial and
other academic and non-academic solutions, which
were of our knowledge, but not found during the
search phase, should be considered in the evaluation
and mapping. Some of them are Matlab/Simulink
(https://www.mathworks.com/products/simulink.html),
Rational Statement (http://www-03.ibm.com/software/
products/en/ratistat), =~ Node-RED 1271, Scade (http:
/Iwww.esterel-technologies.com/products/scade-suite/),
OSGi [28] and 4DIAC [29]. In addition, to make the
study reproducible, intuitive findings, such as when analysing
papers and consulting other informal search engines and
databases, were not included.

Some interesting conclusions can be taken from the design
considerations over time in the graph of Figure [3] There
are only two papers considering security issues, the second
one [5] is about a component model designed for cyber-
physical systems, in which security is a hot-topic. In the same
classification line, real-time considerations are shown to prevail
over the years. This finding can somewhat confirm that this is
a hard subject to tackle in component architectures. Intelligent
reasoning is an emergent topic of nowadays, we decided to
include that design consideration in the classification scheme
of Table ?? exactly to make readers perceive that only in
most recent paper of interest [S] it was addressed. This also
could mean that security and artificial intelligence open topics
of research in the software engineering component models
domain. As we have seen, there are multiple works using

IEC 61499, it seems to be the de facto standard for com-
ponent syntax and semantics in industrial automation. Other
concerns that seems to prevail are the communication, design
and portability of components. Last but not least, apart from
commercial and other non-academic solutions, it seems that
this topic is not evolving in the recent years. This can also be
a signal that the emergent software engineering methodologies
for industrial automation [6] are capturing a lot of attention
from the academic community.

REFERENCES

[1] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,
“Systematic mapping studies in software engineering.”
in EASE, vol. 8, 2008, pp. 68-77.

[2] B. Councill and G. T. Heineman, “Definition of a soft-
ware component and its elements,” Component-based
software engineering: putting the pieces together, 2001,
pp- 5-19.

[3] K.-K. Lau and Z. Wang, “Software component models,”
IEEE Transactions on software engineering, vol. 33,
no. 10, 2007, pp. 709-724.

[4] C. Maga, N. Jazdi, and P. Gohner, “Reusable models
in industrial automation: experiences in defining appro-
priate levels of granularity,” IFAC Proceedings Volumes,
vol. 44, no. 1, 2011, pp. 9145-9150.

[5] F. e. a. Fouquet, “A dynamic component model for cyber
physical systems,” in Proceedings of the 15th ACM
SIGSOFT symposium on Component Based Software
Engineering. ACM, 2012, pp. 135-144.

[6] V. Vyatkin, “Software engineering in industrial automa-
tion: State-of-the-art review,” IEEE Transactions on In-
dustrial Informatics, vol. 9, no. 3, 2013, pp. 1234-1249.

[7] RapidMiner, Inc. Rapidminer studio. Last accessed
2018.05.04. [Online]. Available: https://rapidminer.com/
products/studio/

[8] T. GenBler, A. Christoph, M. Winter, O. Nierstrasz,
S. Ducasse, R. Wuyts, G. Arévalo, B. Schonhage,
P. Miiller, and C. Stich, “Components for embedded
software: the pecos approach,” in Proceedings of the 2002
international conference on Compilers, architecture, and
synthesis for embedded systems. ACM, 2002, pp. 19—
26.

[9] E. Farcas, C. Farcas, W. Pree, and J. Templ, “Transparent
distribution of real-time components based on logical
execution time,” in ACM SIGPLAN Notices, vol. 40,
no. 7. ACM, 2005, pp. 31-39.

[10] E. K. Jackson, E. Kang, M. Dahlweid, D. Seifert, and
T. Santen, “Components, platforms and possibilities: to-
wards generic automation for mda,” in Proceedings of
the tenth ACM international conference on Embedded
software. ACM, 2010, pp. 39-48.

[11] W. Roll, “Towards model-based and ccm-based appli-

https://www.mathworks.com/products/simulink.html
http://www-03.ibm.com/software/products/en/ratistat
http://www-03.ibm.com/software/products/en/ratistat
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
https://rapidminer.com/products/studio/
https://rapidminer.com/products/studio/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

cations for real-time systems,” in Object-Oriented Real-
Time Distributed Computing, 2003. Sixth IEEE Interna-
tional Symposium on. IEEE, 2003, pp. 75-82.

K. Hanninen, J. Maki-Turja, M. Nolin, M. Lindberg,
J. Lundback, and K.-L. Lundback, “The rubus component
model for resource constrained real-time systems,” in
2008 International Symposium on Industrial Embedded
Systems. IEEE, 2008, pp. 177-183.

G. Doukas and K. Thramboulidis, “A real-time-linux-
based framework for model-driven engineering in control
and automation,” IEEE Transactions on Industrial Elec-
tronics, vol. 58, no. 3, 2011, pp. 914-924.

V. Vyatkin, “Iec 61499 as enabler of distributed and intel-
ligent automation: State-of-the-art review,” IEEE Trans-
actions on Industrial Informatics, vol. 7, no. 4, 2011, pp.
768-781.

J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and
J. Zou, “Distributed real-time software for cyber—physical
systems,” Proceedings of the IEEE, vol. 100, no. 1, 2012,
pp. 45-59.

V. Tran, D.-B. Liu, and B. Hummel, “Component-based
systems development: challenges and lessons learned,”
in Software Technology and Engineering Practice, 1997.
Proceedings., Eighth IEEE International Workshop on
[incorporating Computer Aided Software Engineering].
IEEE, 1997, pp. 452-462.

M. Khalgui, O. Mosbahi, Z. Li, and H.-M. Hanisch,
“Reconfigurable multiagent embedded control systems:
From modeling to implementation,” IEEE Transactions
on Computers, vol. 60, no. 4, 2011, pp. 538-551.

M. Khalgui, E. Carpanzano, and H.-M. Hanisch, “An
optimised simulation of component-based embedded sys-
tems in manufacturing industry,” International Journal of
Simulation and Process Modelling, vol. 4, no. 2, 2008,
pp. 148-162.

D. Domis and M. Trapp, “Integrating safety analyses and
component-based design,” in International Conference on
Computer Safety, Reliability, and Security. Springer,
2008, pp. 58-71.

K.-K. Lau and Z. Wang, “A taxonomy of software
component models,” in 31st EUROMICRO Conference
on Software Engineering and Advanced Applications.
IEEE, 2005, pp. 88-95.

P. HoSek, T. Pop, T. Bures, P. Hnétynka, and M. Mal-
ohlava, “Comparison of component frameworks for real-
time embedded systems,” in International Symposium
on Component-Based Software Engineering. Springer,
2010, pp. 21-36.

I. Crnkovic, S. Sentilles, A. Vulgarakis, and M. R.
Chaudron, “A classification framework for software com-
ponent models,” IEEE Transactions on Software Engi-
neering, vol. 37, no. 5, 2011, pp. 593-615.

H. J. Reekie and E. A. Lee, “Lightweight component
models for embedded systems,” in Published as Technical
Memorandum UCB ERL MO02/30, Electronics Research
Laboratory, University of California at Berkeley. Cite-
seer, 2002.

J.-P. Fassino, J.-B. Stefani, J. L. Lawall, and G. Muller,
“Think: A software framework for component-based op-
erating system kernels.” in USENIX Annual Technical
Conference, General Track, 2002, pp. 73-86.

MINALOGIC. Mind: Assembly technology for

[26]

[27]

(28]

[29]

embedded software components. Last accessed
2018.05.04. [Online]. Available: http://www.minalogic.
com/en/minalogic/about-minalogic-0

M. e. a. Prochazka, “A component-oriented framework
for spacecraft on-board software,” in Proceedings of
DASIA. Citeseer, 2008.

M. Blackstock and R. Lea, “Toward a distributed data
flow platform for the web of things (distributed node-
red),” in Proceedings of the 5th International Workshop
on Web of Things. ACM, 2014, pp. 34-39.

0. Alliance, “Osgi-the dynamic module system for java,”
2009.

T. Strasser, M. Rooker, G. Ebenhofer, A. Zoitl, C. Sunder,
A. Valentini, and A. Martel, “Framework for distributed
industrial automation and control (4diac),” in Industrial
Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on. IEEE, 2008, pp. 283-288.

http://www.minalogic.com/en/minalogic/about-minalogic-0
http://www.minalogic.com/en/minalogic/about-minalogic-0

	Introduction
	Primary Search
	Search and Screening

	Mapping Process
	Classification Schemes
	Taxonomy Based
	Design Considerations
	Design Considerations Over Time
	Type of Research and Contribution

	Results Discussion
	Conclusion

